JPH07191171A - Small-sized atomic reactor using liquid nuclear fuel - Google Patents

Small-sized atomic reactor using liquid nuclear fuel

Info

Publication number
JPH07191171A
JPH07191171A JP5330825A JP33082593A JPH07191171A JP H07191171 A JPH07191171 A JP H07191171A JP 5330825 A JP5330825 A JP 5330825A JP 33082593 A JP33082593 A JP 33082593A JP H07191171 A JPH07191171 A JP H07191171A
Authority
JP
Japan
Prior art keywords
neutrons
reactor
salt
nuclear fuel
reactor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5330825A
Other languages
Japanese (ja)
Other versions
JP3326759B2 (en
Inventor
Kazuo Furukawa
和男 古川
Hiroshi Mitachi
紘史 三田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP33082593A priority Critical patent/JP3326759B2/en
Priority to EP94104486A priority patent/EP0617430B1/en
Priority to DE69407459T priority patent/DE69407459T2/en
Priority to CN94104894A priority patent/CN1100555A/en
Priority to RU94009850A priority patent/RU2137222C1/en
Publication of JPH07191171A publication Critical patent/JPH07191171A/en
Application granted granted Critical
Publication of JP3326759B2 publication Critical patent/JP3326759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To accelerate combustion by filling the void in a reactor core where a decelerating material is arranged, with a liquid nuclear fuel consisting of Tr and Pu, separating any time as applicable the <233>U produced from Tr using a collecting device, and thereby adding Pu instead. CONSTITUTION:A salt consisting of molten fluoride (<7>LiF-BeF2-TrF4-<239>PuF3) which is stable chemically and has a normal pressure, intrudes into a reactor core from inlets 4, 4... and passes upward through reactor voids leading to decelerating materials 10, 13, 14 to flow out from the outlet 5. If a control rod 8 is inserted into the central region I of the reactor core using a driving mechanism 9, absorption of neutrons lessens, and the density of neutrons heightens to accelerate the reaction. The reaction is such that <239>Pu makes fission to generate an energy and also produce neutrons, and part of the neutrons are absorbed by <232>Tr so that conversion of <233>U takes place. The <233>U generated by absorption into Tr of a part of the produced neutrons undergoes a fluorinastion process at two-year intervals approximately by a lower situated drain tank 20 and fluorination device 22, and is separated from the fuel salt and collected back.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体核燃料による小型原
子炉に関する。
FIELD OF THE INVENTION The present invention relates to a small nuclear reactor with liquid nuclear fuel.

【0002】[0002]

【従来の技術】本願の発明者はかかる液体核燃料による
小型原子炉として既に特願昭60−272165号を発
明した。この、先に発明した小型溶融塩発電炉は、減速
材黒鉛の取替を要さず、連続化学処理の必要もない構
造,運転,保守の単純なものであり、その核燃料中のプ
ルトニウムが核分裂してエネルギーを発生すると共にそ
の際発生する中性子によりトリウムをウランに転換し、
反応を継続するものである。
The inventor of the present application has already invented Japanese Patent Application No. 60-272165 as a small nuclear reactor using such liquid nuclear fuel. This small molten salt power reactor invented earlier has a simple structure, operation and maintenance that does not require replacement of moderator graphite and does not require continuous chemical treatment. Plutonium in the nuclear fuel is fissionable. To generate energy and to convert thorium to uranium by neutrons generated at that time,
The reaction is continued.

【0003】[0003]

【発明が解決しようとする課題】しかし現在、廃棄核弾
頭もしくは使用済核燃料より再処理で得られるプルトニ
ウムが大きな問題となっている。本発明は上記従来の液
体核燃料による小型原子炉の燃料サイクル形態を変更し
て、また必要に応じて炉内構造も少し変更して、かかる
プルトニウムを核燃料として有効に燃焼消滅させるもの
である。
At present, however, plutonium obtained by reprocessing from waste nuclear warheads or spent nuclear fuel is a big problem. The present invention is to change the fuel cycle form of the conventional small-sized nuclear reactor using the above liquid nuclear fuel and, if necessary, slightly change the internal structure of the nuclear reactor so that the plutonium can be effectively burned out as nuclear fuel.

