JPH07196362A - Highly durable magnesia-carbonaceous refractory - Google Patents

Highly durable magnesia-carbonaceous refractory

Info

Publication number
JPH07196362A
JPH07196362A JP5338376A JP33837693A JPH07196362A JP H07196362 A JPH07196362 A JP H07196362A JP 5338376 A JP5338376 A JP 5338376A JP 33837693 A JP33837693 A JP 33837693A JP H07196362 A JPH07196362 A JP H07196362A
Authority
JP
Japan
Prior art keywords
magnesia
clinker
refractory
aggregate
magnesia clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5338376A
Other languages
Japanese (ja)
Inventor
Taijiro Matsui
泰次郎 松井
Hiroyuki Ishimatsu
宏之 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5338376A priority Critical patent/JPH07196362A/en
Publication of JPH07196362A publication Critical patent/JPH07196362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To eliminate problems of disintegration of a grain boundary and outflow due to impurities deposited in the crystal grain boundary in an electrofused magnesia clinker used as an aggregate raw material for conventional magnesia-graphitic refractory and improve the corrosion resistance and durability. CONSTITUTION:This highly durable magnesia-carbonaceous refractory is obtained by blending a magnesia clinker aggregate with a graphitic material and a binder. In the refractory, the magnesia clinker aggregate is prepared by electrofusing seawater magnesia having >=99.9% purity, providing an electrofused magnesia clinker composed of a single crystal having >=1000mum grain size, blending the resultant clinker in a polycrystalline magnesia clinker, pulverizing and controlling the size of the resultant magnesia clinker blend and using the magnesia clinker having the grain size controlled within the range of 0.074-3mm. Impurities are not deposited in the grain boundary and converted into a solid solution in the magnesia to promote the coarse-grain crystallization. Thereby, a single crystal having >=1000mum grain size is obtained and used as a constituent aggregate for a magnesia-graphitic refractory. As a result, an influence of permeation of a slag into the grain boundary in refining can be reduced to prevent the disintegration by thermal shock.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Q−BOP炉、転炉、
取鍋、タンディッシュ、混銑炉、真空処理炉等の製鋼用
炉の内張りに使用される耐スポーリング、耐食性に優れ
たマグネシア−黒鉛質耐火物に関する。
The present invention relates to a Q-BOP furnace, a converter,
The present invention relates to a magnesia-graphite refractory having excellent spalling resistance and corrosion resistance used for lining steelmaking furnaces such as ladle, tundish, mixed pig furnace, and vacuum treatment furnace.

【0002】[0002]

【従来の技術】このマグネシア−黒鉛質耐火物は、例え
ば、特開昭57−11874号公報、特開昭63−24
1109号公報に記載されているように、マグネシアク
リンカーと鱗状黒鉛、土状黒鉛、ピッチ、コークス等の
黒鉛材と、コールタールピッチ、フェノール樹脂等の有
機質結合材の配合物を成形後、300℃以下の低温で加
熱処理されたものである。
2. Description of the Related Art This magnesia-graphite refractory material is disclosed, for example, in JP-A-57-11874 and JP-A-63-24.
As described in Japanese Patent No. 1109, a mixture of a magnesia clinker and a graphite material such as scaly graphite, soil graphite, pitch, and coke, and an organic binder such as coal tar pitch and phenol resin is molded, and then the temperature is 300 ° C. It was heat-treated at the following low temperature.

【0003】このマグネシア原料としてのマグネシアク
リンカーは、95.0〜99.5%程度の比較的高純度
であり、高密度であるために電融マグネシアクリンカー
が多く使用されるようになった。
The magnesia clinker used as the magnesia raw material has a relatively high purity of about 95.0 to 99.5%, and since it has a high density, the electrofusion magnesia clinker has come to be widely used.

【0004】この電融マグネシアクリンカーを使用した
マグネシア−黒鉛質耐火物は、耐火物32
A magnesia-graphite refractory using this electrofused magnesia clinker is refractory 32.

〔9〕486
(1980)「マグネシア−カーボン系耐火物の概要と
問題点」にも記載されているように、原料である電融マ
グネシアクリンカーには、不純物としてシリカ、ライ
ム、酸化鉄及び酸化硼等を0.5〜0.8%程度含有し
ており、これらの不純物が結晶粒界に析出して、結晶径
が概ね500ミクロンレベルの多結晶体となっている。
[9] 486
(1980) As described in "Outline and Problems of Magnesia-Carbon Refractory Materials", silica, lime, iron oxide, boric oxide and the like as impurities are contained in the electromelted magnesia clinker as a raw material. It is contained in an amount of about 5 to 0.8%, and these impurities precipitate at the crystal grain boundaries to form a polycrystalline body having a crystal diameter of about 500 microns.

