JPH07194951A - Dry hollow fiber membrane made of cellulose derivatives - Google Patents

Dry hollow fiber membrane made of cellulose derivatives

Info

Publication number
JPH07194951A
JPH07194951A JP127094A JP127094A JPH07194951A JP H07194951 A JPH07194951 A JP H07194951A JP 127094 A JP127094 A JP 127094A JP 127094 A JP127094 A JP 127094A JP H07194951 A JPH07194951 A JP H07194951A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
water
mixed substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP127094A
Other languages
Japanese (ja)
Other versions
JP3332541B2 (en
Inventor
Nobuyuki Nakatsuka
修志 中塚
Kazuhiro Nakanishi
一弘 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP00127094A priority Critical patent/JP3332541B2/en
Publication of JPH07194951A publication Critical patent/JPH07194951A/en
Application granted granted Critical
Publication of JP3332541B2 publication Critical patent/JP3332541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hollow fiber membrane made of a cellulose derivative not decreased in the rate of water permeability after drying by adhering the hollow fiber membrane under wet condition with a specified substance. CONSTITUTION:An ultrafiltration membrane with a dense layer on the inner and outer surfaces of a hollow fiber membrane contains a mixed substance consisting of three components of a polyvalent alcohol, a surfactant and water in the membrane and the water concn. in the mixed substance is 0.1-5wt.% and the wt. of the mixed substance is 0.1-1.5 times to the wt. of the polymer in the membrane. It is thereby possible to keep the rate of water permeability and to seal sufficiently without generating foaming at the interface between the membrane and an adhesive in making a module.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体または気体の分離に
用いるセルロース誘導体中空糸膜に関するものであり、
詳しくは、中空糸膜を乾燥しても透過速度が低下せず、
乾燥前の透過速度を保持することができるセルロース誘
導体中空糸膜に関する。
TECHNICAL FIELD The present invention relates to a cellulose derivative hollow fiber membrane used for separating a liquid or a gas,
Specifically, even if the hollow fiber membrane is dried, the permeation rate does not decrease,
The present invention relates to a cellulose derivative hollow fiber membrane capable of maintaining the permeation rate before drying.

【0002】[0002]

【従来の技術】近年、中空糸膜は水処理分野、食品工
業、医薬工業、電子工業などの非常に幅広い分野におい
て、液体または気体の分離・精製および濃縮を目的とし
て、ますます利用されている。高分子中空糸膜の湿式ま
たは乾湿式製膜法では、一般に高分子の製膜溶液が低分
子の非溶媒 (例えば水) にさらされることによって高分
子濃厚相と希薄相の2つの相に分離する、いわゆる相分
離が起こって、中空糸膜が形成する。この際、中空糸膜
は高分子による一定の大きさの多孔質構造を形成して、
多孔質内部に非溶媒を含んだ状態で製膜される。ところ
が、このような中空糸膜をそのまま乾燥し、非溶媒が多
孔質内部から抜け出してしまうと膜の多孔質構造が不可
逆的に変化して、透過速度が著しく低下する場合がしば
しばある。また、このような乾燥中空糸膜はそれ自体が
硬く脆いものになってしまい、機械的強度も著しく低下
する。
2. Description of the Related Art In recent years, hollow fiber membranes have been increasingly used for the purpose of separating / purifying and concentrating liquids or gases in a very wide range of fields such as water treatment, food industry, pharmaceutical industry, and electronic industry. . In the wet or dry wet film forming method of polymer hollow fiber membranes, a polymer film forming solution is generally exposed to a low molecular weight non-solvent (for example, water) to separate into a polymer concentrated phase and a dilute phase. That is, so-called phase separation occurs and a hollow fiber membrane is formed. At this time, the hollow fiber membrane forms a porous structure of a certain size due to the polymer,
The film is formed with the non-solvent contained in the inside of the porous material. However, when such a hollow fiber membrane is dried as it is and the non-solvent escapes from the inside of the porous body, the porous structure of the membrane is irreversibly changed, and the permeation rate is often significantly reduced. Further, such a dry hollow fiber membrane itself becomes hard and brittle, and the mechanical strength is significantly lowered.

【0003】一方、中空糸膜を膜モジュールに組み込ん
だり、保存、輸送あるいは加工したりする場合には、中
空糸膜がある程度乾燥した状態の方が取り扱いやすいば
かりでなく、膜を接着剤でシールしてモジュール化する
際には、膜に含有する水分の濃度はできるだけ少ないこ
とが望ましい。
On the other hand, when the hollow fiber membrane is incorporated in a membrane module, stored, transported or processed, it is not only easier to handle when the hollow fiber membrane is dry to some extent, but the membrane is sealed with an adhesive. It is desirable that the concentration of water contained in the film is as low as possible when the module is made into a module.

【0004】従って、中空糸膜は乾燥した状態において
も、膜構造を変化させず、透過速度を保持する程度に湿
らせておく必要がある。すなわち中空糸膜の製膜後に保
湿剤(あるいは保水剤) を膜の多孔質内部に含浸させる
ことによって乾燥後も透過速度を保つことができる。
Therefore, the hollow fiber membrane must be moistened to the extent that the permeation rate is maintained without changing the membrane structure even in the dry state. That is, the permeation rate can be maintained even after drying by impregnating the moisturizing agent (or water retaining agent) into the porous interior of the membrane after forming the hollow fiber membrane.

