JPH07191263A - Finder optical system with visual field rate correcting function - Google Patents

Finder optical system with visual field rate correcting function

Info

Publication number
JPH07191263A
JPH07191263A JP33202693A JP33202693A JPH07191263A JP H07191263 A JPH07191263 A JP H07191263A JP 33202693 A JP33202693 A JP 33202693A JP 33202693 A JP33202693 A JP 33202693A JP H07191263 A JPH07191263 A JP H07191263A
Authority
JP
Japan
Prior art keywords
optical system
diopter
view
finder
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33202693A
Other languages
Japanese (ja)
Inventor
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP33202693A priority Critical patent/JPH07191263A/en
Publication of JPH07191263A publication Critical patent/JPH07191263A/en
Priority to US08/867,756 priority patent/US6088156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To suppress a visual variation rate small while holding a diopter and a parallax correcting function by correcting the visual field rate by moving at least one lens element according to variation in field angle due to the focusing of a photographic optical system. CONSTITUTION:This system is equipped with an objective system l which has a positive refractive index, an ocular system 2 composed of a four-time reflecting prism 3 and a positive lens 4, and a visual field frame (intermediate image formation plane) 5. The objective system 1 constitutes a zoom system formed of four negative, positive, negative, and positive lens groups G1, G2, G3, and G4. When the field angle of the photographic reflection system becomes narrow (wide) as a result of focusing, the lens group G2 (G1 or G4) which becomes large (small) in finder power is moved in the direction of an optical axis Lc to correct the diopter. Consequently, the incidence half field angle of the finder becomes narrow (wide) and variation in visual field rate is reduced. For parallax correction, one of the lens groups constituting the objective system 1 is made eccentric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、写真用カメラ又はビデ
オカメラ等に用いられるファインダー光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a finder optical system used in a photographic camera, a video camera or the like.

【0002】[0002]

【従来の技術】従来の撮影光学系とは別体になったファ
インダー光学系は、撮影距離に応じてレンズが移動され
ない、即ち、フォーカシング機能を有していないものが
一般的であった。このような従来のファインダー光学系
では、撮影者は、ファインダーを覗いたとき、ファイン
ダー対物光学系で形成された空中像の位置ズレを、自分
の眼のピント調整機能によって無意識のうちに補正して
いた。このとき、ファインダー角倍率γと撮影距離Lと
により、ファインダーを覗いたときの見かけの撮影距離
L’即ち視度Dが定まり、下記の関係が成立している。 D=1/L’=1/L×γ2 〔1/m〕 ・・・・(1) カメラのファインダー角倍率γは通常γ<1であるの
で、撮影距離に対する視度変化は実視野での視度変化よ
りも小さくなり、空中像にピントが合わない等の問題は
生じなかった。
2. Description of the Related Art In general, a finder optical system which is separate from a conventional photographic optical system has a lens that does not move according to a photographing distance, that is, does not have a focusing function. With such a conventional viewfinder optical system, the photographer unknowingly corrects the position shift of the aerial image formed by the viewfinder objective optical system when he looks into the viewfinder, using the focus adjustment function of his eye. It was At this time, the apparent shooting distance L ′ when looking into the viewfinder, that is, the diopter D is determined by the viewfinder angular magnification γ and the shooting distance L, and the following relationship is established. D = 1 / L '= 1 / L × γ 2 [1 / m] (1) Since the viewfinder angle magnification γ of the camera is normally γ <1, the diopter change with the shooting distance is in the real field of view. It was smaller than the change in diopter, and there was no problem that the aerial image was out of focus.

【0003】しかし、近年、ズームコンパクトカメラ等
の高変倍率化に伴い、ファインダー光学系角倍率が望遠
側でγ>1となることがある。この場合、撮影距離に対
する視度変化は実視野における視度変化よりも大きくな
り、眼のピント調整能力では対応しきれず、被写体にピ
ントが合わず見にくくなるという問題が生じていた。
又、ファインダー光学系が別体となったカメラでは、そ
のファインダー光学系と撮影光学系との視差が発生し、
全ての撮影距離に亘って撮影範囲をファインダー画面上
で正確に表示することが困難であることは周知の通りで
ある。
However, in recent years, with increasing zooming ratios of zoom compact cameras and the like, the finder optical system angular magnification may become γ> 1 on the telephoto side. In this case, the change in diopter with respect to the shooting distance is larger than the change in diopter in the actual visual field, and the ability to adjust the focus of the eye cannot be fully dealt with, causing a problem that the subject is out of focus and difficult to see.
Also, in a camera with a separate viewfinder optical system, parallax between the viewfinder optical system and the shooting optical system occurs,
It is well known that it is difficult to accurately display the shooting range on the finder screen over the entire shooting distance.

【0004】上記二つの問題を解決する手段として、特
開平1−197727号公報等により、撮影距離データ
等によってファインダー光学系を構成している一部のレ
ンズを光軸方向及び光軸に対して垂直方向へ移動させて
視度と視差とを同時に補正する方法が公知になってい
る。
As a means for solving the above two problems, Japanese Patent Laid-Open No. 1-197727 discloses that some of the lenses constituting the finder optical system are set in the optical axis direction and the optical axis according to the photographing distance data and the like. A method is known in which the diopter and the parallax are simultaneously corrected by moving in the vertical direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
方法によると、ファインダー光学系を構成している一部
のレンズを光軸方向に移動させるとファインダー倍率が
変化し、入射画角が変化してしまう。撮影光学系におい
ても、フォーカシングによる画角変化を伴うため、各々
の画角変化量が揃わないと撮影光学系とファインダーの
入射半画角とのタンジェント比である視野率が大きくズ
レてしまう。そのため、視差補正により撮影光学系とフ
ァインダー画面の中心とを合わせても、ファインダー視
野外の余計な物体までが撮影されてしまったり、逆にフ
ァインダー視野内の物体が撮影されなかったりしてしま
うという問題があった。
However, according to the above method, when a part of the lenses constituting the finder optical system is moved in the optical axis direction, the finder magnification changes and the incident angle of view changes. I will end up. Also in the photographic optical system, the angle of view changes due to focusing, and if the respective amounts of change in the angle of view are not uniform, the field ratio, which is the tangent ratio between the photographic optical system and the incident half angle of view of the finder, greatly deviates. Therefore, even if the shooting optical system is aligned with the center of the viewfinder screen by parallax correction, unnecessary objects outside the viewfinder field may be captured, or conversely, objects within the viewfinder field may not be captured. There was a problem.