【0005】[0005]

【発明が解決しようとする課題】このため該電融マグネ
シアクリンカーを使用した黒鉛含有耐火物では、使用中
に精錬スラグが粒界に浸透し、クリンカーの崩壊が発生
し、また、熱衝撃を受けた際に粒界から容易に亀裂を誘
発し、細粒化して骨材機能を失ってしまい、溶鋼流等の
機械的作用が働いた際に簡単に流出してしまい、耐用性
がなくなってしまうという欠点を有している。
Therefore, in the graphite-containing refractory using the electro-fused magnesia clinker, refining slag penetrates into the grain boundaries during use, collapse of the clinker occurs, and thermal shock is generated. When this happens, cracks are easily induced from the grain boundaries, and the grain function is lost to lose the aggregate function, and when the mechanical action such as molten steel flow acts, it easily flows out and the durability is lost. It has the drawback of

【0006】本発明の目的は、従来のマグネシア−黒鉛
系耐火物の骨材原料として使用する電融マグネシアクリ
ンカーにおける結晶粒界に析出した不純物に起因する粒
界の崩壊と流出の問題を解消して耐食性と耐用性が改善
されたマグネシア−黒鉛系耐火物を提供することにあ
る。
An object of the present invention is to solve the problems of grain boundary collapse and outflow due to impurities deposited at the crystal grain boundaries in the electro-melting magnesia clinker used as a raw material for aggregates of conventional magnesia-graphite refractories. Another object of the present invention is to provide a magnesia-graphite refractory having improved corrosion resistance and durability.

【0007】[0007]

【課題を解決するための手段】本発明は、結晶粒の大き
い電融マグネシアクリンカーを配合させることにより解
決し、該単結晶電融マグネシアクリンカーの最適な使用
粒度域を追求した結果、従来の多結晶体電融マグネシア
クリンカーの代わりに、1000ミクロン以上の単結晶
を有するクリンカーを骨材組成物に配合することによっ
て、その課題を達成されることを見出した。
The present invention has been solved by blending an electro-fused magnesia clinker having large crystal grains, and as a result of pursuing an optimum particle size range for use of the single-crystal electro-fused magnesia clinker, as a result of conventional It has been found that the problem can be achieved by blending a clinker having a single crystal of 1000 microns or more in an aggregate composition instead of the crystalline electrofused magnesia clinker.

【0008】すなわち、本発明は、マグネシアクリンカ
ー骨材と黒鉛材と結合材とを配合してなるマグネシア−
炭素系耐火物において、前記マグネシアクリンカー骨材
を1000ミクロン以上の単結晶からなるマグネシアク
リンカーを多結晶のマグネシアクリンカーに配合して、
このマグネシアクリンカー配合物を粉砕・整粒して0.
074〜3mmの粒度範囲に粒度調整したことを特徴と
する。
That is, according to the present invention, a magnesia clinker aggregate, a graphite material and a binder are blended together.
In a carbon-based refractory, the magnesia clinker aggregate is mixed with a polycrystalline magnesia clinker by combining a magnesia clinker composed of a single crystal of 1000 microns or more,
This magnesia clinker compound was crushed and sized to give a particle size of 0.
It is characterized in that the particle size is adjusted in the particle size range of 074 to 3 mm.

【0009】この1000ミクロン以上の単結晶を有す
るクリンカーは、海水マグネシア、あるいはマグネサイ
トの精整品等の99.9%以上の純度を有するマグネシ
ア原料を電融することによって得ることができる。
The clinker having a single crystal of 1000 microns or more can be obtained by electromelting a magnesia raw material having a purity of 99.9% or more, such as seawater magnesia or a refined magnesite product.

【0010】この単結晶を有するクリンカーは、通常の
多結晶体に、本発明のマグネシア−炭素系耐火物配合物
は、基材強化のための配合材としてAl、Al−Mg等
の金属、その他の添加物を配合できる。
The clinker having this single crystal is a normal polycrystal, and the magnesia-carbon refractory composition of the present invention is a compounding material for strengthening the base material such as Al, Al-Mg, etc. Additives can be added.

【0011】この大粒径のマグネシア単結晶クリンカー
は、その単味を配合することもできるが、多結晶体クリ
ンカーに、全量100重量部に10重量部以上、配合す
ることによって充分にその目的を達成できる。
This magnesia single crystal clinker having a large particle size can be blended alone, but the polyclinic clinker can be blended to a total amount of 100 parts by weight in an amount of 10 parts by weight or more to achieve the desired purpose. Can be achieved.