【0005】多孔質膜の保湿剤として従来よりグリセリ
ンまたはグリセリン水溶液がしばしば用いられている
(例えば、特開昭47-11662号公報、特開昭60-12072号公
報) 。しかしながら、保湿剤のグリセリン含有量が少な
いと、このグリセリン付着の多孔質膜を乾燥した後に再
び水に浸漬しても透過速度が乾燥前よりかなり低下した
り、強度が低下したりする場合がある。一方、グリセリ
ン含有量が多い場合には、多孔質膜の吸湿性が高くなり
すぎて種々の不都合がある。例えば、多孔質膜をモジュ
ール化する際、ポリウレタン系接着剤などで末端をシー
ルしたりすることが通常行われるが、その際に保湿剤と
接着剤が反応して発泡してしまい、多孔質膜を充分に接
着できなくなるなどの問題がある。
Conventionally, glycerin or an aqueous glycerin solution is often used as a moisturizing agent for porous membranes.
(For example, JP-A-47-11662 and JP-A-60-12072). However, if the glycerin content of the moisturizing agent is low, the permeation rate may be considerably lower than before drying or the strength may be lowered even if the porous film with glycerin attached is dried and then immersed in water again. . On the other hand, when the glycerin content is high, the hygroscopicity of the porous membrane becomes too high, which causes various problems. For example, when modularizing a porous film, it is usual to seal the ends with a polyurethane-based adhesive or the like, but at that time, the moisturizing agent and the adhesive react and foam, resulting in a porous film. There is a problem such as not being able to adhere sufficiently.

【0006】また、特開平3-143534号公報には、界面活
性剤を多孔質膜に含ませることによって、乾燥後の透水
性を低下させないことが示されている。しかしながら、
膜素材と水との親和性が膜性能に大きな影響を及ぼす親
水性膜では、この保湿剤の含有量が特に重要である。例
えば、酢酸セルロース多孔質膜を数wt%のドデシル硫酸
ナトリウム水溶液に浸漬して乾燥すると、透水性が著し
く低下してしまう場合がある。また、この界面活性剤の
濃度が数wt%以上になると、界面活性剤が多孔質膜に多
く付着するため、多孔質膜の使用前に多量の水で長時間
の洗浄・除去をする必要があるなどの不都合を生ずる。
Further, Japanese Patent Laid-Open No. 3-143534 discloses that the inclusion of a surfactant in the porous membrane does not reduce the water permeability after drying. However,
The content of this moisturizing agent is particularly important in a hydrophilic membrane in which the affinity between the membrane material and water has a great influence on the membrane performance. For example, if the cellulose acetate porous membrane is immersed in an aqueous solution of several wt% sodium dodecyl sulfate and dried, the water permeability may be significantly reduced. Further, when the concentration of this surfactant becomes several wt% or more, a large amount of the surfactant adheres to the porous membrane, so it is necessary to wash and remove it with a large amount of water for a long time before using the porous membrane. There are some inconveniences.

【0007】酢酸セルロースの逆浸透膜に用いた保湿剤
の例として、D.V.Kenneth らのIndustrial Engineering
Chemistry,Product Research & Development第8巻 N
o.1P84(1969) および特開昭53-92867号公報にグリセリ
ン、界面活性剤および水を含む水溶液が紹介されてお
り、この保湿剤によって乾燥後の膜の透水速度が低下し
ないことが知られている。しかしながら、このような膜
には保湿剤が過剰に含まれており膜内の水分濃度が高い
場合には、接着剤によるシールが困難となり、実質的に
膜モジュールの作製が不可能となる。一方、膜内の水分
濃度が低すぎる場合には、乾燥後の膜の透水速度は減少
してしまう。
As an example of a moisturizer used in a reverse osmosis membrane of cellulose acetate, Industrial Engineering of DV Kenneth et al.
Chemistry, Product Research & Development Volume 8 N
O.1P84 (1969) and JP-A-53-92867 disclose an aqueous solution containing glycerin, a surfactant and water, and it is known that this humectant does not reduce the water permeation rate of the membrane after drying. ing. However, when such a film contains an excessive amount of moisturizing agent and the water concentration in the film is high, it becomes difficult to seal the film with an adhesive and it becomes substantially impossible to manufacture the film module. On the other hand, if the water content in the membrane is too low, the water permeability of the membrane after drying will decrease.

【0008】また、特開昭56-129005 号公報には、酢酸
セルロース膜の保湿剤として、1,3−ブチレングリコー
ルを含有する方法が開示されているが、この場合も上記
と同様の問題があり、膜に含有する適切な水分濃度を決
定することが非常に困難である。
Further, Japanese Patent Application Laid-Open No. 56-129005 discloses a method of containing 1,3-butylene glycol as a moisturizing agent for a cellulose acetate film. In this case, however, the same problem as described above occurs. Yes, it is very difficult to determine the appropriate water concentration contained in the membrane.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明は膜の
内外両表面に緻密層をもつセルロース誘導体中空糸膜に
最適な保湿剤を提供するとともに該膜に含有する保湿剤
の量および水分濃度を決定することによって、膜を乾燥
しても透過速度を低下させず、また膜の保存、輸送およ
び加工における取扱いを容易とし、さらにモジュール化
においても膜の接着シールに不都合を生じないことを課
題とする。
Therefore, the present invention provides an optimum moisturizing agent for a cellulose derivative hollow fiber membrane having dense layers on both inner and outer surfaces of the membrane, and the amount and the water concentration of the moisturizing agent contained in the membrane. By determining the above, it is necessary to prevent the permeation rate from being decreased even when the membrane is dried, to facilitate the handling during storage, transportation and processing of the membrane, and to cause no inconvenience in the adhesive seal of the membrane even in the modularization. And