【0006】上記のような従来技術の有する問題点に鑑
み、本発明は、撮影光学系とは別体に構成されたファイ
ンダー光学系において、視度,視差補正機能を保持しな
がらも視野率変化を少なく抑えることのできる視野率補
正機能を有するファインダー光学系を提供することを目
的としている。
In view of the above-mentioned problems of the prior art, the present invention provides a viewfinder optical system which is constructed separately from the photographing optical system, while changing the visual field ratio while maintaining the diopter and parallax correction functions. It is an object of the present invention to provide a finder optical system having a field-of-view correction function that can reduce the number of pixels.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明による視野率補正機能を有するファインダー
光学系は、下記に示すような特徴を有している。 (1)撮影光学系とは別体に構成された視度,視差補正
機能を有するファインダー光学系において、撮影光学系
のフォーカシングによる画角変化に合わせ、上記ファイ
ンダー光学系の少なくとも一つのレンズ成分を移動させ
て視野率の補正を行うようにしたこと。 (2)上記ファインダー光学系の中間結像面より被写体
側の少なくとも一つのレンズ成分を移動させて視度及び
視野率の補正を行うようにしたこと。
In order to achieve the above object, a finder optical system having a visual field correction function according to the present invention has the following features. (1) In a finder optical system having a diopter and parallax correction function, which is configured separately from the photographic optical system, at least one lens component of the finder optical system is set in accordance with a change in angle of view due to focusing of the photographic optical system. It was moved to correct the field of view. (2) The diopter and the field of view are corrected by moving at least one lens component on the object side from the intermediate image plane of the finder optical system.

【0008】(3)撮影光学系とは別体に構成された視
差補正機能を有するファインダー光学系において、中間
結像面より被写体側に配設され、且つ、下記条件式を満
足するレンズ成分を少なくとも光軸方向に移動させて視
度補正するようにしたこと。 0.7≦P/ΔωT ×γ/γ’≦1.0 ・・・・(2) 但し、ΔωT =tan ωT ’/tan ωT ωT :通常時の撮影レンズ入射半画角 ωT ’:視度補正時の撮影レンズ入射半画角 γ :通常時のファインダー倍率 γ’ :視度補正時のファインダー倍率 P :通常時の視野率 である。
(3) In a finder optical system having a parallax correction function, which is formed separately from the photographing optical system, a lens component which is disposed closer to the object side than the intermediate image plane and which satisfies the following conditional expression: At least it should be moved in the optical axis direction to correct the diopter. 0.7 ≦ P / Δω T × γ / γ ′ ≦ 1.0 (2) where Δω T = tan ω T ′ / tan ω T ω T : half angle of view ω of the shooting lens at normal time ω T ': Half-field angle of incidence of the photographing lens during diopter correction γ: Normal viewfinder magnification γ': Viewfinder magnification during diopter correction P: Normal view ratio

【0009】(4)撮影光学系とは別体に構成された視
差補正機能を有するファインダー光学系において、中間
結像面より被写体側に配設され、且つ、下記条件式を満
足するレンズ成分を少なくとも光軸方向に移動させて視
度補正するようにしたこと。 0.9≦1/ΔωT ×γ/γ’≦1.1 ・・・・(3) (5)上記ファインダー光学系の中間結像面より被写体
側の少なくとも一つのレンズ成分を偏心させて視差補正
するようにしたこと。 (6)上記ファインダー光学系の視野範囲表示の変化に
より視差補正するようにしたこと。
(4) In the finder optical system having a parallax correction function, which is formed separately from the photographing optical system, a lens component which is disposed closer to the object side than the intermediate image plane and which satisfies the following conditional expression: At least it should be moved in the optical axis direction to correct the diopter. 0.9 ≦ 1 / Δω T × γ / γ ′ ≦ 1.1 (3) (5) Parallax by decentering at least one lens component on the object side of the intermediate image plane of the finder optical system. I tried to correct it. (6) The parallax is corrected by changing the display range of the viewfinder optical system.

【0010】[0010]

【作用】以下、本発明の作用を説明する。ファインダー
対物系を構成している一部のレンズを光軸方向に移動さ
せてフォーカシング即ち視度補正する場合、補正レンズ
の移動と視度変化とには以下に示す関係が成立する。 αF =MF 2 −MC 2 ・・・・(4) Δs=αF×Δd ・・・・(5) ΔD=1000×Δs/fR 2 ・・・・(6) ΔDC =−ΔD ・・・・(7) 即ち、 Δd=ΔDC /1000×fR 2 /αF ・・・・(8) 但し、αF :フォーカスレンズの縦倍率 MF :補正レンズから中間像までの横倍率 MC :補正レンズより後ろから中間像までの横倍率 fR :接眼系焦点距離 〔mm〕 Δd :補正レンズ移動量〔mm〕 Δs :中間像位置での結像位置ズレ〔mm〕 ΔD :視度ズレ 〔1/m〕 ΔDC :視度補正量 〔1/m〕 である。
The function of the present invention will be described below. When a part of the lenses constituting the finder objective system is moved in the optical axis direction for focusing, that is, diopter correction, the following relationship is established between the movement of the correction lens and diopter change. α F = M F 2 -M C 2 ···· (4) Δs = αF × Δd ···· (5) ΔD = 1000 × Δs / f R 2 ···· (6) ΔD C = -ΔD ··· (7) That is, Δd = ΔD C / 1000 × f R 2 / α F ··· (8) where α F is the vertical magnification of the focus lens M F is the horizontal distance from the correction lens to the intermediate image Magnification M C : Lateral magnification from the rear of the correction lens to the intermediate image f R : Eyepiece focal length [mm] Δd: Correction lens movement amount [mm] Δs: Image formation position shift at intermediate image position [mm] ΔD: Diopter deviation [1 / m] ΔD C : Diopter correction amount [1 / m].

【0011】上記Δdがマイナス値である場合にはレン
ズ繰り出し、又、プラス値である場合にはレンズ繰り込
みの状態となる。例えば、無限遠から至近へ物体距離が
変化すると視度ズレ量ΔDはマイナス値となり、視度補
正量ΔDC はプラス値となる。よって、視度補正レンズ
成分の縦倍率αF がマイナス値ならばレンズ繰り出し、
プラス値ならばレンズ繰り込み状態となる。視度補正の
ため光軸方向にレンズを移動すると、対物系の近軸関係
が変わり、対物焦点距離が変化してしまう。このとき、
接眼系焦点距離は変化しないので、対物系の変化分だけ
ファインダー倍率γも変化する。
When Δd is a negative value, the lens is extended, and when it is a positive value, the lens is extended. For example, when the object distance changes from infinity to the closest distance, the diopter deviation amount ΔD becomes a negative value, and the diopter correction amount ΔD C becomes a positive value. Therefore, if the vertical magnification α F of the diopter correction lens component is a negative value, the lens is extended,
If it is a positive value, the lens will be retracted. When the lens is moved in the optical axis direction to correct the diopter, the paraxial relation of the objective system changes and the objective focal length changes. At this time,
Since the focal length of the eyepiece system does not change, the viewfinder magnification γ also changes by the change of the objective system.

【0012】又、ファインダー対物系を構成している一
部のレンズ群を偏心させるとファインダー光軸が傾き、
撮影光学系との視差を補正できる。この場合には、視度
補正のためのレンズ群とは別のレンズ群を偏心させても
よいし、視度補正レンズ群を光軸方向移動と同時に偏心
させてもよい。
Further, when a part of the lens units constituting the viewfinder objective system is decentered, the viewfinder optical axis tilts,
The parallax with the shooting optical system can be corrected. In this case, a lens group different from the lens group for diopter correction may be decentered, or the diopter correction lens group may be decentered at the same time as the movement in the optical axis direction.