【0004】[0004]

【課題を解決するための手段】本発明は、減速材を配置
した炉心の空隙内はウランの回収装置に連通すると共に
この空隙内にはトリウムTh及びプルトニウムPuより
なる液体核燃料を充填し、このトリウムThから生成し
たウラン 233Uは回収装置により随時分離され、代わり
にプルトニウムPuが追加されて燃焼を促進するように
したことを特徴とする。また上記ウランの回収装置はド
レインタンク20と弗素化装置22とよりなるものであ
る。
According to the present invention, the inside of a core cavity in which a moderator is arranged is communicated with a uranium recovery device, and the inside of the cavity is filled with a liquid nuclear fuel composed of thorium Th and plutonium Pu. Uranium 233 U produced from thorium Th is characterized by being separated at any time by a recovery device, and instead of which plutonium Pu is added to promote combustion. The uranium recovery device comprises a drain tank 20 and a fluorination device 22.

【0005】[0005]

【作用】トリウムTh及びプルトニウムPu核燃料を含
有する塩は炉心の空隙内に流れ、その核燃料中のプルト
ニウムが核分裂してエネルギーを発生すると共にその際
発生する中性子によりトリウムをウラン 233Uに転換す
る。このトリウムThから生成したウラン 233Uは回収
装置により弗素化して随時分離され、代わりにプルトニ
ウムPuが追加しつつその燃焼を促進させる。
The salt containing thorium Th and plutonium Pu nuclear fuel flows into the void of the core, and the plutonium in the nuclear fuel undergoes fission to generate energy and neutrons generated at that time convert thorium into uranium 233 U. Uranium 233 U produced from this thorium Th is fluorinated by the recovery device and separated at any time, and instead of adding plutonium Pu, its combustion is promoted.

【0006】[0006]

【実施例】以下図面につき本発明の一実施例を詳細に説
明する。図示のものは15.5万kW発電炉の場合であ
る。図1示のようにコンクリートよりなる厚い壁遮蔽体
1,2の下方にはNi−Mo−Cr合金よりなる偏平
な、円筒状の原子炉容器3を配置する。各部分の寸法は
図1の目盛線2mに比較する通りである。この容器3の
下部には塩の入口4,4を,上部には塩の出口5,5を
設ける。この塩の組成は 7LiF−BeF2 −ThF4
239PuF3 で、 7LiFのmol%は71.7、Be
2 は16, ThF4 は12, 239PuF3 は0.3で
ある。この容器3の周辺には黒鉛反射体6を配置し、そ
の内部の炉心7の中心領域Iには黒鉛よりなる制御棒
8,8・・・を駆動機構9により上下動すべく挿入し、
図1,図2示のようにその周囲には長さ2mの固定の黒
鉛よりなる減速材10,10・・・を配置する。なおこ
の減速材10は長さ2m前後で上下端に支持部を有す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The one shown is for a 15,000 kW power reactor. As shown in FIG. 1, a flat, cylindrical reactor vessel 3 made of a Ni—Mo—Cr alloy is arranged below the thick wall shields 1 and 2 made of concrete. The dimensions of each part are as compared with the scale line 2m in FIG. The lower part of the container 3 is provided with salt inlets 4 and 4, and the upper part is provided with salt outlets 5 and 5. The composition of this salt is 7 LiF-BeF 2 -ThF 4
- 239 in PuF 3, 7 LiF of mol% is 71.7, Be
F 2 is 16, ThF 4 is 12, and 239 PuF 3 is 0.3. A graphite reflector 6 is arranged around the container 3, and control rods 8, 8 ... Made of graphite are inserted in a central region I of a core 7 inside the container 3 so as to be vertically moved by a drive mechanism 9,
As shown in FIGS. 1 and 2, moderators 10 made of fixed graphite having a length of 2 m are arranged around the moderator 10. The moderator 10 has a length of about 2 m and support portions at the upper and lower ends.