【0012】配合するカーボン材、結合材としては格別
の原料である必要はなく、従来と同様、鱗状黒鉛、土状
黒鉛、ピッチ、コークス等の黒鉛材と、コールタールピ
ッチ、フェノール樹脂等の有機質結合材等が使用できる
が、その中のCaO含有量は4%未満である必要があ
る。
The carbon material and the binder to be blended do not have to be special raw materials, and graphite materials such as scaly graphite, earthy graphite, pitch and coke, and organic materials such as coal tar pitch and phenol resin can be used as in the past. A binder or the like can be used, but the CaO content in the binder needs to be less than 4%.

【0013】[0013]

【作用】本発明は、電融原料を純度を99.9%以上に
することによって、不純物が粒界に析出せずにマグネシ
ア中に固溶されて、粗大結晶化が進み1000ミクロン
以上の単結晶となり、これをマグネシア−黒鉛系耐火物
の構成骨材として使用することによって、精錬時のスラ
グの粒界への浸透による影響を小さく精錬時のスラグの
粒界への浸透による影響を小さくでき、熱衝撃による崩
壊が防止できる。
According to the present invention, when the purity of the electromelting raw material is set to 99.9% or more, impurities are not dissolved at the grain boundaries but are solid-solved in magnesia, and coarse crystallization is promoted to obtain a single crystal of 1000 μm or more. It becomes a crystal, and by using this as a constituent aggregate of magnesia-graphite refractory, it is possible to reduce the effect of slag penetration into grain boundaries during refining and reduce the effect of slag penetration into grain boundaries during refining. It is possible to prevent collapse due to thermal shock.

【0014】[0014]

【実施例】表面がセルフコーティングされた移動台車上
に、電極をセットしその外周に水冷二重鉄構造で内面が
セルフコーティングされた円筒炉をセットし、冷却配管
を接続する。その後、炉内に円筒炉上部より99.9%
以上の純度を有する海水マグネシアクリンカーと該マグ
ネシアクリンカー製造時に発生した集塵粉を概ね、重量
割合で、80:20の混合比で一定量装填し、天蓋を配
置し、天蓋の開口部より電極を挿入し通電を開始する。
EXAMPLE An electrode is set on a moving carriage whose surface is self-coated, and a cylindrical furnace whose inner surface is self-coated with a water-cooled double iron structure is set on the outer periphery thereof and a cooling pipe is connected. After that, 99.9% from the top of the cylindrical furnace in the furnace
Seawater magnesia clinker having the above-mentioned purity and dust collecting powder generated during the production of the magnesia clinker were loaded in a fixed amount at a mixing ratio of 80:20 in a weight ratio, a canopy was arranged, and an electrode was opened from the opening of the canopy. Insert and start energizing.

【0015】通電開始後、約30分で電極周辺の装填原
料が溶融を開始する。この時点で更に一定量の原料を天
蓋開口部より投入する。本工程を遂次繰り返し、約8時
間を要して溶融させた後、通電を止め円筒炉の通水冷却
を約8〜12時間実施する。その後、円筒炉を移動台車
より引き上げ炉内電融インゴットをボール冷却盤上に放
置し、更に12時間以上放冷する。その後、インゴット
の外周部の未溶融部を除去した溶融塊を採取する。その
後更に採取された溶融塊の電極周辺の芯部のみを回収す
ることによって、直径100mm以上の粗大結晶のマグ
ネシアクリンカーを得た。
About 30 minutes after the start of energization, the charged raw material around the electrodes starts melting. At this point, a certain amount of raw material is further charged through the canopy opening. This step is repeated repeatedly, and after melting for about 8 hours, the energization is stopped and the cooling of water through the cylindrical furnace is carried out for about 8 to 12 hours. After that, the cylindrical furnace is pulled up from the movable carriage, the in-furnace electromelting ingot is left on the ball cooling plate, and further cooled for 12 hours or more. Then, a molten mass obtained by removing the unmelted portion on the outer peripheral portion of the ingot is collected. Then, by collecting only the core portion of the collected molten mass around the electrode, a coarse crystal magnesia clinker having a diameter of 100 mm or more was obtained.