【0013】ファインダーの入射半画角ωF は、中間像
高Iと対物系焦点距離fOBとから、ωF ≒tan -1(I/
OB)で求めることができる。よって、fOBが長くなる
と画角ωF が狭くなり、fOBが短くなると画角ωF は広
くなる。従って、フォーカシングで撮影光学系の画角が
狭く(広く)なる場合、ファインダー倍率が大きく(小
さく)なるレンズ群で視度補正すれば画角ωF が狭く
(広く)なり、視野率変化を少なくできる。
From the intermediate image height I and the objective focal length f OB , the incident half angle of view ω F of the finder is ω F ≈tan -1 (I /
f OB ). Therefore, angle omega F when f OB longer becomes narrow, angle omega F when f OB is shorter becomes wider. Therefore, when the angle of view of the photographic optical system is narrowed (widened) due to focusing, if the diopter correction is performed with a lens group that increases the viewfinder magnification (smaller), the angle of view ω F becomes narrower (wider) and the change in the field of view is reduced. it can.

【0014】又、視度補正後の視野率は条件式(2)に
従って近似計算することができ、以下に示すような条件
を満たすことが好ましい。 0.7≦P/ΔωT ×γ/γ’≦1.0 ・・・・(2) 但し、ΔωT =tan ωT ’/tan ωTωT :通常時の
撮影レンズ入射半画角 ωT ’:視度補正時の撮影レンズ入射半画角 γ :通常時のファインダー倍率 γ’ :視度補正時のファインダー倍率 P :通常時の視野率 である。
The field ratio after the diopter correction can be approximately calculated according to the conditional expression (2), and it is preferable that the following condition is satisfied. 0.7 ≦ P / Δω T × γ / γ ′ ≦ 1.0 (2) where Δω T = tan ω T ′ / tan ω T ω T : half angle of view ω of the shooting lens at normal time ω T ': Half-field angle of incidence of the photographing lens during diopter correction γ: Normal viewfinder magnification γ': Viewfinder magnification during diopter correction P: Normal view ratio

【0015】しかし、上記条件式(2)の値がその取り
得る値の範囲の下限を下回ると、視野率が小さくなり、
ファインダー視野外の余計な物体まで撮影してしまう。
又、条件式(2)の値がその取り得る値の範囲の上限を
越えてしまうと、視野率が100%を越えてしまってフ
ァインダー視野内の物体でさえも撮影できなくなる場合
がある。更に、視度補正後の視野率は、条件式(3)を
満足することがより好ましい。 0.9≦1/ΔωT ×γ/γ’≦1.1 ・・・・(3) しかし、条件式(3)の値がその取り得る値の範囲の上
限又は下限を越えると、物体距離による視野率の変化が
大きくなってしまい、好ましくない。
However, when the value of the conditional expression (2) is below the lower limit of the range of possible values, the field of view becomes small,
It even shoots extra objects outside the viewfinder.
If the value of the conditional expression (2) exceeds the upper limit of the range of possible values, the field of view may exceed 100%, and even an object in the finder field may not be photographed. Further, it is more preferable that the visual field ratio after the diopter correction satisfies the conditional expression (3). 0.9 ≦ 1 / Δω T × γ / γ ′ ≦ 1.1 (3) However, when the value of conditional expression (3) exceeds the upper limit or the lower limit of the range of possible values, the object distance is reduced. The change in the field of view due to the change becomes large, which is not preferable.

【0016】[0016]

【実施例】以下、図示した実施例に基づき本発明を詳細
に説明する。第一実施例 図1は、本実施例にかかる補正機能を有するファインダ
ー光学系の光軸に沿った断面図であり、(a)は低倍端
の状態,(b)は高倍端の状態を夫々示した図である。
図のように、本実施例の光学系は、正の屈折力を有する
対物系1と、四回反射プリズム3及び正レンズ4から成
る接眼系2と、更に、視野枠(中間結像面)5が対物系
1と接眼系2との間に配置されて構成されている。更
に、対物系1は、負(G1 ),正(G2 ),負
(G3 ),正(G4 )の四つのレンズ群から成るズーム
を構成し、前記何れのレンズ群を光軸LC 方向に移動さ
せても視度補正ができるようになっている。視差補正
は、対物系1を構成している何れかのレンズ群を偏心さ
せることによって可能になる。
The present invention will be described in detail below with reference to the illustrated embodiments. First Embodiment FIG. 1 is a sectional view taken along the optical axis of a finder optical system having a correction function according to the present embodiment, in which (a) is a low magnification end state and (b) is a high magnification end state. It is the figure shown respectively.
As shown in the figure, the optical system of this embodiment includes an objective system 1 having a positive refractive power, an eyepiece system 2 including a four-reflection prism 3 and a positive lens 4, and a field frame (intermediate image plane). 5 is arranged between the objective system 1 and the eyepiece system 2. Further, the objective system 1 constitutes a zoom including four lens groups of negative (G 1 ), positive (G 2 ), negative (G 3 ), and positive (G 4 ), and any one of the lens groups is used as an optical axis. The diopter can be corrected even if it is moved in the L C direction. The parallax correction can be performed by decentering any of the lens groups forming the objective system 1.

【0017】以下、本実施例におけるファインダー光学
系の数値データを示す。 r1 =-16.4440 (非球面) d1 =1.000 n1 =1.58362 ν1 =30.37 r2 =128.2560 d2 =9.1300 (低倍端) ,1.679(高倍端) r3 =7.6560 d3 =5.220 n3 =1.49260 ν3 =58.02 r4 =-13.8000 (非球面) d4 =5.6710 (低倍端) ,1.049(高倍端) r5 =-36.5900 d5 =1.000 n5 =1.58362 ν5 =30.37
The numerical data of the finder optical system in this embodiment will be shown below. r 1 = -16.4440 (aspherical) d 1 = 1.000 n 1 = 1.58362 ν 1 = 30.37 r 2 = 128.2560 d 2 = 9.1300 ( Teibaitan), 1.679 (Kobaitan) r 3 = 7.6560 d 3 = 5.220 n 3 = 1.49260 ν 3 = 58.02 r 4 = -13.8000 (aspherical surface) d 4 = 5.6710 (low magnification end), 1.049 (high magnification end) r 5 = -36.5900 d 5 = 1.000 n 5 = 1.58362 ν 5 = 30.37

【0018】r6 =71.2090(非球面) d6 =5.0910 (低倍端) ,17.164 (高倍端) r7 =13.6360 d7 =2.900 n7 =1.49260 ν7 =58.02 r8 =∞ d8 =1.000 r9 =33.4050 d9 =39.500 n9 =1.49260 ν9 =58.02 r10=∞ d10=1.000[0018] r 6 = 71.2090 (aspherical) d 6 = 5.0910 (Teibaitan), 17.164 (Kobaitan) r 7 = 13.6360 d 7 = 2.900 n 7 = 1.49260 ν 7 = 58.02 r 8 = ∞ d 8 = 1.000 r 9 = 33.4050 d 9 = 39.500 n 9 = 1.49260 ν 9 = 58.02 r 10 = ∞ d 10 = 1.000