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記のよ
うな課題を解決するため鋭意検討した結果、膜の内外表
面に緻密層をもつセルロース誘導体限外濾過膜に多価ア
ルコール、界面活性剤および水の3成分からなる混合物
質を含有させ、該混合物質中の水分濃度が 0.1〜5wt%
であり、かつ該混合物質の重量が膜のポリマー重量に対
して 0.1〜1.5倍である乾燥中空糸膜が乾燥前の透過速
度を保持することができ、またモジュール化に不都合を
生じないことを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that a cellulose derivative ultrafiltration membrane having a dense layer on the inner and outer surfaces of the membrane has a polyhydric alcohol and an interface. Contains a mixed substance consisting of three components, an activator and water, and the water concentration in the mixed substance is 0.1 to 5 wt%.
And the weight of the mixed substance is 0.1 to 1.5 times the polymer weight of the membrane, the dry hollow fiber membrane can maintain the permeation rate before drying, and does not cause inconvenience in modularization. Heading, arrived at the present invention.

【0011】即ち本発明は、中空糸膜の内外表面に緻密
層を有する限外濾過膜であって、該膜に多価アルコー
ル、界面活性剤および水の3成分からなる混合物質を含
有しており、該混合物質中の水分濃度が 0.1〜5wt%で
あり、かつ該混合物質の重量が該膜のポリマー重量に対
して 0.1〜1.5 倍であることを特徴とするセルロース誘
導体の乾燥中空糸膜に関する。
That is, the present invention is an ultrafiltration membrane having a dense layer on the inner and outer surfaces of a hollow fiber membrane, which contains a mixed substance consisting of polyhydric alcohol, a surfactant and water. And the water concentration in the mixed substance is 0.1 to 5 wt%, and the weight of the mixed substance is 0.1 to 1.5 times the polymer weight of the membrane. Regarding

【0012】以下に本発明をさらに詳細に述べる。本発
明では、多価アルコール、界面活性剤および水の3成分
からなる混合物質がセルロース誘導体中空糸膜に含有す
ることを一つの特徴とする。本発明で用いる多価アルコ
ールとは、同一分子内に2個以上の水酸基をもつアルコ
ールのことであり、例えば、プロピレンアルコール、1,
3−ブチレングリコール、ポリエチレングリコール等の
2価アルコールやグリセリン等の3価アルコールを挙げ
ることができる。
The present invention will be described in more detail below. One feature of the present invention is that a mixed substance composed of three components of a polyhydric alcohol, a surfactant and water is contained in the cellulose derivative hollow fiber membrane. The polyhydric alcohol used in the present invention is an alcohol having two or more hydroxyl groups in the same molecule, such as propylene alcohol, 1,
Examples thereof include dihydric alcohols such as 3-butylene glycol and polyethylene glycol, and trihydric alcohols such as glycerin.

【0013】また、本発明で用いる界面活性剤は、陰イ
オン性界面活性剤、陽イオン性界面活性剤、非イオン性
界面活性剤、両性界面活性剤のいずれでもよい。陰イオ
ン性界面活性剤としては、脂肪酸塩、高級アルコール硫
酸エステル塩、アルキルナフタレンスルホン酸酸塩、ア
ルキルベンゼンスルホン酸塩、アルキルリン酸エステル
塩などを挙げることができる。陽イオン性界面活性剤と
しては、アルキルアミン塩、第4級アンモニウム塩、ベ
ンザルコニウム塩等を挙げることができる。非イオン性
界面活性剤としては、ポリオキシエチレンアルキルエー
テル、ポリオキシエチレンアルキルフェニルエーテル、
ポリオキシエチレン脂肪酸エステル、ポリグリセリン脂
肪酸エステル、ポリオキシエチレン脂肪酸アミド、ポリ
オキシエチレンアルキルアミン、ソルビタン脂肪酸エス
テルなどが挙げられる。また、両性界面活性剤として
は、アルキルベタイン、スルホベタイン、アミノカルボ
ン酸塩、アルキルアミノ酸塩などを挙げることができ
る。以上のような界面活性剤の中でも、高級アルキル硫
酸エステル塩、アルキルリン酸エステル塩、アルキルベ
ンゼンスルホン酸塩などや非イオン性界面活性剤の1部
は毒性が低いため、本発明の中空糸膜を食品分野、医療
分野、浄水処理用途などに利用する場合に好ましい。
The surfactant used in the present invention may be any of an anionic surfactant, a cationic surfactant, a nonionic surfactant and an amphoteric surfactant. Examples of the anionic surfactant include fatty acid salt, higher alcohol sulfate ester salt, alkylnaphthalene sulfonate, alkylbenzene sulfonate, alkyl phosphate ester salt and the like. Examples of cationic surfactants include alkylamine salts, quaternary ammonium salts, benzalkonium salts and the like. As the nonionic surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether,
Examples thereof include polyoxyethylene fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, and sorbitan fatty acid ester. Examples of the amphoteric surfactant include alkyl betaine, sulfobetaine, aminocarboxylic acid salt, and alkyl amino acid salt. Among the above-mentioned surfactants, higher alkyl sulfate ester salts, alkyl phosphate ester salts, alkylbenzene sulfonates and some nonionic surfactants have low toxicity, so the hollow fiber membrane of the present invention is used. It is preferable when it is used in the food field, medical field, water purification treatment, etc.