【0016】この粗大結晶のマグネシアクリンカーを用
いて、表1に示す割合の、鱗片状黒鉛からなる黒鉛材
と、基材強化のためのAl微粉を外掛け3%重量部配合
し、この配合物を温度制御可能な混練機で樹脂バインダ
ーを添加後30分混練し、2000トン真空フリクショ
ンプレス機にて成形後、250℃までベーキング処理し
て、回転スラグ侵食試験用の耐火物を得て、得られた耐
火物の試験後のクリンカーの崩壊の程度を標記試験後
(1700℃、スラグ塩基度3.3、侵食時間4時間)
のサンプルの反射顕微鏡観察によって、また、耐食性を
標記試験後サンプルの損耗寸法による溶損指数によって
調べた。その結果を表1に示す。
Using this coarse crystal magnesia clinker, 3% by weight of a graphite material composed of flake graphite and Al fine powder for reinforcing the base material in the proportions shown in Table 1 were externally blended. Was mixed with a resin binder in a temperature-controllable kneader for 30 minutes, molded with a 2000 ton vacuum friction press, and baked at 250 ° C to obtain a refractory material for a rotary slag erosion test, which was obtained. After the test, the degree of clinker disintegration after testing the refractory was tested (1700 ° C, slag basicity 3.3, erosion time 4 hours)
The corrosion resistance of the above sample was examined by a reflection microscope, and the corrosion resistance was examined by the erosion index according to the wear size of the sample after the test. The results are shown in Table 1.

【0017】[0017]

【表1】 比較のために、98%純度のマグネシア原料を同様に処
理して、原料クリンカーを作成した。得られたマグネシ
アは、粒径が500ミクロン以下の多結晶体であった。
これを使用して、マグネシア−黒鉛質の耐火物を得て同
様の試験を行った。その結果を表1に併せて示す。
[Table 1] For comparison, a 98% pure magnesia raw material was similarly processed to prepare a raw material clinker. The obtained magnesia was a polycrystal having a particle size of 500 microns or less.
Using this, a magnesia-graphite refractory material was obtained and a similar test was conducted. The results are also shown in Table 1.

【0018】同表により以下のことがわかる。The table shows the following.

【0019】(1)単結晶電融マグネシアの添加によ
り、耐食性が向上する。
(1) Corrosion resistance is improved by the addition of single crystal electro-fused magnesia.

【0020】(2)単結晶電融マグネシアの添加を3m
m以下の粒度で行えば、クリンカーの崩壊がない。
(2) Addition of single crystal electrofused magnesia to 3 m
If the particle size is m or less, there is no clinker collapse.

【0021】(3)単結晶電融マグネシアの添加効果と
しては、1mm以下に10%以上行えば耐食性向上が顕
著である。
(3) As for the effect of adding the single crystal electro-fused magnesia, the corrosion resistance is remarkably improved when the content is 1 mm or less and 10% or more.

【0022】[0022]

【発明の効果】本発明によって以下の効果を奏する。The present invention has the following effects.

【0023】(1)従来の電融プロセスで容易に製造で
きる大粒の単結晶を使用して格別の処理を得ないで耐用
性に優れた炭素含有マグネシア耐火物を得ることができ
る。
(1) A carbon-containing magnesia refractory having excellent durability can be obtained without using a large-sized single crystal which can be easily produced by a conventional electro-melting process and without special treatment.

【0024】(2)標記単結晶マグネシアの適用によ
り、マグネシアの粒界起因の崩壊が防止でき、耐食性の
向上が可能である。
(2) By applying the above-mentioned single crystal magnesia, the collapse of magnesia due to the grain boundary can be prevented and the corrosion resistance can be improved.

【0025】(3)標記単結晶マグネシアの適用によ
り、マグネシアの粒界への精錬時のスラグ成分の浸透が
防止でき、耐食性が向上する。
(3) By applying the above-mentioned single crystal magnesia, the penetration of the slag component at the time of refining into the grain boundaries of magnesia can be prevented, and the corrosion resistance is improved.