【0019】r11=17.5090 d11=2.500 n11=1.49260 ν11=58.02 r12=-64.3960 (非球面) d12=13.500 r13 (アイポイント)R 11 = 17.5090 d 11 = 2.500 n 11 = 1.49260 ν 11 = 58.02 r 12 = -64.3960 (aspherical surface) d 12 = 13.500 r 13 (eye point)

【0020】非球面係数 第1面 P=1.0000 E=0.30788 ×10-4 ,F=-0.40427×10-4 G=0.62311 ×10-5 第4面 P=1.0000 E=0.65521 ×10-3 ,F=0.58398 ×10-5 G=0.10530 ×10-6 第6面 P=1.0000 E=0.86696 ×10-5 ,F=-0.19119×10-6 G=0.35113 ×10-6 第12面 P=1.0000 E=0.49100 ×10-4 ,F=-0.17743×10-5 G=0.42481 ×10-7 Aspheric surface coefficient First surface P = 1.0000 E = 0.30788 × 10 -4 , F = -0.40427 × 10 -4 G = 0.62311 × 10 -5 Fourth surface P = 1.0000 E = 0.65521 × 10 -3 , F = 0.58398 × 10 -5 G = 0.10530 × 10 -6 6th surface P = 1.0000 E = 0.86696 × 10 -5 , F = -0.19119 × 10 -6 G = 0.35113 × 10 -6 12th surface P = 1.0000 E = 0.49100 x 10 -4 , F = -0.17743 x 10 -5 G = 0.42481 x 10 -7

【0021】本実施例における視差補正を、図2に基づ
き説明する。同図(a)は通常状態,(b)は補正後の
状態を夫々示している。図のように、本実施例における
視差補正は、ファインダー光学系の対物系を構成してい
るレンズの一部を偏心させることによって行われる。即
ち、対物系1の構成要素である負の第一群G1 を光軸L
C に対し垂直方向に移動させる(図の矢印の方向)こと
により、光軸LC が第一群G1 の移動方向とは反対方向
に傾けられて視差補正が行われる。
Parallax correction in this embodiment will be described with reference to FIG. The figure (a) has shown the normal state, and the figure (b) has shown the state after correction, respectively. As shown in the figure, the parallax correction in this embodiment is performed by decentering a part of the lens that constitutes the objective system of the finder optical system. That is, the negative first group G 1 which is a component of the objective system 1 is set to the optical axis L.
By moving in the direction perpendicular to C (the direction of the arrow in the figure), the optical axis L C is tilted in the direction opposite to the moving direction of the first group G 1 , and parallax correction is performed.

【0022】次に、視度補正について説明する。本実施
例におけるカメラの撮影光学系は、図3に示したよう
に、負の第一群G 5 と正の第二群G6 とを有するズーム
レンズとして構成されているものを使用する。同図
(a)は低倍端の状態,(b)は高倍端の状態を夫々示
している。この撮影光学系は、第一群G5 の繰り出しに
よってフォーカシングを行うと、無限遠から至近で画角
が広くなるようになっている。
Next, the diopter correction will be described. Implementation
The photographic optical system of the camera in the example is as shown in FIG.
And the negative first group G FiveAnd the positive second group G6Zoom with and
Use the one configured as a lens. Same figure
(A) shows the state at the low-magnification end, and (b) shows the state at the high-magnification end.
are doing. This photographing optical system is the first group GFiveTo feed
Therefore, when focusing is performed, the angle of view will change from infinity to close range.
Is becoming wider.

【0023】以下、本実施例において使用される撮影光
学系の数値データを示す。 r1 =215.0200 d1 =1.830 n1 =1.80400 ν1 =46.57 r2 =17.1590(非球面) d2 =6.7700 r3 =27.0920 d3 =3.000 n3 =1.76182 ν3 =26.52 r4 =58.3920 d4 =20.917 (低倍端) ,4.148(高倍端) r5 =∞ (絞り) d5 =1.000
The numerical data of the photographing optical system used in this embodiment are shown below. r 1 = 215.0200 d 1 = 1.830 n 1 = 1.80400 ν 1 = 46.57 r 2 = 17.1590 (aspherical surface) d 2 = 6.7700 r 3 = 27.0920 d 3 = 3.000 n 3 = 1.76182 ν 3 = 26.52 r 4 = 58.3920 d 4 = 20.917 (Teibaitan), 4.148 (Kobaitan) r 5 = ∞ (aperture) d 5 = 1.000

【0024】r6 =13.4650(非球面) d6 =7.520 n6 =1.56873 ν6 =63.16 r7 =-17.6940 d7 =1.500 n7 =1.63636 ν7 =35.37 r8 =114.7790 d8 =4.710 r9 =-45.6040 (非球面) d9 =1.880 n9 =1.77250 ν9 =49.66 r10=-127.6830 d10=0.000R 6 = 13.4650 (aspherical surface) d 6 = 7.520 n 6 = 1.56873 ν 6 = 63.16 r 7 = -17.6940 d 7 = 1.500 n 7 = 1.63636 ν 7 = 35.37 r 8 = 114.7790 d 8 = 4.710 r 9 = -45.6040 (aspherical) d 9 = 1.880 n 9 = 1.77250 ν 9 = 49.66 r 10 = -127.6830 d 10 = 0.000

【0025】非球面係数 第2面 P=1.2761 E=-0.19169×10-4 ,F=-0.12866×10-7 G=-0.52470×10-9 第6面 P=0.9460 E=0.57808 ×10-5 ,F=0.10384 ×10-6 G=0.49381 ×10-9 ,H=0.80171 ×10-11 第9面 P=1.6587 E=-0.91883×10-4 ,F=-0.44647×10-6 G=-0.14988×10-7 Aspheric coefficient 2nd surface P = 1.2761 E = -0.19169 × 10 -4 , F = -0.12866 × 10 -7 G = -0.52470 × 10 -9 6th surface P = 0.9460 E = 0.57808 × 10 -5 , F = 0.10384 × 10 -6 G = 0.49381 × 10 -9 , H = 0.80171 × 10 -11 9th surface P = 1.6587 E = -0.91883 × 10 -4 , F = -0.44647 × 10 -6 G = -0.14988 × 10 -7

【0026】従って、上記撮影光学系のフォーカシング
に合わせてファインダー視度補正を行う場合、本実施例
のファインダー光学系の第一群G1 又は第四群G4 を光
軸L C 方向に移動させることによって視度補正を行う
と、ファインダー倍率が小さくなり、その結果、視野率
の変化を小さく抑えることができる。
Therefore, the focusing of the photographing optical system is performed.
In the case of performing finder diopter correction according to
First group G of the finder optical system of1Or the fourth group GFourThe light
Axis L CDiopter correction by moving in the direction
And the viewfinder magnification becomes smaller, and as a result, the field of view
The change in can be suppressed to a small level.

【0027】このときの撮影光学系の画角,ファインダ
ー倍率及び条件式(2),(3)の値を次の表1−1,
表1−2に示す。
At this time, the angle of view of the photographing optical system, the finder magnification, and the values of the conditional expressions (2) and (3) are shown in the following Table 1-1.
It is shown in Table 1-2.