【0014】本発明の中空糸膜は、膜の内外表面に緻密
層があることを特徴とする。すなわち、膜の空孔サイズ
は膜内表面から外表面に向かって、内表面での極小値か
ら徐々に大きくなり、少なくとも1つの極大値があり、
再び外表面にて極小値となる。この極小値となる緻密層
の孔径は、高分子物質の分離を対象とする限外濾過膜領
域のサイズであり、通常1〜50nmの範囲にある。また、
本発明の限外濾過膜とは、分画分子量が1×103 〜1×
106 である膜をいう。
The hollow fiber membrane of the present invention is characterized by having a dense layer on the inner and outer surfaces of the membrane. That is, the pore size of the film gradually increases from the minimum value on the inner surface toward the outer surface from the inner surface of the film, and has at least one maximum value,
It becomes a minimum again on the outer surface. The pore diameter of the dense layer, which is the minimum value, is the size of the ultrafiltration membrane region targeted for the separation of the polymer substance, and is usually in the range of 1 to 50 nm. Also,
The ultrafiltration membrane of the present invention has a molecular weight cutoff of 1 × 10 3 to 1 ×.
Membrane that is 10 6 .

【0015】本発明に係るセルロース誘導体はセルロー
スジアセテート、セルローストリアセテート、セルロー
スプロピオネート、セルロースブチレート、セルロース
フェニルカルバニレートなどのセルロースエステル化合
物、メチルセルロース、エチルセルロースなどのセルロ
ースエーテル化合物など、およびこれらを組み合わせた
ブレンド化合物が挙げられる。
The cellulose derivative according to the present invention includes cellulose ester compounds such as cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and cellulose phenylcarbanilate, cellulose ether compounds such as methyl cellulose and ethyl cellulose, and the like. Included are blended compounds that have been combined.

【0016】本発明の中空糸膜は膜のポリマー重量に対
して多価アルコール、界面活性剤および水の3成分から
なる混合物質の重量が 0.1〜1.5 倍含まれていることを
特徴とする。この混合物質の重量がポリマー重量に対し
て 1.5倍を越える場合には、本発明の中空糸膜は含水量
が大きくなりすぎるために、中空糸膜をポリウレタン系
接着剤などでシールしてモジュール化する際に、混合物
質と接着剤とが反応して発泡してしまい、中空糸膜を充
分に接合することが困難となる。一方、混合物質の重量
がポリマー重量に対して 0.1倍未満となると透過速度は
著しく低下する。従って、混合物質の重量はポリマー重
量に対して 0.1〜1.5 倍であればよく、好ましくは 0.5
〜1.2 倍であればよい。本発明の中空糸膜に含有する混
合物質の重量は、混合物質の組成、混合物質の溶液に中
空糸膜を浸漬する時間、浸漬時の混合物質の溶液の温
度、膜の乾燥温度、乾燥時間などによって変えることが
できるが、混合物質の組成を変えることが最も制御しや
すい。すなわち、混合物質の重量は混合物質中の多価ア
ルコールあるいは界面活性剤の組成、特に多価アルコー
ルの組成を増やすと増大する。
The hollow fiber membrane of the present invention is characterized in that the weight of the mixed substance consisting of the polyhydric alcohol, the surfactant and water is 0.1 to 1.5 times the weight of the polymer of the membrane. When the weight of this mixed substance exceeds 1.5 times the weight of the polymer, the hollow fiber membrane of the present invention has too high a water content, and therefore the hollow fiber membrane is sealed with a polyurethane adhesive or the like to form a module. In doing so, the mixed substance and the adhesive react and foam, which makes it difficult to sufficiently bond the hollow fiber membranes. On the other hand, if the weight of the mixed substance is less than 0.1 times the weight of the polymer, the permeation rate remarkably decreases. Therefore, the weight of the mixed substance may be 0.1 to 1.5 times the weight of the polymer, preferably 0.5.
It should be ~ 1.2 times. The weight of the mixed substance contained in the hollow fiber membrane of the present invention is the composition of the mixed substance, the time for immersing the hollow fiber membrane in the solution of the mixed substance, the temperature of the mixed substance solution at the time of immersion, the drying temperature of the membrane, and the drying time. It is possible to change the composition by changing the composition of the mixed substance. That is, the weight of the mixed substance is increased by increasing the composition of the polyhydric alcohol or the surfactant in the mixed substance, particularly the composition of the polyhydric alcohol.