【0007】上記中心領域Iにおける減速材10は図3
(イ)示の水平断面で示すような寸法の6枚の菱形で細
長い板11,11・・・を突起等によりその間に一定の
空隙12が形成されるように六角形状に結合したもの
で、空隙率は6〜8%好ましくは7%である。したがっ
て黒鉛の体積率は94〜92%好ましくは93%であ
る。 上記中心領域Iの外側の周辺領域IIにも黒鉛より
なる減速材13,13・・・を配置する。これらの減速
材13,13・・・は図2では白く示し、その水平断面
は図3(イ)と略同様であるが、その空隙率は8〜12
%好ましくは10%である。したがって黒鉛の体積率は
92〜88%,好ましくは90%である。上記周辺領域
IIの外側のブランケット領域III にも同様の黒鉛よりな
る減速材14,14・・・を厚さ30〜50cmに配置す
る。この減速材14は図3(ロ)示の水平断面で示すよ
うな寸法の9枚の菱形で細長い板15,15・・・を突
起等によりその間に一定の空隙16が形成されるように
六角形状に結合したもので空隙率は30〜34%好まし
くは32%である。したがって黒鉛の体積率は70〜6
6%好ましくは68%である。上記容器3内における黒
鉛反射体6,炉心7の中心領域I,周辺領域II,ブラン
ケット領域III の寸法は図4示の通りである。
The moderator 10 in the central region I is shown in FIG.
(A) Six rhombic elongated plates 11, 11 ... Having dimensions shown in the horizontal cross section shown in the figure are joined in a hexagonal shape so that a constant void 12 is formed between them by a projection or the like. The porosity is 6 to 8%, preferably 7%. Therefore, the volume ratio of graphite is 94 to 92%, preferably 93%. Moderators 13, 13 ... Made of graphite are also arranged in the peripheral region II outside the central region I. 2 are shown in white in FIG. 2, and the horizontal cross section thereof is substantially the same as that in FIG. 3A, but the porosity is 8 to 12
%, Preferably 10%. Therefore, the volume ratio of graphite is 92 to 88%, preferably 90%. The peripheral area
Also in the blanket region III outside II, the moderators 14, 14 ... Of similar graphite are arranged with a thickness of 30 to 50 cm. The moderator 14 is nine rhombus having dimensions as shown in the horizontal cross section of FIG. 3B, and is a hexagon so that a constant void 16 is formed between the elongated plates 15, 15 ... It is bonded to the shape and has a porosity of 30 to 34%, preferably 32%. Therefore, the volume ratio of graphite is 70 to 6
6%, preferably 68%. The dimensions of the graphite reflector 6, the central region I of the core 7, the peripheral region II, and the blanket region III in the container 3 are as shown in FIG.

【0008】上記容器3は黒鉛の減速材10,13,1
4を内部に充填した後、熔封してしまう。したがって可
動部は、中央の制御棒8の駆動機構9のみである。燃料
塩の総量は、炉心外を含めて12.1m3 であって、4
0.5 tonとなる。この内 2 39Puは530kg, Thは
1.75ton である。炉心7の中心はパイプ19を介し
て下方のドレインタンク20の下部に連通し、このドレ
インタンク20の下部は導管21を介して弗素化装置2
2に連通し、この弗素化装置22の下部にはヘリウムと
弗素ガスの供給パイプ23を連通し、その上部にはヘリ
ウムと弗素ガスとUF6 の出口24を設ける。
The container 3 is composed of graphite moderators 10, 13, 1
After filling 4 inside, it will be sealed. Therefore, the movable portion is only the drive mechanism 9 for the central control rod 8. The total amount of fuel salt is 12.1 m 3 including the outside of the core, and
It becomes 0.5 ton. Among 2 39 Pu is 530 kg, Th is 1.75Ton. The center of the reactor core 7 communicates with the lower portion of the lower drain tank 20 via a pipe 19, and the lower portion of the drain tank 20 is connected via a conduit 21 to the fluorination apparatus 2
2, a helium and fluorine gas supply pipe 23 is connected to the lower part of the fluorination device 22, and an outlet 24 for helium and fluorine gas and UF 6 is provided on the upper part thereof.