【0028】又、上記撮影光学系のフォーカシングを第
一群G5 ,第二群G6 の全体繰り出しによって行っても
よい。この場合、前記撮影光学系は、無限遠から至近で
画角が狭くなる。従って、本実施例のファインダー光学
系の第二群G2 を光軸LC 方向に移動させて視度補正す
ると、ファインダー倍率は大きくなり、その結果、視野
率変化を小さく抑えることができる。
Further, focusing of the photographing optical system may be performed by moving the first group G 5 and the second group G 6 together. In this case, the photographing optical system has a narrow angle of view from infinity to a close distance. Therefore, when the second group G 2 of the finder optical system of this embodiment is moved in the direction of the optical axis L C to correct the diopter, the finder magnification becomes large, and as a result, the change in the field of view can be suppressed small.

【0029】このときの撮影光学系の画角,ファインダ
ー倍率及び条件式(2),(3)の値を次の表2−1,
表2−2に示す。
At this time, the angle of view of the photographing optical system, the finder magnification, and the values of conditional expressions (2) and (3) are shown in Table 2-1 below.
It is shown in Table 2-2.

【0030】第二実施例 図4は、本実施例にかかるファインダー光学系の光軸に
沿った断面図であり、(a)は低倍端の状態,(b)は
高倍端の状態を夫々示した図である。図のように、本実
施例の光学系は、正の屈折力を有する対物系1と、四回
反射プリズム3及び正レンズ4から成る接眼系2と、更
に、視野枠5が対物系1と接眼系2との間に配置されて
構成されている。更に、対物系1は、負(G1 ),正
(G2 ),正(G3 )の三つのレンズ群から成るズーム
レンズを構成し、前記何れのレンズ群を光軸LC 方向に
移動させても視度補正ができるようになっている。又、
視差補正は、対物系1を構成している何れかのレンズ群
を偏心させることによって可能になる。
Second Embodiment FIGS. 4A and 4B are sectional views of the finder optical system according to the present embodiment taken along the optical axis. FIG. 4A shows a low magnification end state, and FIG. 4B shows a high magnification end state. It is the figure shown. As shown in the figure, the optical system of this embodiment includes an objective system 1 having a positive refractive power, an eyepiece system 2 including a four-reflection prism 3 and a positive lens 4, and a field frame 5 as the objective system 1. It is arranged between the eyepiece system 2 and the eyepiece system 2. Further, the objective system 1 constitutes a zoom lens composed of three lens groups of negative (G 1 ), positive (G 2 ), and positive (G 3 ), and any one of the lens groups is moved in the optical axis L C direction. Even if it is done, the diopter can be corrected. or,
The parallax correction can be performed by decentering any of the lens groups forming the objective system 1.

【0031】以下、本実施例におけるファインダー光学
系の数値データを示す。 r1 =-5.474 (非球面) d1 =1.0 n1 =1.5842 ν1 =30.5 r2 =-469.147 d2 =3.714(低倍端) ,0.950(高倍端) r3 =18.744 d3 =3.0 n3 =1.4924 ν3 =57.7 r4 =-5.592 (非球面) d4 =17.100 (低倍端) ,27.250 (高倍端) r5 =14.255 d5 =3.0 n5 =1.4924 ν5 =57.7
Numerical data of the finder optical system in this embodiment will be shown below. r 1 = -5.474 (aspherical surface) d 1 = 1.0 n 1 = 1.5842 ν 1 = 30.5 r 2 = -469.147 d 2 = 3.714 (low magnification end), 0.950 (high magnification end) r 3 = 18.744 d 3 = 3.0 n 3 = 1.4924 ν 3 = 57.7 r 4 = -5.592 (aspherical surface) d 4 = 17.100 (low magnification end), 27.250 (high magnification end) r 5 = 14.255 d 5 = 3.0 n 5 = 1.492 ν 5 = 57.7

【0032】r6 =∞ d6 =2.0 r7 =∞ d7 =39.5 n7 =1.4924 ν7 =57.7 r8 =-60.000 d8 =1.0 r9 =24.248 (非球面) d9 =2.5 n9 =1.4924 ν9 =57.7 r10=-63.120 d10=13.5 r11 (アイポイント)R 6 = ∞ d 6 = 2.0 r 7 = ∞ d 7 = 39.5 n 7 = 1.4924 ν 7 = 57.7 r 8 = -60.000 d 8 = 1.0 r 9 = 24.248 (aspherical surface) d 9 = 2.5 n 9 = 1.4924 ν 9 = 57.7 r 10 = -63.120 d 10 = 13.5 r 11 (eyepoint)

【0033】非球面係数 第1面 P=1.0 E=-0.43262×10-3 ,F=-0.74538×10-4 G=0.12197 ×10-4 第4面 P=1.0 E=0.45952 ×10-3 ,F=0.69408 ×10-5 G=0.94103 ×10-6 第9面 P=1.0 E=0.57843 ×10-4 ,F=-0.47032×10-5 G=0.79080 ×10-7 Aspheric surface coefficient First surface P = 1.0 E = -0.43262 × 10 -3 , F = -0.74538 × 10 -4 G = 0.12197 × 10 -4 Fourth surface P = 1.0 E = 0.45952 × 10 -3 , F = 0.69408 × 10 -5 G = 0.94103 × 10 -6 9th surface P = 1.0 E = 0.57843 × 10 -4 , F = -0.47032 × 10 -5 G = 0.79080 × 10 -7

【0034】又、本実施例においても、第一実施例にお
いて用いたカメラの撮影光学系を用いてフォーカシング
を行っている。この撮影光学系の第一群G5 繰り出しに
よりフォーカシングを行うと、無限遠から至近で画角が
広くなる。従って、前記撮影光学系のフォーカシングに
合わせてファインダー視度補正を行う場合、本実施例の
光学系の第二群G2 を光軸LC 方向に移動させることに
より視度補正を行うと、ファインダー倍率が小さくな
り、視野率変化を小さく抑えることができる。
Also in this embodiment, focusing is performed using the photographing optical system of the camera used in the first embodiment. When focusing is performed by moving out the first group G 5 of this photographing optical system, the angle of view becomes wide from infinity to a close distance. Therefore, when the finder diopter correction is performed in accordance with the focusing of the photographing optical system, the diopter correction is performed by moving the second group G 2 of the optical system of the present embodiment in the optical axis L C direction. The magnification is reduced, and the change in field of view can be suppressed.

【0035】このときの撮影光学系の画角,ファインダ
ー倍率及び条件式(2),(3)の値を次の表3−1,
表3−2に示す。
At this time, the angle of view of the photographing optical system, the finder magnification, and the values of the conditional expressions (2) and (3) are shown in Table 3-1 below.
It is shown in Table 3-2.