【0017】中空糸膜を浸漬する混合物質溶液中の多価
アルコール、界面活性剤および水の組成比は、乾燥膜中
の混合物質の重量が膜ポリマーの重量の 0.1〜1.5 倍と
なれば特に限定されないが、多価アルコールが5〜50wt
%、界面活性剤が0.05〜10wt%、水が40〜90wt%である
ことが好ましい。また、膜に含有した混合物質中の水分
濃度が大きければポリウレタン系接着剤と膜の界面で接
着剤が発泡してしまい、一方、小さければ乾燥後の膜の
透過速度は低下してしまう。本発明では、この水分濃度
が混合物質に対して 0.1〜5wt%であることが、上記の
両方の問題を解決することを見出した。
The composition ratio of the polyhydric alcohol, the surfactant and the water in the mixed substance solution in which the hollow fiber membrane is dipped is particularly so long as the weight of the mixed substance in the dry membrane is 0.1 to 1.5 times the weight of the membrane polymer. Without limitation, polyhydric alcohol 5 to 50 wt
%, Surfactant is 0.05 to 10 wt%, and water is 40 to 90 wt%. Further, if the water content in the mixed substance contained in the film is high, the adhesive will foam at the interface between the polyurethane adhesive and the film, while if it is small, the permeation rate of the film after drying will decrease. In the present invention, it was found that the water concentration of 0.1 to 5 wt% with respect to the mixed substance solves both of the above problems.

【0018】次に本発明の方法を具体的に説明する。ま
ず、湿式または乾湿式製膜法などによって得たセルロー
ス誘導体中空糸膜を多価アルコール、界面活性剤および
水の所定の組成の3成分混合物質で充填する。充填の方
法は、制限されないが、中空糸膜を所定の組成の混合物
質中に浸漬する方法が最も簡便である。この浸漬は室温
においては、通常、1時間以上行えばよいが、混合物質
の温度を上昇させると時間を短縮することができる。次
いで、この中空糸膜を乾燥して孔内部の過剰の水分を除
去する。本発明の乾燥中空糸膜に含有する混合物質の重
量や水分濃度は、中空糸膜の乾燥条件によっても変化す
る。すなわち、乾燥方法は熱風乾燥でも真空乾燥などで
もよいが、中空糸膜中の過剰の水分が除去でき、乾燥時
間が充分長くても膜の重量が変化しないことが必要であ
る。このような乾燥温度は用いたセルロース誘導体のガ
ラス転移温度よりも低く、室温 (25℃) よりも高くする
べきである。例えば、酢酸セルロース中空糸膜の場合は
30〜60℃が望ましい。また、乾燥時間は混合物質の含有
重量が平衡に達する程度まで行えばよく、例えば、酢酸
セルロース中空糸膜を50℃で乾燥させる場合には5時間
以上行えばよい。
Next, the method of the present invention will be specifically described. First, a cellulose derivative hollow fiber membrane obtained by a wet or dry wet film forming method or the like is filled with a three-component mixed substance having a predetermined composition of a polyhydric alcohol, a surfactant and water. The filling method is not limited, but the most convenient method is to immerse the hollow fiber membrane in a mixed substance having a predetermined composition. Usually, this immersion may be performed for 1 hour or more at room temperature, but the time can be shortened by increasing the temperature of the mixed substance. Next, this hollow fiber membrane is dried to remove excess water inside the pores. The weight and water content of the mixed substance contained in the dry hollow fiber membrane of the present invention also change depending on the drying conditions of the hollow fiber membrane. That is, the drying method may be hot air drying or vacuum drying, but it is necessary that excess moisture in the hollow fiber membrane can be removed and the weight of the membrane does not change even if the drying time is sufficiently long. Such a drying temperature should be lower than the glass transition temperature of the cellulose derivative used and higher than room temperature (25 ° C). For example, in the case of cellulose acetate hollow fiber membrane
30-60 ° C is desirable. The drying time may be such that the weight of the mixed substance reaches the equilibrium. For example, when the cellulose acetate hollow fiber membrane is dried at 50 ° C., it may be dried for 5 hours or more.

【0019】また、中空糸膜を液体分離膜として使用す
る前には乾燥後の中空糸膜を室温の水に数時間以上浸漬
することによって、膜から混合物質を除去でき、乾燥前
と同様の透過性能を得ることができる。この浸漬時間も
水の温度を60℃に達しない程度に上げることによって短
縮できる。
Further, before using the hollow fiber membrane as a liquid separation membrane, the dried hollow fiber membrane may be immersed in water at room temperature for several hours or more to remove the mixed substances from the membrane, which is the same as before drying. Transmission performance can be obtained. This soaking time can also be shortened by raising the temperature of the water so that it does not reach 60 ° C.

【0020】本発明の作用は明らかではないが、以下の
ように推定できる。すなわち、混合物質中の界面活性剤
の疎水性部分は中空糸膜の孔内部表面に吸着すると同時
に、この疎水性部分は多価アルコールとも結合する。ま
た、界面活性剤の親水性部分および多価アルコールの水
酸基部分は水と強く相互作用をもつため、この水が界面
活性剤や多価アルコールを介して、見掛け上中空糸膜に
束縛された状態で存在する。この束縛状態の水は中空糸
膜を所定の温度で乾燥しても完全に除去されず、中空糸
膜に適度の保水性を与えるために、乾燥後も多孔質構造
を変化させず、またこの膜を水に浸漬して容易に混合物
質を中空糸膜から除去できる。膜の内外表面に緻密層を
もつ本発明のような中空糸膜構造では一般に膜を保湿剤
に浸漬しても、保湿剤が膜の多孔質内部全体に拡散する
速度が著しく小さくなるが、本発明の混合物質はそのよ
うな膜構造でも膜の保湿作用を効果的に行うことができ
る。
Although the operation of the present invention is not clear, it can be estimated as follows. That is, the hydrophobic portion of the surfactant in the mixed substance is adsorbed on the inner surface of the pores of the hollow fiber membrane, and at the same time, the hydrophobic portion also binds to the polyhydric alcohol. In addition, since the hydrophilic part of the surfactant and the hydroxyl part of the polyhydric alcohol have strong interactions with water, this water is apparently bound to the hollow fiber membrane via the surfactant and polyhydric alcohol. Exists in. This bound water is not completely removed even when the hollow fiber membrane is dried at a predetermined temperature, and does not change the porous structure even after drying in order to give the hollow fiber membrane an appropriate water retention property. The mixed substance can be easily removed from the hollow fiber membrane by immersing the membrane in water. In a hollow fiber membrane structure such as the present invention having a dense layer on the inner and outer surfaces of the membrane, generally, even when the membrane is immersed in a moisturizing agent, the rate at which the moisturizing agent diffuses throughout the porous interior of the membrane is significantly reduced. The mixed substance of the invention can effectively perform the moisturizing action of the film even in such a film structure.