【0009】次いでこの装置の動作を説明する。化学的
に安定かつ常圧の溶融弗化物( 7LiF−BeF2 −T
hF4 239PuF3 )からなる塩は入口4,4・・・
より炉心7内に入り、各減速材10,13,14への空
隙12,12,16内を下から上に通って出口5より流
出する。而して駆動機構9により制御棒8を炉心7の中
心領域I内に挿入すると中性子の吸収が少なくなり、中
性子の密度が高まって従来の原子炉とは逆に反応が促進
される。この反応はプルトニウム 239Puが核分裂して
エネルギーを発生すると共に中性子を発生し、その中性
子の一部がトリウム 232Thに吸収されてそれをウラニ
ウム 233Uを転換する。その転換率は約90%である。
この運転中、核分裂生成物の稀ガス元素(Kr,Xe)
は、塩に溶解しないので、カバーガスより約99%が炉
外に分離される。
Next, the operation of this device will be described. Chemically stable and normal pressure molten fluoride (7 LiF-BeF 2 -T
hF 4 - 239 salt consisting PuF 3) the inlet 4,4 ...
It further enters the core 7, passes through the voids 12, 12, 16 to the moderators 10, 13, 14 from the bottom to the top and flows out from the outlet 5. When the control rod 8 is inserted into the central region I of the reactor core 7 by the drive mechanism 9, the absorption of neutrons is reduced, the neutron density is increased, and the reaction is accelerated contrary to the conventional reactor. In this reaction, plutonium 239 Pu undergoes fission to generate energy and neutrons, and part of the neutrons is absorbed by thorium 232 Th to convert it to uranium 233 U. The conversion rate is about 90%.
During this operation, rare gas elements (Kr, Xe) of fission products
Does not dissolve in salt, so about 99% of the cover gas is separated outside the furnace.

【0010】燃料は 7LiF− 239PuF3 塩を、上記
塩のダンプタンクに随時添加することにより補給する。
またその際、汚れた燃料塩を少し取り去り、容量を一定
に保つ。
The fuel is replenished by adding 7 LiF- 239 PuF 3 salt to the dump tank of the salt at any time.
At that time, a little dirty fuel salt is removed to keep the capacity constant.

【0011】一方、炉から出た高温燃料塩は、二本の塩
ループ配管を流れて第1の熱交換器で二次系溶融塩〔N
aBF4 −NaF(92−8モル%)〕に伝熱し、次に
第2の熱交換器で水に伝熱し、水蒸気を発生させ、ター
ビン発電を行う。効率は超臨界条件により約43%を確
保できる。発生した中性子の一部がThに吸収されて生
成した 233Uは1年もしくは2年程度毎に下部のドレイ
ンタンク20及び弗素化装置22で弗素化処理を行っ
て、燃料塩より分離回収し、他の一般溶融塩発電炉の燃
料として使用する。処理された燃料は、元の炉に戻さ
れ、Puなどを追加して再稼動し、Pu消滅、 233U生
産に供される。233U分離作業の機会に、一部の核分裂
・反応生成物の一部を、上記弗素化法のほか、蒸溜法、
酸化沈澱法、液体金属接触抽出法などで分離し、中性子
利用効率向上、腐食防止などに利用することができる。
その分離度合は、全体系の経済性が決定する。
On the other hand, the high temperature fuel salt discharged from the furnace flows through the two salt loop pipes and flows into the secondary heat molten salt [N] in the first heat exchanger.
aBF 4 -NaF (92-8 mol%)], and then heat is transferred to water by the second heat exchanger to generate steam to generate turbine power. About 43% of efficiency can be secured under supercritical conditions. 233 U generated by absorbing a part of the generated neutrons to Th is fluorinated by the lower drain tank 20 and the fluorination device 22 every one or two years, separated and recovered from the fuel salt, Used as fuel for other general molten salt power reactors. The processed fuel is returned to the original furnace, Pu is added again, and it is restarted, and it is used for Pu extinction and 233 U production. 233 On the occasion of U separation work, part of some fission / reaction products was subjected to a distillation method in addition to the above fluorination method.
It can be used for neutron utilization efficiency improvement, corrosion prevention, etc. by separating by oxidative precipitation method, liquid metal contact extraction method, etc.
The degree of separation is determined by the economic efficiency of the entire system.

【0012】(実施例1)15.5万kW(熱35万kW)
出力の小型溶融塩発電炉(特願昭60−272165号
の実施例参照)において、燃料塩に 7LiF−BeF2
−ThF4 239PuF3 (71.7−16−12−
0.3 mol%)が使用された。なお、この炉は出力密度
は平均約10kW th/liter と高い。239Puの初期装荷
量は約530kgである。これに146kg/年のThと約
26kg/年のPuが添加されつつ、2年間に約250kg
のPuが燃焼焼却された。2年後に、燃焼塩を処理タン
クに移して弗素とヘリウム混合ガスが吹き込まれ、約1
70kgの 233UがUF6 ガスとして分離された。再び塩
は炉に戻され、Puを約220kg添加して再稼動され
た。約20年間に、約2.3ton のPuを消滅でき、約
1.5ton の 233Uを生産入手できた。
(Example 1) 15,000 kW (heat 350,000 kW)
In a small output molten salt power generation reactor (see the example of Japanese Patent Application No. 60-272165), 7 LiF-BeF 2 was used as fuel salt.
-ThF 4 - 239 PuF 3 (71.7-16-12-
0.3 mol%) was used. The average power density of this furnace is as high as about 10 kW th / liter. The initial loading of 239 Pu is about 530 kg. Approximately 250 kg in 2 years while adding 146 kg / year Th and approximately 26 kg / year Pu
Was burned and incinerated. Two years later, the burned salt was transferred to a treatment tank and a mixed gas of fluorine and helium was blown into it, and about 1
70 kg of 233 U were separated as UF 6 gas. The salt was returned to the furnace again, and about 220 kg of Pu was added to restart the operation. In about 20 years, about 2.3 tons of Pu could be extinguished, and about 1.5 tons of 233 U could be produced and obtained.

【0013】(実施例2)軽水炉の使用済燃料からのP
u( 239Pu: 240Pu: 241Pu: 242Pu=56.
5:25.3:13.2:5.0)を消滅させるため
に、10万kW (熱25万kW)出力の小型溶融塩発電炉に
おいて、燃料塩に 7LiF−BeF2 −ThF4 −Pu
3 (71.81−16−12−0.19 mol%)が使
用された。この炉の出力密度は平均約4kW th/liter で
ある。Puの初期装荷量は約390kgであり、さらに約
320kgのPuと、220kgのThを1000日間にわ
たり添加しつつ運転し、約240kgのPuを燃焼させ
た。1000日後に燃料塩を処理タンクに移し、弗素化
を行い、約190kgの 233Uを、UF6 として分離し
た。その後、塩は再び炉に戻され、Puを約280kg添
加して再稼動された。この炉では、20年間に軽水炉か
らのPuを約1.7ton 消滅でき、約1.4ton の 233
Uを生産できた。
(Example 2) P from spent fuel of a light water reactor
u ( 239 Pu: 240 Pu: 241 Pu: 242 Pu = 56.
5: 25.3: 13.2: 5.0) to extinguish the 100,000 kW (in a small molten salt power reactor heat 250,000 kW) Output, 7 to the fuel salt LiF-BeF 2 -ThF 4 - Pu
F 3 (71.81-16-12-0.19 mol%) was used. The power density of this furnace is about 4 kW th / liter on average. The initial loading amount of Pu was about 390 kg, and further about 320 kg of Pu and 220 kg of Th were added for 1000 days and the operation was continued to burn about 240 kg of Pu. After 1000 days, the fuel salt was transferred to a treatment tank and fluorinated, and about 190 kg of 233 U was separated as UF 6 . After that, the salt was returned to the furnace again, and about 280 kg of Pu was added to restart the operation. In this reactor, about 1.7 tons of Pu from a light water reactor can be extinguished in 20 years, and about 1.4 tons of 233
I was able to produce U.

【0014】[0014]

【発明の効果】発明の効果を摘記すると以下の通りであ
る。 (1)Puをより多く燃焼させることができる。Thか
ら生成した 233Uは随時分離され、Puに比べ平均約1
0%以下に保持されるので、Puの燃焼率は核分裂され
る物質全体の約85%以上95%程度にもなる。 (2)Pu燃焼のみでなく、核分裂で発生する中性子の
有効利用のため、Thから 233Uを生産するが、余り炉
内に置かない為に、燃焼する 233Uは少なく、大部分は
回収されて別の炉に利用できる。この炉は転換率が約
0.8以上と高いので、消費されたPuがほぼ同量(7
0〜90%)の 233Uに転換されたこととなる。 (3)しかも、その際、発電が行われる。分離作業は1
年以上、場合により3〜5年毎とすることもできるの
で、発電機能もそれ程阻害されない。また、炉を運転し
つつ、バイパス回路で連続的に分離することもできる。 (4)運転中に消費した核分裂性物質の大部分は 233
として再生されるので、余り反応度の変化は著しくな
い。即ち運転・保守作業は容易である。
The effects of the present invention are summarized as follows. (1) More Pu can be burned. 233 U produced from Th is separated from time to time, and averages about 1 compared to Pu.
Since it is maintained at 0% or less, the burning rate of Pu becomes about 85% to 95% of the total fissionable material. (2) 233 U is produced from Th not only for Pu combustion but also for effective use of neutrons generated by nuclear fission, but since it is not placed in the reactor too much, 233 U that burns is small and most of it is recovered. Available for different furnaces. Since this furnace has a high conversion rate of about 0.8 or more, the amount of Pu consumed is almost the same (7
It was converted to 233 U (0 to 90%). (3) Moreover, at that time, power generation is performed. Separation work is 1
Since it can be set to more than a year, or every 3 to 5 years in some cases, the power generation function is not so disturbed. Further, it is also possible to separate continuously by a bypass circuit while operating the furnace. (4) Most of the fissile material consumed during operation is 233 U
Therefore, the reactivity does not change so much. That is, operation and maintenance work is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の縦断面図である。FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【図2】図1におけるA−A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】(イ)(ロ)は炉心の2つの領域における減速
材の平面図である。
3A and 3B are plan views of a moderator in two regions of a core.

【図4】その炉心の各領域の寸法を示す説明図である。FIG. 4 is an explanatory diagram showing the dimensions of each region of the core.

【符号の説明】[Explanation of symbols]

I 中心領域 II 周辺領域 III ブランケット領域 7 炉心 10,13,14 減速材 12,12,16 空隙 I Central region II Peripheral region III Blanket region 7 Core 10, 13, 14 Moderator 12, 12, 16 Void

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 減速材を配置した炉心の空隙内はウラン
の回収装置に連通すると共にこの空隙内にはトリウムT
h及びプルトニウムPuよりなる液体核燃料を充填し、
このトリウムThから生成したウラン 233Uは回収装置
により随時分離され、代わりにプルトニウムPuが追加
されて燃焼を促進するようにしたことを特徴とする液体
核燃料による小型原子炉。
1. A reactor core in which a moderator is arranged communicates with a uranium recovery device, and thorium T is contained in this chamber.
Filling a liquid nuclear fuel consisting of h and plutonium Pu,
Uranium 233 U produced from this thorium Th is separated at any time by a recovery device, and plutonium Pu is added instead to promote combustion, and is a small nuclear reactor using liquid nuclear fuel.
【請求項2】 上記ウランの回収装置はドレインタンク
20と弗素化装置22とよりなる請求項1に記載の液体
核燃料による小型原子炉。
2. The small nuclear reactor with liquid nuclear fuel according to claim 1, wherein said uranium recovery device comprises a drain tank 20 and a fluorination device 22.
JP33082593A 1993-03-24 1993-12-27 Plutonium annihilation nuclear reactor using liquid nuclear fuel Expired - Lifetime JP3326759B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33082593A JP3326759B2 (en) 1993-12-27 1993-12-27 Plutonium annihilation nuclear reactor using liquid nuclear fuel
EP94104486A EP0617430B1 (en) 1993-03-24 1994-03-22 Plutonium annihilating nuclear reactor with use of liquid nuclear fuel
DE69407459T DE69407459T2 (en) 1993-03-24 1994-03-22 Plutonium-destroying nuclear reactor using liquid nuclear fuel
CN94104894A CN1100555A (en) 1993-03-24 1994-03-23 Plutonium annihylating nuclear reactor with use of liquid nuclear fuel
RU94009850A RU2137222C1 (en) 1993-03-24 1994-03-24 Plutonium-destroying reactor using liquid- salt nuclear fuel (design versions)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33082593A JP3326759B2 (en) 1993-12-27 1993-12-27 Plutonium annihilation nuclear reactor using liquid nuclear fuel

Publications (2)

Publication Number Publication Date
JPH07191171A true JPH07191171A (en) 1995-07-28
JP3326759B2 JP3326759B2 (en) 2002-09-24

Family

ID=18236969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33082593A Expired - Lifetime JP3326759B2 (en) 1993-03-24 1993-12-27 Plutonium annihilation nuclear reactor using liquid nuclear fuel

Country Status (1)

Country Link
JP (1) JP3326759B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109715A2 (en) * 2003-06-04 2004-12-16 D.B.I. Century Fuels And Aerospace Services, Inc. Nuclear power plant
JP2009036606A (en) * 2007-08-01 2009-02-19 Mitsubishi Heavy Ind Ltd Nuclear reactor
JP2014013149A (en) * 2012-07-03 2014-01-23 Thorium Tech Solution Inc Uranium and thorium hybrid system
JP2016038260A (en) * 2014-08-06 2016-03-22 株式会社東芝 Transuranium element nuclear transmutation method and transuranium element nuclear transmutation furnace core
JP2016042090A (en) * 2014-08-18 2016-03-31 株式会社 トリウムテックソリューション Compact size molten salt reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109715A2 (en) * 2003-06-04 2004-12-16 D.B.I. Century Fuels And Aerospace Services, Inc. Nuclear power plant
WO2004109715A3 (en) * 2003-06-04 2005-05-26 D B I Century Fuels And Aerosp Nuclear power plant
JP2009036606A (en) * 2007-08-01 2009-02-19 Mitsubishi Heavy Ind Ltd Nuclear reactor
JP2014013149A (en) * 2012-07-03 2014-01-23 Thorium Tech Solution Inc Uranium and thorium hybrid system
JP2016038260A (en) * 2014-08-06 2016-03-22 株式会社東芝 Transuranium element nuclear transmutation method and transuranium element nuclear transmutation furnace core
JP2016042090A (en) * 2014-08-18 2016-03-31 株式会社 トリウムテックソリューション Compact size molten salt reactor
WO2017030107A1 (en) * 2014-08-18 2017-02-23 株式会社 トリウムテックソリューション Compact molten salt reactor

Also Published As

Publication number Publication date
JP3326759B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
EP0617430B1 (en) Plutonium annihilating nuclear reactor with use of liquid nuclear fuel
JP6596338B2 (en) Fission reactor and method of operating the same
Robertson CONCEPTUAL DESIGN STUDY OF A SINGLE-FLUID MOLTEN-SALT BREEDER REACTOR.
US2812303A (en) Atomic power plant
JP6839719B2 (en) Conversion of used uranium oxide fuel to molten salt reactor fuel
US2975116A (en) Neutronic reactor
JPH07191171A (en) Small-sized atomic reactor using liquid nuclear fuel
JP2002181976A (en) Nuclear reactor and nuclear plant equipped with the same
JPH0827363B2 (en) Micro Reactor with Thorium Liquid Nuclear Fuel
US3284305A (en) Process of producing energy by nuclear fission
Balakrishnan et al. The Indian perspective on thorium fuel cycles
Lewitz et al. The Dual Fluid Reactor—An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup
US3795580A (en) Fuse for nuclear reactor
JPH0562714B2 (en)
Raj et al. Advanced Ceramic Fuels for Sodium-Cooled Fast Reactors
LeBlanc Molten Salt Reactors: A new vision for a Generation IV concept
Ayare et al. A review on current scenario of energy, nuclear reactor technology and cold trap
JPS6256475B2 (en)
Furukawa et al. Accelerator Molten-Salt Breeding Power Reactor Useful for Pu-burning and 233U-Production
GB2098788A (en) Process and apparatus for molten-salt nuclear chemical reaction process for circulating a fuel salt in a combination system of the apparatus with a molten- salt converter reactor
Latgé Sodium coolant: activation, contamination and coolant processing
Miles Fluid Fuel Reactors with Uranium-Bismuth
Taube A Molten Salt Fast Thermal Reactor System with no Waste
Steinberg et al. The utilization of fission fragment energy for the fixation of nitrogen
Reynolds et al. Aerosol source considerations for LMFBR core disruptive accidents

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

EXPY Cancellation because of completion of term