【0036】第三実施例 図5は、本実施例にかかるファインダー光学系の光軸に
沿った断面図であり、(a)は低倍端の状態,(b)は
高倍端の状態を夫々示した図である。図のように、本実
施例の光学系は、一回反射プリズムを含み正の屈折力を
有する対物系1と、三回反射プリズム3及び正レンズ4
から成る接眼系2と、更に、視野枠5が対物系1と接眼
系2との間に配置されて構成されている。更に、対物系
1は、負(G1 ),正(G2 ),正(G3 ),正
(G4 )の四つのレンズ群から成るズームレンズを構成
し、前記第一(G1 )乃至第三(G3 )群の何れかのレ
ンズ群を光軸LC 方向に移動させることにより、視度補
正ができるようになっている。又、視差補正は、対物系
1を構成している何れかのレンズ群を偏心させることに
よって可能になる。
Third Embodiment FIG. 5 is a cross-sectional view of the finder optical system according to the present embodiment taken along the optical axis. FIG. 5A shows a low magnification end state, and FIG. 5B shows a high magnification end state. It is the figure shown. As shown in the figure, the optical system of this embodiment includes an objective system 1 including a single-reflection prism and having a positive refractive power, a triple-reflection prism 3 and a positive lens 4.
And the field frame 5 is arranged between the objective system 1 and the eyepiece system 2. Further, the objective system 1 constitutes a zoom lens composed of four lens groups of negative (G 1 ), positive (G 2 ), positive (G 3 ), and positive (G 4 ), and the first (G 1 ) The diopter can be corrected by moving any one of the third to third (G 3 ) lens groups in the optical axis L C direction. Further, parallax correction can be performed by decentering any of the lens groups forming the objective system 1.

【0037】以下、本実施例におけるファインダー光学
系の数値データを示す。 r1 =427.621 d1 =1.0 n1 =1.5842 ν1 =30.5 r2 =21.907 (非球面) d2 =4.83 r3 =-26.983 d3 =1.0 n3 =1.5842 ν3 =30.5 r4 =97.412 d4 =13.381 (低倍端) ,3.795(高倍端) r5 =5.250(非球面) d5 =3.7 n5 =1.4924 ν5 =57.7
The numerical data of the finder optical system in this embodiment are shown below. r 1 = 427.621 d 1 = 1.0 n 1 = 1.5842 ν 1 = 30.5 r 2 = 21.907 (aspherical surface) d 2 = 4.83 r 3 = -26.983 d 3 = 1.0 n 3 = 1.5842 ν 3 = 30.5 r 4 = 97.412 d 4 = 13.381 (Teibaitan), 3.795 (Kobaitan) r 5 = 5.250 (aspherical) d 5 = 3.7 n 5 = 1.4924 ν 5 = 57.7

【0038】r6 =-25.997 d6 =0.2 r7 =11.548 d7 =2.41 n7 =1.5842 ν7 =30.5 r8 =3.900 d8 =1.500 (低倍端) ,6.181(高倍端) r9 =9.536(非球面) d9 =1.75 n9 =1.4924 ν9 =57.7 r10=108.900 d10=1.000 (低倍端) ,5.906(高倍端)R 6 = -25.997 d 6 = 0.2 r 7 = 1.548 d 7 = 2.41 n 7 = 1.5842 ν 7 = 30.5 r 8 = 3.900 d 8 = 1.500 (low magnification end), 6.181 (high magnification end) r 9 = 9.536 (aspherical) d 9 = 1.75 n 9 = 1.4924 ν 9 = 57.7 r 10 = 108.900 d 10 = 1.000 ( Teibaitan), 5.906 (Kobaitan)

【0039】r11=∞ d11=12.0 n11=1.4924 ν11=57.7 r12=-11.590 d12=0.7 r13=∞ d13=29.0 n13=1.4924 ν13=57.7 r14=∞ d14=0.7 r15=17.326 (非球面) d15=2.3 n15=1.4924 ν15=57.7 r16=-24.527 d16=15.0 r17(アイポイント)R 11 = ∞ d 11 = 12.0 n 11 = 1.4924 ν 11 = 57.7 r 12 = -11.590 d 12 = 0.7 r 13 = ∞ d 13 = 29.0 n 13 = 1.4924 ν 13 = 57.7 r 14 = ∞ d 14 = 0.7 r 15 = 17.326 (aspherical surface) d 15 = 2.3 n 15 = 1.4924 ν 15 = 57.7 r 16 = -24.527 d 16 = 15.0 r 17 (eye point)

【0040】非球面係数 第2面 P=1.0 E=0.11783 ×10-3 ,F=-0.11803×10-4 G=0.20704 ×10-6 第5面 P=1.0 E=-0.86055×10-3 ,F=-0.51448×10-5 G=-0.10653×10-5 第9面 P=1.0 E=0.39471 ×10-3 ,F=-0.36821×10-4 G=0.14630 ×10-5 第15面 P=1.0 E=-0.11542×10-3 ,F=0.34242 ×10-5 G=-0.69852×10-7 The aspherical coefficients second surface P = 1.0 E = 0.11783 × 10 -3, F = -0.11803 × 10 -4 G = 0.20704 × 10 -6 fifth surface P = 1.0 E = -0.86055 × 10 -3, F = -0.51448 × 10 -5 G = -0.10653 × 10 -5 9th surface P = 1.0 E = 0.39471 × 10 -3 , F = -0.36821 × 10 -4 G = 0.14630 × 10 -5 15th surface P = 1.0 E = -0.11542 x 10 -3 , F = 0.34242 x 10 -5 G = -0.69852 x 10 -7

【0041】又、本実施例においても、第一実施例にお
いて用いたカメラの撮影光学系を用いてフォーカシング
を行っている。この撮影光学系の第一群G5 繰り出しに
よりフォーカシングを行うと、無限遠から至近で画角が
広くなる。従って、前記撮影光学系のフォーカシングに
合わせてファインダー視度補正を行う場合、本実施例の
光学系の第一群G1 の第一レンズを光軸LC 方向に移動
させることにより視度補正を行うと、ファインダー倍率
が小さくなり、視野率変化を小さく抑えることができ
る。
Also in this embodiment, focusing is performed by using the photographing optical system of the camera used in the first embodiment. When focusing is performed by moving out the first group G 5 of this photographing optical system, the angle of view becomes wide from infinity to a close distance. Therefore, when the finder diopter correction is performed in accordance with the focusing of the photographing optical system, the diopter correction is performed by moving the first lens of the first group G 1 of the optical system of this embodiment in the optical axis L C direction. If this is done, the viewfinder magnification will be reduced, and changes in the field of view can be suppressed.

【0042】このときの撮影光学系の画角,ファインダ
ー倍率及び条件式(2),(3)の値を次の表4−1,
表4−2に示す。
At this time, the angle of view of the photographing optical system, the finder magnification, and the values of the conditional expressions (2) and (3) are shown in Table 4-1 below.
It is shown in Table 4-2.