【0021】[0021]

【発明の効果】本発明の中空糸膜は乾燥しても多孔質膜
を水に浸漬するなどによって容易に透過速度を乾燥前と
同程度にすることができる。また、この多孔質膜をモジ
ュール化する際に、ポリウレタン系接着剤などで多孔質
膜の末端をシールしても接着剤の発泡を起こすことがな
く、充分なシール性を得ることができる。
EFFECTS OF THE INVENTION Even when the hollow fiber membrane of the present invention is dried, the permeation rate can be easily made equal to that before drying by immersing the porous membrane in water. Further, when the porous membrane is made into a module, even if the end of the porous membrane is sealed with a polyurethane-based adhesive or the like, the adhesive does not foam and a sufficient sealing property can be obtained.

【0022】[0022]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0023】実施例1 酢酸セルロース (酢化度60.5) ポリマーをジメチルスル
ホキシドの溶媒中で攪拌、溶解し、製膜ドープ (ポリマ
ーの濃度:20wt%) を調製した。この製膜ドープを温度
90℃の円形2重管紡糸ノズルの鞘部に圧入し、ノズル芯
部には水を凝固液として注入した。この紡糸ノズル口か
ら吐出した製膜ドープは温度90℃に調節した空間部を5
cm通過した後、温度70℃の水浴中を通過させつつ凝固さ
せ、温度40℃の水浴中に数時間浸漬して中空糸膜中の溶
媒を完全に水で置換した。得られた中空糸膜は内径およ
び外径がそれそれ 0.8mmおよび1.3mm であり、膜の内・
外両表面に緻密層を有し、膜内部が緻密層の空孔よりも
大きな空孔をもつ網目状構造であり、短径10〜50μm 、
長径50〜150 μm の楕円形巨大ボイドを有していた。こ
の中空糸膜の純水透過速度 (中空内部から25℃の純水を
圧力1kg/cm2で通水したときの単位時間・単位膜面積当
たりの透過水量) は 320リットル/(m2・hr・(kg/cm2))
であり、分画分子量は15万 (緻密層の孔径10〜20nm) で
あった。また、この膜を50℃乾燥機内で約20時間乾燥し
た後の1m長さ当たりの重量は0.28mgであった。
Example 1 Cellulose acetate (acetylation degree: 60.5) A polymer was stirred and dissolved in a solvent of dimethyl sulfoxide to prepare a film-forming dope (concentration of polymer: 20 wt%). Temperature of this film forming dope
It was pressed into the sheath of a circular double-tube spinning nozzle at 90 ° C., and water was injected as a coagulating liquid into the core of the nozzle. The film-forming dope discharged from this spinning nozzle port has 5
After passing cm, the mixture was coagulated while passing through a water bath at a temperature of 70 ° C., and immersed in a water bath at a temperature of 40 ° C. for several hours to completely replace the solvent in the hollow fiber membrane with water. The obtained hollow fiber membranes have inner and outer diameters of 0.8 mm and 1.3 mm, respectively.
It has a dense layer on both outer surfaces, and the inside of the film has a network structure with pores larger than the pores of the dense layer, with a minor axis of 10 to 50 μm,
It had an oval giant void with a major axis of 50 to 150 μm. The pure water permeation rate of this hollow fiber membrane (the permeated water amount per unit time and unit membrane area when pure water at 25 ° C was passed through the hollow at a pressure of 1 kg / cm 2 ) was 320 liters / (m 2 · hr).・ (Kg / cm 2 ))
And the molecular weight cutoff was 150,000 (pore size of dense layer: 10 to 20 nm). Further, the weight per 1 m length after drying this film in a dryer at 50 ° C. for about 20 hours was 0.28 mg.

【0024】上記にて得た中空糸膜をグリセリン (以下
GLと略記) 、ドデシル硫酸ナトリウム (以下 SDSと略
記) および水の混合溶液 (混合重量比: GL/SDS/水=20
/0.5/79.5)に20℃で約20時間浸漬した後、温度50℃、湿
度50%の乾燥機内で約20時間乾燥した。
The hollow fiber membrane obtained above was treated with glycerin (hereinafter
GL), sodium dodecylsulfate (hereinafter abbreviated as SDS) and water mixed solution (mixing weight ratio: GL / SDS / water = 20)
/0.5/79.5) at 20 ° C for about 20 hours and then dried in a dryer at a temperature of 50 ° C and a humidity of 50% for about 20 hours.