【0026】(4)標記単結晶マグネシアを1mm以下
の粒度範囲に10%以上配合することにより、大幅な耐
食性向上が可能となる。
(4) By adding 10% or more of the above-mentioned single crystal magnesia in a particle size range of 1 mm or less, it is possible to significantly improve the corrosion resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マグネシアクリンカー骨材と黒鉛材と結
合材とを配合してなるマグネシア−炭素系耐火物におい
て、前記マグネシアクリンカー骨材を1000ミクロン
以上の単結晶からなるマグネシアクリンカーを多結晶の
マグネシアクリンカーに配合して、このマグネシアクリ
ンカー配合物を粉砕・整粒して0.074〜3mmの粒
度範囲に粒度調整した高耐用マグネシア−炭素系耐火
物。
1. A magnesia-carbon-based refractory obtained by blending a magnesia clinker aggregate, a graphite material, and a binder, wherein the magnesia clinker aggregate is a crystalline magnesia clinker composed of a single crystal of 1000 μm or more. A highly durable magnesia-carbon refractory which is blended with a clinker, and this magnesia clinker blend is pulverized and sized to adjust the grain size within a grain size range of 0.074 to 3 mm.
【請求項2】 請求項1の記載において、1000ミク
ロン以上の単結晶を有するクリンカーが、99.9%以
上の純度を有するマグネシア原料を電融して得た電融マ
グネシアクリンカーである高耐用マグネシア−炭素系耐
火物。
2. The high durability magnesia according to claim 1, wherein the clinker having a single crystal of 1000 microns or more is an electrofused magnesia clinker obtained by electrofusing a magnesia raw material having a purity of 99.9% or more. -Carbon refractories.
【請求項3】 請求項1の記載において、多結晶質のマ
グネシアクリンカーとの配合物中の単結晶マグネシアク
リンカーの配合量が、全量100重量部中10重量部以
上である高耐用マグネシア−炭素系耐火物。
3. The highly durable magnesia-carbon system according to claim 1, wherein the blending amount of the single crystal magnesia clinker in the blend with the polycrystalline magnesia clinker is 10 parts by weight or more out of 100 parts by weight in total. Refractory.
【請求項4】 請求項1の記載において、配合物全体の
CaO含有量が4%未満である高耐用マグネシア−炭素
系耐火物。
4. The highly durable magnesia-carbon refractory material according to claim 1, wherein the total content of CaO is less than 4%.
JP5338376A 1993-12-28 1993-12-28 Highly durable magnesia-carbonaceous refractory Pending JPH07196362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5338376A JPH07196362A (en) 1993-12-28 1993-12-28 Highly durable magnesia-carbonaceous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5338376A JPH07196362A (en) 1993-12-28 1993-12-28 Highly durable magnesia-carbonaceous refractory

Publications (1)

Publication Number Publication Date
JPH07196362A true JPH07196362A (en) 1995-08-01

Family

ID=18317576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5338376A Pending JPH07196362A (en) 1993-12-28 1993-12-28 Highly durable magnesia-carbonaceous refractory

Country Status (1)

Country Link
JP (1) JPH07196362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076980A (en) * 2005-09-16 2007-03-29 Kurosaki Harima Corp Magnesia carbon brick
JP2016190759A (en) * 2015-03-31 2016-11-10 新日鐵住金株式会社 Magnesia chromium brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076980A (en) * 2005-09-16 2007-03-29 Kurosaki Harima Corp Magnesia carbon brick
JP4634263B2 (en) * 2005-09-16 2011-02-16 黒崎播磨株式会社 Magnesia carbon brick
JP2016190759A (en) * 2015-03-31 2016-11-10 新日鐵住金株式会社 Magnesia chromium brick

Similar Documents

Publication Publication Date Title
JP3952332B2 (en) Graphite-containing amorphous refractory material for chaotic vehicles
JPH07196362A (en) Highly durable magnesia-carbonaceous refractory
US5369066A (en) Refractory material and product thereof containing low-silica electrofused magnesia clinker
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
CN108383534A (en) A kind of pouring materialfor steel ladle and application method of graphene-containing
US4171219A (en) Use of silicon carbide as an addition to cupola furnaces
US3403213A (en) Electric furnace having refractory brick of specific composition in the critical wear areas
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JPH0733513A (en) Magnesia-carbon brick and its production
US3930874A (en) Bonded fused grain basic refractory and batch therefor
JP2002201080A (en) Using method of scrap refractory and castable refractory
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH10203862A (en) Magnesium-chromium brick fired at high temperature
RU2235701C1 (en) Periclase-spinel refractory products and a method for manufacture thereof
JP3121442B2 (en) Refractory
JP3124799B2 (en) Refractory brick containing low silica fused magnesia clinker
JP2862982B2 (en) Irregular refractories
JP3124809B2 (en) Refractory brick containing low siliceous magnesia clinker
JP3201678B2 (en) High spalling resistant magnesia carbonaceous brick and method for producing the same
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP2004059390A (en) Castable refractory for blast furnace trough
JPH042665A (en) Melted alumina-magnesia based composition and refractory product
KR20010017579A (en) Ramming refractories for molten trough cover of blast furnace
JP3475256B2 (en) Basic refractories

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991119