【0043】但し、上記各実施例において、r1
2 ,・・・・は各レンズ面の曲率半径、d1 ,d2
・・・・は各レンズの肉厚又はレンズ間隔、n1
2 ,・・・・は各レンズの屈折率、ν1 ,ν2 ,・・
・・は各レンズのアッベ数である。尚、上記各実施例に
おける非球面形状は、上記非球面係数を用いて次式によ
って示される。 但し、xは光軸方向の座標、yは光軸と垂直な方向の座
標、rは近軸曲率半径、E,F,G,Hは夫々非球面係
数である。
However, in each of the above embodiments, r 1 ,
r 2 , ..., Radius of curvature of each lens surface, d 1 , d 2 ,
... is the thickness of each lens or the lens spacing, n 1 ,
n 2 , ..., Refractive index of each lens, ν 1 , ν 2 ,
・ ・ Is the Abbe number of each lens. The aspherical surface shape in each of the above embodiments is expressed by the following equation using the aspherical surface coefficient. However, x is a coordinate in the optical axis direction, y is a coordinate in a direction perpendicular to the optical axis, r is a paraxial radius of curvature, and E, F, G, and H are aspherical coefficients, respectively.

【0044】第四実施例 本実施例による視差補正の方法を図6に基づき説明す
る。同図(a)は通常状態,(b)は補正後の状態を夫
々示している。本実施例による視差補正は、視野枠の移
動によって行われる。この場合、視野枠5は、それ自身
に設けられた長溝部5a,5bに夫々位置決めピン6
a,6bを挿通させることによって、光軸LC (図面に
対して垂直方向)に対して垂直方向(図の矢印の方向)
にスライド移動させることができるように構成されてい
る。従って、ファインダー視野範囲をずらして視差補正
することができる。尚、本実施例におけるファインダー
光学系の構成及びその視度補正の方法並びに撮影光学系
の構成は、第一乃至第三実施例において示したものと同
様である。
Fourth Embodiment A parallax correction method according to this embodiment will be described with reference to FIG. The figure (a) has shown the normal state, and the figure (b) has shown the state after correction, respectively. The parallax correction according to this embodiment is performed by moving the field frame. In this case, the field frame 5 is provided with positioning pins 6 in the long groove portions 5a and 5b provided therein.
By inserting a and 6b, the direction perpendicular to the optical axis L C (direction perpendicular to the drawing) (direction of arrow in the drawing)
It is configured to be slidable. Therefore, parallax correction can be performed by shifting the viewfinder field range. The structure of the finder optical system, the diopter correction method thereof, and the structure of the photographing optical system in this embodiment are the same as those shown in the first to third embodiments.

【0045】第五実施例 本実施例による視差補正の方法を図7に基づき説明す
る。同図(a)は通常状態,(b)は補正後の状態を夫
々示している。本実施例における視差補正は、視野範囲
の表示を変化させることによって行われる。視野枠5は
プレート部5c(外側)と液晶部5d(内側)の二重構
造とされ、更に、液晶部5dは液晶下部5d1 と液晶上
部5d2 とから構成されている。そして、液晶下部5d
1 と液晶上部5d2 との液晶表示を切り換えることによ
り、視野範囲の表示を変化させることができるようにな
っている。即ち、液晶下部5d1 の部分を遮光とし液晶
上部5d2 の部分を透過としている通常状態から、液晶
下部5d1 を透過とし液晶上部5d2 を遮光とすること
によって、第二実施例に示した方法と同様の効果が得ら
れる。尚、本実施例におけるファインダー光学系の構成
及びその視度補正の方法並びに撮影光学系の構成は、第
一乃至第三実施例において示したものと同様である。
Fifth Embodiment A parallax correction method according to this embodiment will be described with reference to FIG. The figure (a) has shown the normal state, and the figure (b) has shown the state after correction, respectively. The parallax correction in this embodiment is performed by changing the display of the visual field range. The field frame 5 has a double structure of a plate portion 5c (outside) and a liquid crystal portion 5d (inside), and the liquid crystal portion 5d is composed of a liquid crystal lower portion 5d 1 and a liquid crystal upper portion 5d 2 . And the lower part of the liquid crystal 5d
By switching the liquid crystal display between 1 and the liquid crystal upper part 5d 2 , the display of the visual field range can be changed. That is, the normal state and light shielding portions of the liquid crystal lower 5d 1 is set to transmit the portion of the liquid crystal upper 5d 2, by the shielding liquid crystal upper 5d 2 and transmitted through the liquid crystal lower 5d 1, shown in the second embodiment The same effect as the method can be obtained. The structure of the finder optical system, the diopter correction method thereof, and the structure of the photographing optical system in this embodiment are the same as those shown in the first to third embodiments.

【0046】[0046]

【発明の効果】上述のように、本発明による視野率補正
機能を有するファインダー光学系は、撮影光学系とは別
体に備えられたファインダー光学系において、視度,視
差補正を行っても視野率変化を少なく抑えることができ
るという実用上優れた利点を有する。
As described above, the finder optical system having the visual field correction function according to the present invention has a visual field even if the diopter and parallax are corrected in the finder optical system provided separately from the photographing optical system. It has an advantage in practical use that the rate change can be suppressed to a small level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例にかかる視野率補正機能を
有するファインダー光学系の光軸方向に沿った断面図で
あり、(a)は低倍端の状態,(b)は高倍端の状態を
夫々示した図である。
FIG. 1 is a cross-sectional view taken along the optical axis direction of a finder optical system having a visual field correction function according to a first embodiment of the present invention, in which (a) is a low magnification end state and (b) is a high magnification end. It is the figure which showed each state of.

【図2】本発明の第一実施例による対物系の偏心による
視差補正の説明図であり、(a)は通常状態,(b)は
補正後の状態を夫々示した図である。
2A and 2B are explanatory diagrams of parallax correction by eccentricity of an objective system according to the first embodiment of the present invention, FIG. 2A is a normal state and FIG. 2B is a diagram after correction.

【図3】本発明の第一実施例において使用される撮影光
学系の光軸方向に沿った断面図であり、(a)は低倍端
の状態,(b)は高倍端の状態を夫々示した図である。
FIG. 3 is a cross-sectional view taken along the optical axis direction of a photographing optical system used in the first embodiment of the present invention, in which (a) is a low magnification end state and (b) is a high magnification end state. It is the figure shown.

【図4】本発明の第二実施例にかかる光学系の光軸方向
に沿った断面図であり、(a)は低倍端の状態,(b)
は高倍端の状態を夫々示した図である。
4A and 4B are cross-sectional views of an optical system according to a second embodiment of the present invention taken along the optical axis direction, in which FIG.
[Fig. 3] is a diagram showing states of high magnification end.

【図5】本発明の第三実施例にかかる光学系の光軸方向
に沿った断面図であり、(a)は低倍端の状態,(b)
は高倍端の状態を夫々示した図である。
5A and 5B are cross-sectional views of an optical system according to a third embodiment of the present invention taken along the optical axis direction, where FIG.
[Fig. 3] is a diagram showing states of high magnification end.

【図6】本発明の第四実施例にかかる視野枠の移動によ
る視差補正の説明図であり、(a)は通常状態,(b)
は補正後の状態を夫々示した図である。
6A and 6B are explanatory diagrams of parallax correction by moving a field frame according to a fourth embodiment of the present invention, where FIG. 6A is a normal state and FIG.
[Fig. 4] is a diagram showing the respective states after correction.

【図7】本発明の第五実施例にかかる視野範囲表示の変
化による視差補正の説明図であり、(a)は通常状態,
(b)は補正後の状態を夫々示した図である。
FIG. 7 is an explanatory diagram of parallax correction by changing the visual field range display according to the fifth embodiment of the present invention, FIG.
(B) is the figure which respectively showed the state after correction.

【符号の説明】[Explanation of symbols]

1 対物系 2 接眼系 3 プリズム 4 正レンズ 5 視野枠 5a,5b 長溝部 5c プレート部 5d 液晶部 5d1 液晶下部 5d2 液晶上部 6a,6b 位置決めピン G1 対物系の第一群 G2 対物系の第二群 G3 対物系の第三群 G4 対物系の第四群 G5 撮影光学系の第一群 G6 撮影光学系の第二群1 Objective System 2 Eyepiece System 3 Prism 4 Positive Lens 5 Field Frame 5a, 5b Long Groove 5c Plate 5d Liquid Crystal 5d 1 Liquid Crystal Lower 5d 2 Liquid Crystal Upper 6a, 6b Positioning Pin G 1 Objective 1st Group G 2 Objective the second group G 3 objective third group G 4 objective fourth group G 5 photographing optical system first group G 6 photographing optical system second group of the of the

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 撮影光学系とは別体に構成された視度,
視差補正機能を有するファインダー光学系において、 撮影光学系のフォーカシングによる画角変化に合わせ、
上記ファインダー光学系の少なくとも一つのレンズ成分
を移動させて視野率の補正を行うようにしたことを特徴
とする視野率補正機能を有するファインダー光学系。
1. A diopter constructed separately from the photographing optical system,
In the viewfinder optical system with parallax correction function, according to the change of the angle of view due to the focusing of the shooting optical system,
A finder optical system having a field-of-view correction function, characterized in that at least one lens component of the finder optical system is moved to correct the field-of-view.
【請求項2】 上記ファインダー光学系の中間結像面よ
り被写体側の少なくとも一つのレンズ成分を移動させて
視度及び視野率の補正を行うようにしたことを特徴とす
る請求項1に記載の視野率補正機能を有するファインダ
ー光学系。
2. The diopter and the field of view are corrected by moving at least one lens component on the object side of the intermediate image plane of the finder optical system. A viewfinder optical system with a field of view correction function.
【請求項3】 撮影光学系とは別体に構成された視差補
正機能を有するファインダー光学系において、 中間結像面より被写体側に配設され、且つ、下記条件式
を満足するレンズ成分を少なくとも光軸方向に移動させ
て視度補正するようにしたことを特徴とする視野率補正
機能を有するファインダー光学系。 0.7≦P/ΔωT ×γ/γ’≦1.0 但し、ΔωT =tan ωT ’/tan ωT ωT :通常時の撮影レンズ入射半画角 ωT ’:視度補正時の撮影レンズ入射半画角 γ :通常時のファインダー倍率 γ’ :視度補正時のファインダー倍率 P :通常時の視野率 である。
3. A finder optical system having a parallax correction function, which is formed separately from a photographing optical system, wherein at least a lens component which is disposed closer to the object side than an intermediate image plane and which satisfies the following conditional expression: A finder optical system having a visual field correction function, characterized in that the diopter is corrected by moving the optical axis direction. 0.7 ≦ P / Δω T × γ / γ '≦ 1.0 where Δω T = tan ω T ' / tan ω T ω T : half angle of view of the shooting lens incident at normal time ω T ': when diopter correction Half angle of view of the taking lens γ: Viewfinder magnification during normal operation γ ′: Viewfinder magnification during diopter correction P: Normal viewing area ratio.
【請求項4】 撮影光学系とは別体に構成された視差補
正機能を有するファインダー光学系において、 中間結像面より被写体側に配設され、且つ、下記条件式
を満足するレンズ成分を少なくとも光軸方向に移動させ
て視度補正するようにしたことを特徴とする視野率補正
機能を有するファインダー光学系。 0.9≦1/ΔωT ×γ/γ’≦1.1
4. A finder optical system having a parallax correction function, which is configured separately from a photographing optical system, wherein at least a lens component which is disposed closer to the object side than the intermediate image plane and which satisfies the following conditional expression is satisfied. A finder optical system having a visual field correction function, characterized in that the diopter is corrected by moving the optical axis direction. 0.9 ≦ 1 / Δω T × γ / γ ′ ≦ 1.1
【請求項5】 上記ファインダー光学系の中間結像面よ
り被写体側の少なくとも一つのレンズ成分を偏心させて
視差補正するようにしたことを特徴とする請求項2に記
載の視野率補正機能を有するファインダー光学系。
5. The visual field correction function according to claim 2, wherein at least one lens component on the subject side of the intermediate image plane of the finder optical system is decentered to perform parallax correction. Viewfinder optical system.
【請求項6】 上記ファインダー光学系の視野範囲表示
の変化により視差補正するようにしたことを特徴とする
請求項2に記載の視野率補正機能を有するファインダー
光学系。
6. A finder optical system having a field-of-view correction function according to claim 2, wherein parallax correction is performed by a change in a field-of-view range display of the finder optical system.
JP33202693A 1993-06-28 1993-12-27 Finder optical system with visual field rate correcting function Pending JPH07191263A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33202693A JPH07191263A (en) 1993-12-27 1993-12-27 Finder optical system with visual field rate correcting function
US08/867,756 US6088156A (en) 1993-06-28 1997-06-03 Finder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33202693A JPH07191263A (en) 1993-12-27 1993-12-27 Finder optical system with visual field rate correcting function

Publications (1)

Publication Number Publication Date
JPH07191263A true JPH07191263A (en) 1995-07-28

Family

ID=18250311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33202693A Pending JPH07191263A (en) 1993-06-28 1993-12-27 Finder optical system with visual field rate correcting function

Country Status (1)

Country Link
JP (1) JPH07191263A (en)

Similar Documents

Publication Publication Date Title
US7471462B2 (en) Zoom lens and image pickup apparatus having the same
JP3365780B2 (en) Real image type zoom finder optical system
JP2552861B2 (en) Zoom lens
CN104777598B (en) Variable-power optical system and the optical device with the variable-power optical system
JP2647504B2 (en) Real image type zoom finder
JPH05173070A (en) Zoom lens
US7277233B2 (en) Zoom lens and imaging system incorporating it
JPH03179311A (en) Zoom lens
JP3619117B2 (en) Zoom lens and optical apparatus using the same
US6229962B1 (en) Zoom lens and camera using the same
JP2820240B2 (en) Zoom finder
JP3710188B2 (en) Viewfinder optical system
JP2761920B2 (en) Small wide-angle zoom lens
JPH0693072B2 (en) Zoom Finder
JPH08122857A (en) Optical system of real image type variable power finder
JPS5979212A (en) Zoom lens using synthetic resin material
JP3288436B2 (en) Real image type zoom finder
JPH0644097B2 (en) Variable magnification optical system
JPH09211547A (en) Real image system zoom finder
JPH04204614A (en) Afocal variable power optical system
JP2899017B2 (en) Real image type magnification finder
JP3312045B2 (en) Eyepiece with viewfinder optical system
JPH07191263A (en) Finder optical system with visual field rate correcting function
JPH0933808A (en) Zoom lens
JP3368562B2 (en) Camera with viewfinder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030624