【0025】この乾燥膜の1m長さ当たりの重量を測定
し、次式によって中空糸膜に付着する混合物質の重量を
膜のポリマー重量に対する値として求めた。
The weight of this dry membrane per 1 m length was measured, and the weight of the mixed substance adhering to the hollow fiber membrane was determined as a value with respect to the polymer weight of the membrane by the following formula.

【0026】[0026]

【数1】 [Equation 1]

【0027】また、この混合物質中の水分濃度は乾燥膜
を五酸化リンを多量に含むデシケーター内に入れ、30℃
で1週間放置して乾燥膜の付着水分をさらに除去して得
た膜の重量と元の乾燥膜の重量との差から求めた。
The water concentration in this mixed substance was adjusted to 30 ° C. by placing the dry film in a desiccator containing a large amount of phosphorus pentoxide.
It was determined by the difference between the weight of the film obtained by further removing the water adhering to the dry film after standing for 1 week and the weight of the original dry film.

【0028】上記のようにして得た乾燥膜を多量の水に
約20時間浸漬した後の膜の純水透過速度を測定した結
果、透水速度の低下率は乾燥前の透水速度のわずか5%
以下であった。さらに乾燥膜をポリウレタン接着剤でシ
ールした際、膜と接着界面に発泡が生じなかった。以上
の結果を表1に示した。
As a result of measuring the pure water permeation rate of the membrane obtained by immersing the dried membrane obtained as described above in a large amount of water for about 20 hours, the reduction rate of the water permeation rate was only 5% of the water permeation rate before drying.
It was below. Furthermore, when the dry film was sealed with a polyurethane adhesive, no foaming occurred at the film and the adhesive interface. The above results are shown in Table 1.

【0029】実施例2 実施例1の乾燥前の中空糸膜をグリセリン、ドデシル硫
酸ナトリウムおよび水のそれぞれ30wt%、 0.5wt%およ
び69.5wt%の混合溶液に浸漬した以外は実施例1と同様
に実施し、その結果を表1に示した。
Example 2 The same as Example 1 except that the hollow fiber membrane before drying of Example 1 was immersed in a mixed solution of 30 wt%, 0.5 wt% and 69.5 wt% of glycerin, sodium dodecyl sulfate and water, respectively. The results were shown in Table 1.

【0030】実施例3 実施例1の乾燥前の中空糸膜を1,3−ブチレングリコー
ル、ドデシル硫酸ナトリウムおよび水のそれぞれ20wt
%、 0.5wt%および79.5wt%の混合溶液に浸漬した以外
は実施例1と同様に実施し、その結果を表1に示した。
Example 3 The hollow fiber membrane before drying of Example 1 was treated with 1,3-butylene glycol, sodium dodecyl sulfate and water at 20 wt each.
%, 0.5 wt% and 79.5 wt% were mixed, and the same procedure as in Example 1 was performed, and the results are shown in Table 1.

【0031】比較例1 実施例1の乾燥前の中空糸膜をグリセリンの20wt%水溶
液に浸漬した以外は実施例1と同様に実施し、その結果
を表1に示した。
Comparative Example 1 The procedure of Example 1 was repeated, except that the hollow fiber membrane of Example 1 before drying was immersed in a 20 wt% aqueous solution of glycerin, and the results are shown in Table 1.

【0032】比較例2 実施例1の乾燥前の中空糸膜をグリセリンの40wt%水溶
液に浸漬した以外は実施例1と同様に実施し、その結果
を表1に示した。
Comparative Example 2 The procedure of Example 1 was repeated except that the hollow fiber membrane of Example 1 before drying was immersed in a 40 wt% aqueous solution of glycerin, and the results are shown in Table 1.

【0033】比較例3 実施例1の乾燥前のドデシル硫酸ナトリウムの20wt%水
溶液に浸漬した以外は実施例1と同様に実施し、その結
果を表1に示した。
Comparative Example 3 The procedure of Example 1 was repeated, except that the sample was immersed in a 20 wt% aqueous solution of sodium dodecyl sulfate before drying, and the results are shown in Table 1.

【0034】比較例4 実施例1の乾燥前の中空糸膜を1,3−ブチレングリコー
ルの20wt%水溶液に浸漬した以外は実施例1と同様に実
施し、その結果を表1に示した。
Comparative Example 4 The procedure of Example 1 was repeated, except that the undried hollow fiber membrane of Example 1 was immersed in a 20 wt% aqueous solution of 1,3-butylene glycol, and the results are shown in Table 1.

【0035】比較例5 実施例1の乾燥前の中空糸膜をグリセリン、ドデシル硫
酸ナトリウムおよび水の混合溶液 (混合重量比: GL/SD
S/水=20/10/70) に浸漬した以外は実施例1と同様に実
施し、その結果を表1に示した。
Comparative Example 5 A hollow fiber membrane before drying of Example 1 was mixed with glycerin, sodium dodecyl sulfate and water (mixed weight ratio: GL / SD).
S / water = 20/10/70) was carried out in the same manner as in Example 1 except that it was immersed, and the results are shown in Table 1.

【0036】比較例6 中空糸膜を室温 (15〜20℃) で13時間放置して乾燥した
以外は実施例2と同様に実施し、その結果を表1に示し
た。
Comparative Example 6 The procedure of Example 2 was repeated, except that the hollow fiber membrane was left to dry at room temperature (15 to 20 ° C.) for 13 hours, and the results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中空糸膜の内外表面に緻密層を有する限
外濾過膜であって、該膜に多価アルコール、界面活性剤
および水の3成分からなる混合物質を含有しており、該
混合物質中の水分濃度が 0.1〜5wt%であり、かつ該混
合物質の重量が該膜のポリマー重量に対して 0.1〜1.5
倍であることを特徴とするセルロース誘導体の乾燥中空
糸膜。
1. An ultrafiltration membrane having a dense layer on the inner and outer surfaces of a hollow fiber membrane, wherein the membrane contains a mixed substance consisting of polyhydric alcohol, a surfactant and water. The water content in the mixed substance is 0.1 to 5 wt%, and the weight of the mixed substance is 0.1 to 1.5 with respect to the polymer weight of the membrane.
A dry hollow fiber membrane of a cellulose derivative characterized by being doubled.
【請求項2】 緻密層の孔径が1〜50nmである請求項1
記載のセルロース誘導体の乾燥中空糸膜。
2. The pore size of the dense layer is 1 to 50 nm.
A dry hollow fiber membrane of the described cellulose derivative.
【請求項3】 多価アルコールがグリセリンまたは1,3
−ブチレングリコールである請求項1または2記載のセ
ルロース誘導体の乾燥中空糸膜。
3. The polyhydric alcohol is glycerin or 1,3
-The dry hollow fiber membrane of the cellulose derivative according to claim 1 or 2, which is butylene glycol.
【請求項4】 界面活性剤がドデシル硫酸ナトリウムで
ある請求項1〜3の何れか1項に記載のセルロース誘導
体の乾燥中空糸膜。
4. The dry hollow fiber membrane of the cellulose derivative according to claim 1, wherein the surfactant is sodium dodecyl sulfate.
【請求項5】 中空糸膜が湿式または乾湿式法により製
膜された中空糸膜である請求項1〜4の何れか1項に記
載のセルロース誘導体の乾燥中空糸膜。
5. The dry hollow fiber membrane of a cellulose derivative according to claim 1, wherein the hollow fiber membrane is a hollow fiber membrane formed by a wet or dry-wet method.
JP00127094A 1994-01-11 1994-01-11 Dry hollow fiber membrane of cellulose derivative Expired - Fee Related JP3332541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00127094A JP3332541B2 (en) 1994-01-11 1994-01-11 Dry hollow fiber membrane of cellulose derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00127094A JP3332541B2 (en) 1994-01-11 1994-01-11 Dry hollow fiber membrane of cellulose derivative

Publications (2)

Publication Number Publication Date
JPH07194951A true JPH07194951A (en) 1995-08-01
JP3332541B2 JP3332541B2 (en) 2002-10-07

Family

ID=11496771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00127094A Expired - Fee Related JP3332541B2 (en) 1994-01-11 1994-01-11 Dry hollow fiber membrane of cellulose derivative

Country Status (1)

Country Link
JP (1) JP3332541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088996A (en) * 2008-10-07 2010-04-22 Asahi Kasei Chemicals Corp Reserved liquid for separative membrane
JP2010115655A (en) * 2010-02-15 2010-05-27 Toyobo Co Ltd Drying method of polysulfonic hollow fiber membrane bundle with selective permeability
JP2011218274A (en) * 2010-04-07 2011-11-04 Asahi Kasei Chemicals Corp Preservation liquid for separation film
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088996A (en) * 2008-10-07 2010-04-22 Asahi Kasei Chemicals Corp Reserved liquid for separative membrane
JP2010115655A (en) * 2010-02-15 2010-05-27 Toyobo Co Ltd Drying method of polysulfonic hollow fiber membrane bundle with selective permeability
JP2011218274A (en) * 2010-04-07 2011-11-04 Asahi Kasei Chemicals Corp Preservation liquid for separation film
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane

Also Published As

Publication number Publication date
JP3332541B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
CA1091409A (en) Dry phase inversion of exterior of cellulose acetate hollow fibre
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
US4851121A (en) Process for rendering porous membrane hydrophilic
JPS5924732A (en) Hydrophilic porous membrane and its production
TW201311343A (en) Hollow fiber membrane type blood purifier
EP2529769B1 (en) Hollow fiber membrane-based blood purification apparatus
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
EP0801973A1 (en) Selectively permeable hollow fiber membrane and process for producing same
JP3332541B2 (en) Dry hollow fiber membrane of cellulose derivative
JPH06316809A (en) Method for removing cavity filling body and/or undesirable processing auxiliary from hollow fiber membrane and hollow fiber and hollow fiber membrane treated by said method
EP1134019B1 (en) Hollow fiber membrane and process for producing the same
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
JPH025132B2 (en)
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
JP2000061277A (en) Production of cellulosic crosslinked membrane
CN108211808B (en) Food-grade polyvinylidene fluoride membrane and manufacturing method thereof
JPS61271003A (en) Hydrophilic compound porous membrane and its preparation
JP3211701B2 (en) Hollow fiber type selective separation membrane and method for producing the same
JPH10216489A (en) Cellulose hollow fiber membrane and its production
US5403485A (en) Dialysis membrane made of cellulose acetate
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JP3020016B2 (en) Hollow fiber membrane
Uragami et al. Studies on syntheses and permeabilities of special polymer membranes: 38. Formation mechanism of finger-like cavities in membranes from cellulose nitrate and single solvent
JPH0566169B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080726

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees