JPH07191056A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH07191056A
JPH07191056A JP5328548A JP32854893A JPH07191056A JP H07191056 A JPH07191056 A JP H07191056A JP 5328548 A JP5328548 A JP 5328548A JP 32854893 A JP32854893 A JP 32854893A JP H07191056 A JPH07191056 A JP H07191056A
Authority
JP
Japan
Prior art keywords
self
electrodes
electrode
holes
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5328548A
Other languages
Japanese (ja)
Other versions
JP3019701B2 (en
Inventor
Koji Tanaka
幸次 田中
Hideo Muro
英夫 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5328548A priority Critical patent/JP3019701B2/en
Publication of JPH07191056A publication Critical patent/JPH07191056A/en
Application granted granted Critical
Publication of JP3019701B2 publication Critical patent/JP3019701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To raise the self-diagnosing signal outputting level of an acceleration sensor and improve the responsiveness of the sensor by forming through holes in one electrode and providing air damping reducing grooves formed through the through holes by etching in a semiconductor section. CONSTITUTION:Of metallic electrodes 7 and 9 for self-diagnosis, the electrode 7 on a silicon pedestal 5 side has through holes 9 arranged in a plurality of rows. Air damping reducing grooves 10 having end sections opened on the outside of both end edges of the electrode 7 are formed in a semiconductor section which is in contact with the electrode 7. Since the effective area of the electrode 7 which contributes to the impression of an electrostatic force at the time of self-diagnosis is such that the areas of the holes 9 are negligibly small as compared with the whole overlap area of the electrodes 7 and 8 while the areas of the holes 9 are invalid, the self-diagnosing signal of this acceleration sensor is maintained at a high output level. At the time of detecting acceleration, an overlapping section 3 is displaced and a gas in an air gap enters the grooves 10 through the holes 9 and goes out from the openings 10a of the grooves 10. Therefore, air damping is relieved and the responsiveness of the sensor is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速度センサに関し、
特にセンサ機能の自己診断部の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor,
In particular, it relates to improvement of the self-diagnosis unit of the sensor function.

【0002】[0002]

【従来の技術】加速度センサの第1の従来例として、例
えば図4に示すようなものがある(Stephen C.Terry,Di
ederik W.de Bruin,Henry V.Allen,"Self-testable Acc
elerometer Microsystem",Micro System Technologies
,90,Berlin,Germany,pp.611〜616(1990))。この従来例
は、両持ち梁式半導体加速度センサであり、靜電駆動型
自己診断機能を有している。図1において、1はシリコ
ンセンサチップであり、裏面からの異方性エッチングに
より肉薄の梁2が形成されていて、これが中央の重り部
3を両側から支持するいわゆる両持ち梁構造となってい
る。センサチップ1の上面には凹部13を有するシリコ
ンのキャップ12、下面には凹部6を有するシリコンの
台座5がそれぞれ合金接合等により接合されていて、被
検出加速度に応じて重り部3が上下に変位でき、且つそ
の変位が凹部6,13中の突起部14,15により制限
され、過大加速度が加わった時の梁2の破損が防止され
るような構成となっている。梁2の表面部にはピエゾ抵
抗4が形成されており、加速度印加により重り部3が変
位し、梁2の表面部に応力が生じるとその抵抗値が変化
して加速度が検出されるようになっている。図の例では
ピエゾ抵抗4が梁2の支持部側と重り部3側に形成され
ていて、この両側で応力が逆極性となることを利用して
クルブリッジ(図示せず)を構成し、他軸感度の低減が
可能となっている。キャップ12及び台座5により重り
部3との間に形成された狭いエアギャップは前述のよう
に重り部3のストッパとして機能するばかりでなく、梁
2の共振を抑制するエアダンピングを可能としている。
ここでエアダンピングとは、重り部3が変位しようとす
ると、狭いエアギャップに存在する粘性を有する気体が
エアギャップの外部に押し出されるか或いは内部に流れ
込む時に起きる気体同士或いは気体と半導体面又は金属
電極面との摩擦により重り部3の変位方向とは逆方向に
生じる抵抗力である。
2. Description of the Related Art As a first conventional example of an acceleration sensor, there is one as shown in FIG. 4 (Stephen C. Terry, Di.
ederik W.de Bruin, Henry V.Allen, "Self-testable Acc
elerometer Microsystem ", Micro System Technologies
, 90, Berlin, Germany, pp.611-616 (1990)). This conventional example is a double-supported beam type semiconductor acceleration sensor, which has an electrostatic drive type self-diagnosis function. In FIG. 1, reference numeral 1 is a silicon sensor chip, and a thin beam 2 is formed by anisotropic etching from the back surface, and this has a so-called double-supported beam structure that supports a central weight portion 3 from both sides. . A silicon cap 12 having a recess 13 is bonded to the upper surface of the sensor chip 1, and a silicon pedestal 5 having a recess 6 is bonded to the lower surface of the sensor chip 1 by alloy bonding or the like, and the weight portion 3 is vertically moved according to the acceleration to be detected. The beam 2 can be displaced, and the displacement is limited by the protrusions 14 and 15 in the recesses 6 and 13, so that the beam 2 is prevented from being damaged when excessive acceleration is applied. A piezoresistor 4 is formed on the surface of the beam 2 so that the weight 3 is displaced by application of acceleration, and when stress is generated on the surface of the beam 2, the resistance value changes and acceleration is detected. Has become. In the example shown in the figure, the piezoresistors 4 are formed on the support portion side and the weight portion 3 side of the beam 2, and the stress is opposite in polarity on both sides, so that a Kull bridge (not shown) is formed. It is possible to reduce the sensitivity of other axes. The narrow air gap formed between the weight portion 3 by the cap 12 and the pedestal 5 not only functions as a stopper for the weight portion 3 as described above, but also enables air damping for suppressing the resonance of the beam 2.
Here, air damping means that when the weight portion 3 is displaced, the gases existing in a narrow air gap are extruded to the outside of the air gap or flow into the inside, or the gases and the semiconductor surface or metal. It is a resistance force generated in a direction opposite to the displacement direction of the weight portion 3 due to friction with the electrode surface.

【0003】また、重り部3の上には自己診断用の金属
電極16が形成されていてキャップ12と狭いエアギャ
ップを介して対向している。キャップ12の凹部13に
も自己診断用の金属電極(図示せず)が形成されてお
り、この金属電極はセンサチップ1とキャップ12との
接合部においてセンサチップ1上の金属配線(図示せ
ず)に電気的に接続されてボンディングパッド17に引
き出されている。このキャップ12側の金属電極と重り
部3上の金属電極16との間に電圧を印加すると靜電力
により重り部3は上側に変位し、被検出加速度が加わっ
た時と同様な応力を梁2に発生させることができる。こ
の時のセンサ出力をチェックすることによりセンサの検
出機能を確認するいわゆる自己診断が可能となる。
A metal electrode 16 for self-diagnosis is formed on the weight portion 3 and faces the cap 12 via a narrow air gap. A metal electrode (not shown) for self-diagnosis is also formed in the recess 13 of the cap 12, and this metal electrode is a metal wiring (not shown) on the sensor chip 1 at the joint between the sensor chip 1 and the cap 12. ) And is led out to the bonding pad 17. When a voltage is applied between the metal electrode on the side of the cap 12 and the metal electrode 16 on the weight portion 3, the weight portion 3 is displaced upward due to the whipping power, and the same stress as when the acceleration to be detected is applied is applied to the beam 2. Can be generated. By checking the sensor output at this time, so-called self-diagnosis for confirming the detection function of the sensor becomes possible.

【0004】ところで、靜電駆動型自己診断の出力は大
きい程理想的であり、そのためには、重り部3上の金属
電極16とキャップ12側の金属電極との間のエアギャ
ップは1〜2μm程度と狭くしなければならない。しか
しエアギャップが狭くなるとエアダンピングが効き過ぎ
て加速度センサの応答性が劣化するという問題がある。
By the way, the larger the output of the electrostatic drive type self-diagnosis is, the more ideal it is. Therefore, the air gap between the metal electrode 16 on the weight portion 3 and the metal electrode on the cap 12 side is about 1 to 2 μm. I have to narrow it. However, when the air gap becomes narrow, there is a problem that the air damping becomes too effective and the response of the acceleration sensor deteriorates.

【0005】図5には、加速度センサの第2の従来例を
示す(特開平2−116755号公報)。加速度センサ
としての基本構成は第1の従来例と同じであるが、靜電
駆動型自己診断部の構成が異なっている。この従来例で
は上側のキャップが無く、台座18の表面に形成された
凹部6内の面と重り部3の底面にそれぞれ自己診断用の
金属電極7,8が対向して形成されていて靜電アクチュ
エータが構成されている。通常、このような構成は台座
18をパイレックスガラスを用いて加工し、最後にシリ
コンのセンサチップ1と陽極接合することにより作製さ
れる。しかし、この従来例においても前記第1の従来例
と同様に両金属電極7,8間のエアギャップが狭くなる
とエアダンピングが効き過ぎて加速度センサの応答性が
劣化するという問題があった。
FIG. 5 shows a second conventional example of the acceleration sensor (Japanese Patent Laid-Open No. 2-116755). The basic configuration of the acceleration sensor is the same as that of the first conventional example, but the configuration of the electric drive type self-diagnosis unit is different. In this conventional example, there is no upper cap, and metal electrodes 7 and 8 for self-diagnosis are formed opposite to each other on the surface inside the recess 6 formed on the surface of the pedestal 18 and the bottom surface of the weight portion 3, respectively. Is configured. Usually, such a structure is manufactured by processing the pedestal 18 using Pyrex glass, and finally by anodic bonding with the silicon sensor chip 1. However, in this conventional example, as in the first conventional example, when the air gap between the metal electrodes 7 and 8 is narrowed, the air damping becomes too effective and the responsiveness of the acceleration sensor deteriorates.

【0006】このエアダンピングによるセンサ応答性を
改善するようにした第3の従来例として、図6に示すよ
うな構成がある(特開平5−26903号公報)。この
従来例ではシリコン台座5の凹部6内の面にエアダンピ
ング低減用の溝19を形成し、この溝19に沿って金属
電極7が形成されている。そして重り部3の変位時にエ
アギャップ内の気体を溝19に逃すことにより通気抵抗
を低減させ、エアダンピングの低減効果を確保してい
る。しかし、この従来例では、溝19に沿って金属電極
7が形成されているため、自己診断時の靜電力印加に寄
与する金属電極7の有効面積7は、溝19部分以外の平
面部分が支配的となるために小さくなり、自己診断出力
が低下(即ち靜電力が低下)する。靜電力Fは次式で表
わされる。
As a third conventional example for improving the sensor responsiveness by the air damping, there is a configuration as shown in FIG. 6 (Japanese Patent Laid-Open No. 5-26903). In this conventional example, a groove 19 for reducing air damping is formed on the surface inside the recess 6 of the silicon pedestal 5, and the metal electrode 7 is formed along the groove 19. Then, when the weight portion 3 is displaced, the gas in the air gap is released into the groove 19 to reduce the ventilation resistance, thereby ensuring the effect of reducing the air damping. However, in this conventional example, since the metal electrode 7 is formed along the groove 19, the effective area 7 of the metal electrode 7 that contributes to the application of the whistle power at the time of self-diagnosis is dominated by the planar portion other than the groove 19 portion. Therefore, the self-diagnosis output decreases (that is, the power consumption decreases). The static electric power F is expressed by the following equation.

【0007】 F=(1/2)ε・S・(V/d)2 …(1) ここでεはエアギャップ部の誘電率、Sは金属電極の対
向面積、dはギャップ長、Vは印加電圧である。従っ
て、上記(1)式よりSが減り、dが長くなるため靜電
力Fが低下することになる。
F = (1/2) ε · S · (V / d) 2 (1) where ε is the permittivity of the air gap, S is the facing area of the metal electrode, d is the gap length, and V is The applied voltage. Therefore, since S is reduced and d is increased from the equation (1), the static electric power F is reduced.

【0008】図7は、第3の従来例の製造工程を示して
いる。センサチップ1となるシリコンウェーハ上にIC
製造プロセスを用いてピエゾ抵抗4及びその他必要な回
路デバイスを作り込む。ウェーハ裏面には耐エッチング
膜11を形成し、パターニングすることにより、次工程
の異方性エッチングのマスクとする(a)。ウェーハ裏
面からのアルカリ性溶液を用いた異方性エッチングによ
り重り部3及び梁部2が形成される(b)。シリコン台
座5の表面部にエッチングを施して凹部6を形成し、そ
の凹部6内に異方性エッチング等によりエアダンピング
低減用の溝19を形成する(c,d)。凹部6内の溝1
9を含む部分に金属膜の蒸着、パターニングにより金属
電極7が形成される(e)。センサチップ1とシリコン
台座5を接合して加速度センサが完成する(f)。
FIG. 7 shows a manufacturing process of the third conventional example. IC on the silicon wafer that becomes the sensor chip 1
The piezoresistor 4 and other necessary circuit devices are built using the manufacturing process. An etching resistant film 11 is formed on the back surface of the wafer and patterned to form a mask for anisotropic etching in the next step (a). The weight portion 3 and the beam portion 2 are formed by anisotropic etching from the back surface of the wafer using an alkaline solution (b). Etching is performed on the surface portion of the silicon pedestal 5 to form a recess 6, and a groove 19 for reducing air damping is formed in the recess 6 by anisotropic etching or the like (c, d). Groove 1 in recess 6
The metal electrode 7 is formed on the portion including 9 by vapor deposition and patterning of the metal film (e). The acceleration sensor is completed by joining the sensor chip 1 and the silicon pedestal 5 (f).

【0009】[0009]

【発明が解決しようとする課題】第1、第2の従来例で
は、自己診断出力を大にするため自己診断用の両金属電
極間のエアギャップを狭くするとエアダンピングが効き
過ぎてセンサ応答性が劣化するという問題があった。ま
た、センサ応答性を改善するようにした第3の従来例で
は、自己診断用金属電極の形成領域にエアダンピング低
減用の溝を形成し、その溝に沿って金属電極を形成した
構成となっていたため、自己診断時の靜電力印加に寄与
する実効電極面積が減り、自己診断出力が低下するとい
う問題があった。そして自己診断出力を確保するために
は金属電極領域を広くする必要があるため、センサチッ
プが大型化してコスト高を招くという問題があった。
In the first and second prior art examples, if the air gap between both metal electrodes for self-diagnosis is narrowed in order to increase the self-diagnosis output, the air damping becomes too effective and the sensor responsiveness is increased. There was a problem of deterioration. Further, in the third conventional example in which the sensor responsiveness is improved, a groove for reducing air damping is formed in the formation region of the self-diagnosis metal electrode, and the metal electrode is formed along the groove. Therefore, there is a problem that the effective electrode area that contributes to the application of the blue power during the self-diagnosis is reduced and the self-diagnosis output is reduced. Since it is necessary to widen the metal electrode area in order to secure the self-diagnosis output, there is a problem that the sensor chip becomes large and the cost increases.

【0010】本発明は、このような従来の問題に着目し
てなされたもので、自己診断信号の高出力化及びセンサ
応答性の向上を図ることができるとともにチップサイズ
の大型化を招くことのない加速度センサを提供すること
を目的とする。
The present invention has been made by paying attention to such a conventional problem. It is possible to increase the output of the self-diagnosis signal and improve the sensor responsiveness, and to increase the chip size. It is intended to provide a non-acceleration sensor.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、梁部及び該梁部で支持され被検
出加速度に応じて変位する重り部を有し、前記梁部の表
面部にピエゾ抵抗が形成された半導体チップと、該半導
体チップの下部に前記重り部と所要間隔のエアギャップ
を有するように接合された半導体製の台座とを備え、前
記エアギャップを挟んで対向する前記重り部及び台座の
対向両面にはそれぞれ電極が形成され、該両電極間への
印加電圧で生じる靜電力によりセンサ機能を自己診断す
るようにした加速度センサにおいて、前記両電極の少な
くとも一方に貫通孔を形成し、該電極に接する半導体部
には前記貫通孔を通してエッチング形成されたエアダン
ピング低減用の凹部を有することを要旨とする。
In order to solve the above-mentioned problems, the present invention firstly comprises a beam portion and a weight portion supported by the beam portion and displaced according to a detected acceleration. A semiconductor chip having a piezoresistor formed on the surface of the portion, and a semiconductor pedestal joined to the weight portion at a lower portion of the semiconductor chip so as to have an air gap of a required distance, and sandwiching the air gap. An electrode is formed on each of the opposing surfaces of the weight portion and the pedestal that face each other, and an acceleration sensor configured to self-diagnose the sensor function by the whiskers generated by the voltage applied between the electrodes. A gist is that a through hole is formed in one side, and a semiconductor portion in contact with the electrode has a recess for reducing air damping, which is formed by etching through the through hole.

【0012】第2に、梁部及び該梁部で支持され被検出
加速度に応じて変位する重り部を有し、前記梁部の表面
部にピエゾ抵抗が形成された半導体チップと、該半導体
チップの下部に前記重り部と所要間隔のエアギャップを
有するように接合された半導体製の台座とを備え、前記
エアギャップを挟んで対向する前記重り部及び台座の対
向両面にはそれぞれ電極が形成され、該両電極間への印
加電圧で生じる靜電力によりセンサ機能を自己診断する
ようにした加速度センサにおいて、前記両電極の少なく
とも一方に複数個の貫通孔を所要間隔をおいて連設し、
該電極に接する半導体部には前記各貫通孔を通してエッ
チング形成された複数の凹部の連通により端部が当該電
極の端縁外に開口したエアダンピング低減用の溝を有す
ることを要旨とする。
Secondly, a semiconductor chip having a beam portion and a weight portion supported by the beam portion and displaced according to a detected acceleration, and a piezoresistor is formed on a surface portion of the beam portion, and the semiconductor chip. A lower portion of the weight portion and a semiconductor pedestal joined so as to have an air gap of a required distance, and electrodes are formed on both facing surfaces of the weight portion and the pedestal that face each other with the air gap interposed therebetween. In the acceleration sensor configured to self-diagnose the sensor function by the static electricity generated by the applied voltage between the electrodes, a plurality of through holes are continuously provided at least one of the electrodes at a predetermined interval,
The gist of the present invention is that the semiconductor portion in contact with the electrode has a groove for reducing air damping, the end portion of which is open to the outside of the end edge of the electrode due to communication of a plurality of recesses formed by etching through the through holes.

【0013】第3に、上記第2の構成において、前記エ
アダンピング低減用の溝は、複数個形成してなることを
要旨とする。
Thirdly, the gist of the second structure is that a plurality of the air damping reducing grooves are formed.

【0014】[0014]

【作用】上記構成において、第1に、電極に接する半導
体部には、貫通孔を通したサイドエッチが生じる程度の
エッチングにより貫通孔の径よりも十分に大きな径を有
する凹部空隙が形成される。加速度の検出時に重り部が
変位するとエアギャップ内の一部の気体が貫通孔を通し
て凹部内に出入りし、エアダンピングが緩和されてセン
サ応答性が向上する。自己診断時の靜電力印加に寄与す
る電極の有効面積は貫通孔部分は無効であるが、貫通孔
の穿設面積は両電極の対向全体面積に比べると無視でき
る程度なので自己診断信号は高出力に維持される。
In the above structure, firstly, in the semiconductor portion in contact with the electrode, a recess void having a diameter sufficiently larger than the diameter of the through hole is formed by etching to the extent that side etching occurs through the through hole. . If the weight portion is displaced during the detection of acceleration, a part of the gas in the air gap enters and leaves the recess through the through hole, air damping is alleviated, and the sensor response is improved. The effective area of the electrode that contributes to the application of blue power during self-diagnosis is ineffective in the through-hole portion, but the drilled area of the through-hole is negligible compared to the total area of both electrodes facing each other, so the self-diagnosis signal has a high output. Maintained at.

【0015】第2に、電極に接する半導体部には、連設
された複数の貫通孔を通してエッチング形成された各凹
部の連通によりその端部が電極の端縁外に開口した溝が
形成される。加速度の検出時に重り部が変位したとき、
エアギャップ内の気体は、各貫通孔を通して溝内に入り
両電極間の空隙外にぬける経路が形成されてエアダンピ
ングが緩和され、一層のセンサ応答性の改善が得られ
る。自己診断に際し、各貫通孔の全穿設面積は両電極の
対向全体面積に比べると、前記と同様に無視できる程度
なので自己診断信号は高出力に維持される。
Secondly, in the semiconductor portion in contact with the electrode, a groove whose end is opened outside the edge of the electrode is formed by communicating the recesses formed by etching through a plurality of through holes provided in series. . When the weight is displaced during acceleration detection,
The gas in the air gap enters the groove through each through hole, and a path is formed through the air gap between the electrodes to alleviate the air damping, thereby further improving the sensor responsiveness. At the time of self-diagnosis, the total drilled area of each through hole is negligible in the same manner as described above as compared with the entire facing area of both electrodes, so the self-diagnosis signal is maintained at a high output.

【0016】第3に、エアダンピング低減用の溝は、適
宜複数個が形成されることにより所望のエアダンピング
特性に応じることが可能となる。
Thirdly, by appropriately forming a plurality of grooves for reducing air damping, it is possible to meet desired air damping characteristics.

【0017】[0017]

【実施例】以下、本発明の実施例を図1乃至図3に基づ
いて説明する。なお、図1乃至図3において、前記図4
乃至図7における部材及び部位と同一ないし均等のもの
は、前記と同一符号を以って示し、重複した説明を省略
する。
Embodiments of the present invention will be described below with reference to FIGS. In addition, in FIG. 1 to FIG.
The same or equivalent members and parts as those in FIG. 7 are designated by the same reference numerals as those used above, and a duplicate description will be omitted.

【0018】まず図1、図2を用いて加速度センサの構
成を説明する。本実施例では、自己診断用の両金属電極
7,8のうち、シリコン台座5側の金属電極7に複数の
貫通孔9が複数列に、且つ各列においては所要間隔をお
いて連設されている。貫通孔9は金属電極7のパターニ
ング時に容易に形成することができ、従来に比べて工程
の増加や特殊技術の必要はない。そして各貫通孔9を通
したウェットエッチング法により、金属電極7に接する
半導体部に、その端部が当該金属電極7の端縁外に開口
10aとしたエアダンピング低減用の溝10が形成され
ている。溝10の形状寸法及び形成個数等は、エアダン
ピング特性によって任意に設定することができる。溝1
0の形成は、貫通孔9を有する金属電極7をシリコン台
座5の表面部に形成した後、貫通孔9以外をレジストで
マスキングし、ウェットエッチング法によって行われ
る。即ち、エッチング液が各貫通孔9を通して台座5の
シリコン部に達し、貫通孔9を中心に下方及び側方にエ
ッチングが進行して各貫通孔9の部分に凹部が形成さ
れ、さらにエッチングの進行により各凹部が連通してエ
アダンピング用の溝10ができる。溝10の深さや幅は
エッチング時間によって制御可能であり、5〜10μm
程度の深さで十分である。貫通孔9の寸法はエッチング
液が入り込む程度でよく、直径2〜5μm程度である。
また、エアギャップ寸法dに対するこの貫通孔9の直径
φは、φ≧d、溝10の幅Wは、W≧2φが効果的な条
件である。
First, the structure of the acceleration sensor will be described with reference to FIGS. In this embodiment, of the two metal electrodes 7 and 8 for self-diagnosis, the metal electrode 7 on the silicon pedestal 5 side is provided with a plurality of through-holes 9 in a plurality of rows and in each row at a required interval. ing. The through holes 9 can be easily formed at the time of patterning the metal electrode 7, and there is no need for an increase in the number of steps or a special technique as compared with the related art. Then, by a wet etching method through each through hole 9, a groove 10 for reducing air damping is formed in the semiconductor portion in contact with the metal electrode 7, the end portion of which is an opening 10a outside the end edge of the metal electrode 7. There is. The shape and the number of the grooves 10 to be formed can be arbitrarily set according to the air damping characteristics. Groove 1
The formation of 0 is performed by a wet etching method after forming the metal electrode 7 having the through hole 9 on the surface portion of the silicon pedestal 5 and masking the portions other than the through hole 9 with a resist. That is, the etching solution reaches the silicon portion of the pedestal 5 through each through hole 9, and the etching progresses downward and laterally around the through hole 9 to form a recess in each through hole 9, and the etching progresses further. Thus, the recesses communicate with each other to form the groove 10 for air damping. The depth and width of the groove 10 can be controlled by the etching time and is 5 to 10 μm.
Depth of a degree is sufficient. The size of the through hole 9 may be such that the etching liquid can enter, and has a diameter of about 2 to 5 μm.
Further, the effective condition is that the diameter φ of the through hole 9 with respect to the air gap dimension d is φ ≧ d and the width W of the groove 10 is W ≧ 2φ.

【0019】次に、上述のように構成された加速度セン
サの作用を説明する。自己診断用の金属電極7はシリコ
ン台座5表面に平面的に形成されている。自己診断時の
靜電力印加に寄与する金属電極7の有効面積は、貫通孔
9の部分は無効であるが、貫通孔9の穿設面積は両金属
電極7,8の対向全体面積に比べると無視できる程度な
ので、自己診断信号は高出力に維持される。
Next, the operation of the acceleration sensor configured as described above will be described. The metal electrode 7 for self-diagnosis is formed flat on the surface of the silicon pedestal 5. The effective area of the metal electrode 7 that contributes to the application of the blue power at the time of self-diagnosis is ineffective at the portion of the through hole 9, but the drilled area of the through hole 9 is larger than the total area of the two metal electrodes 7 and 8 facing each other. Since it is negligible, the self-diagnosis signal is maintained at a high output.

【0020】また、加速度検出の際には、重り部3の変
位によりエアギャップにある気体は各貫通孔9を通って
溝10に入り開口部10aから両金属電極7,8間の空
隙外にぬける経路が形成される。したがってエアダンピ
ングが緩和され、センサ応答性を向上させることが可能
となる。
When the acceleration is detected, the gas in the air gap due to the displacement of the weight 3 enters the groove 10 through each through hole 9 and enters the groove 10 from the opening 10a to the outside of the space between the metal electrodes 7 and 8. A passage is formed. Therefore, air damping is alleviated, and the sensor response can be improved.

【0021】図3は、本実施例の製造工程を示してい
る。センサチップ1となるシリコンウェーハ上にIC製
造プロセスを用いてピエゾ抵抗4及びその他必要な回路
デバイスを作り込む。ウェーハ裏面には耐エッチング膜
11を形成し、パターニングすることにより、次工程の
異方性エッチングのマスクとする(a)。ウェーハ裏面
からのアルカリ性溶液を用いた異方性エッチングにより
重り部3及び梁部2を形成する(b)。シリコン台座5
の表面に凹部6を形成し、その凹部6を含む部分に金属
膜を蒸着し、パターニングして金属電極7を形成する。
この時点で貫通孔9も同時に形成される(c,d)。パ
ターニングされた金属電極7をマスクにして貫通孔9か
らシリコン台座5にウェットエッチングを施し、エアダ
ンピング低減用の溝10を形成する(e)。センサチッ
プ1とシリコン台座5を接合して加速度センサを完成す
る(f)。
FIG. 3 shows the manufacturing process of this embodiment. A piezoresistor 4 and other necessary circuit devices are formed on a silicon wafer which will be the sensor chip 1 by using an IC manufacturing process. An etching resistant film 11 is formed on the back surface of the wafer and patterned to form a mask for anisotropic etching in the next step (a). The weight part 3 and the beam part 2 are formed by anisotropic etching from the back surface of the wafer using an alkaline solution (b). Silicon pedestal 5
The concave portion 6 is formed on the surface of the, and a metal film is deposited on the portion including the concave portion 6 and patterned to form the metal electrode 7.
At this point, the through hole 9 is also formed (c, d). Using the patterned metal electrode 7 as a mask, the silicon pedestal 5 is wet-etched through the through hole 9 to form a groove 10 for reducing air damping (e). The sensor chip 1 and the silicon pedestal 5 are joined to complete an acceleration sensor (f).

【0022】上述の製造法によれば、貫通孔9が形成さ
れた金属電極7をマスクにしてエアダンピング低減用の
溝10をセルフアライメントにより形成できるため、金
属電極7と溝10の位置合わせが不要で精度よく形成で
きる。従って、位置合わせ余裕を予め見込む必要がなく
センサチップ1を小型化することが可能となる。
According to the manufacturing method described above, the metal electrode 7 having the through hole 9 formed therein can be used as a mask to form the groove 10 for reducing air damping by self-alignment, so that the metal electrode 7 and the groove 10 can be aligned with each other. It is unnecessary and can be formed accurately. Therefore, it is possible to downsize the sensor chip 1 without preliminarily considering the alignment margin.

【0023】なお、上述の実施例では、エアダンピング
低減用の溝10を複数個形成したが、溝10の個数はエ
アダンピング特性によって任意に設定することができ、
単1個でもよく、また溝に限らず単に凹部でもよい。さ
らに溝等はシリコン台座5側のみならず、重り部3側に
形成してもよい。
Although a plurality of grooves 10 for reducing air damping are formed in the above-described embodiment, the number of grooves 10 can be arbitrarily set according to the air damping characteristics.
It may be a single piece, or may be a recess instead of a groove. Further, the groove or the like may be formed not only on the silicon pedestal 5 side but also on the weight portion 3 side.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
第1に、自己診断用の両電極の少なくとも一方に貫通孔
を形成し、その電極に接する半導体部には前記貫通孔を
通してエッチング形成されたエアダンピング低減用の凹
部を設けたため、加速度の検出時に重り部が変位したと
きには、エアギャップ内の一部の気体が貫通孔を通して
凹部に出入りし、エアダンピングが緩和されてセンサ応
答性を向上させることができる。また自己診断時には、
靜電力印加に寄与する電極の有効面積の貫通孔部分は無
効であるが、貫通孔の穿設面積は両電極の対向全体面積
に比べると無視できる程度なので自己診断信号を高出力
に維持することができる。したがって自己診断出力を確
保するために電極領域を広くすることが不要となってチ
ップサイズの大型化を招くことがなく、コスト低減を図
ることができる。
As described above, according to the present invention,
First, a through hole is formed in at least one of both electrodes for self-diagnosis, and a recess for reducing air damping formed by etching through the through hole is provided in a semiconductor portion in contact with the electrode. When the weight portion is displaced, a part of the gas in the air gap enters and leaves the recess through the through hole, air damping is alleviated, and the sensor response can be improved. Also, during self-diagnosis,
Although the through-hole part of the effective area of the electrode that contributes to the power application is ineffective, the drilled area of the through-hole is negligible compared to the total area of both electrodes facing each other, so the self-diagnosis signal should be kept at a high output. You can Therefore, it is not necessary to widen the electrode area to secure the self-diagnosis output, the chip size is not increased, and the cost can be reduced.

【0025】第2に、自己診断用の両電極の少なくとも
一方に複数個の貫通孔を所要間隔をおいて連設し、その
電極に接する半導体部には前記各貫通孔を通してエッチ
ング形成された複数の凹部の連通により端部が当該電極
の端縁外に開口したエアダンピング低減用の溝を設けた
ため、加速度の検出時に重り部が変位したときには、エ
アギャップ内の気体は複数の貫通孔を通して溝内に入り
両電極間の空隙外にぬける経路が形成されてエアダンピ
ングが緩和される。したがって一層のセンサ応答性の改
善を図ることができる。また自己診断に際しては、複数
の貫通孔の全穿設面積は両電極の対向全体面積に比べる
と、前記と同様に無視できる程度なので自己診断信号を
高出力に維持することができる。
Secondly, a plurality of through holes are continuously provided at least one of both electrodes for self-diagnosis at a predetermined interval, and a plurality of through holes are formed in the semiconductor portion in contact with the electrodes by etching. Since a groove for reducing air damping is provided whose end opens outside the edge of the electrode due to the communication of the recesses of the electrode, when the weight part is displaced when acceleration is detected, the gas in the air gap passes through a plurality of through holes. A path is formed which penetrates inside and goes out of the gap between the two electrodes, and air damping is alleviated. Therefore, the sensor response can be further improved. Further, in the self-diagnosis, the total area of the plurality of through-holes is negligible in the same manner as described above as compared with the total area of both electrodes facing each other, so that the self-diagnosis signal can be maintained at a high output.

【0026】第3に、エアダンピング低減用の溝は、複
数個形成するようにしたため、所望のエアダンピング特
性に適切に応じることができる。
Thirdly, since a plurality of grooves for reducing air damping are formed, it is possible to properly meet desired air damping characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加速度センサの実施例を示す縦断
面図である。
FIG. 1 is a vertical sectional view showing an embodiment of an acceleration sensor according to the present invention.

【図2】図1におけるシリコン台座部の平面図である。FIG. 2 is a plan view of a silicon pedestal portion in FIG.

【図3】上記実施例の製造方法を示す工程図である。FIG. 3 is a process drawing showing the manufacturing method of the example.

【図4】加速度センサの第1の従来例を示す縦断面図で
ある。
FIG. 4 is a vertical sectional view showing a first conventional example of an acceleration sensor.

【図5】第2の従来例を示す縦断面図である。FIG. 5 is a vertical sectional view showing a second conventional example.

【図6】第3の従来例を示す縦断面図である。FIG. 6 is a vertical sectional view showing a third conventional example.

【図7】上記第3の従来例の製造方法を示す工程図であ
る。
FIG. 7 is a process drawing showing the manufacturing method of the third conventional example.

【符号の説明】[Explanation of symbols]

1 センサチップ(半導体チップ) 2 梁 3 重り部 4 ピエゾ抵抗 5 シリコン台座 7,8 自己診断用の金属電極 9 貫通孔 10 溝 10a 開口部 1 Sensor chip (semiconductor chip) 2 Beam 3 Weight part 4 Piezoresistive 5 Silicon pedestal 7,8 Metal electrode for self-diagnosis 9 Through hole 10 Groove 10a Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 梁部及び該梁部で支持され被検出加速度
に応じて変位する重り部を有し、前記梁部の表面部にピ
エゾ抵抗が形成された半導体チップと、該半導体チップ
の下部に前記重り部と所要間隔のエアギャップを有する
ように接合された半導体製の台座とを備え、前記エアギ
ャップを挟んで対向する前記重り部及び台座の対向両面
にはそれぞれ電極が形成され、該両電極間への印加電圧
で生じる靜電力によりセンサ機能を自己診断するように
した加速度センサにおいて、前記両電極の少なくとも一
方に貫通孔を形成し、該電極に接する半導体部には前記
貫通孔を通してエッチング形成されたエアダンピング低
減用の凹部を有することを特徴とする加速度センサ。
1. A semiconductor chip having a beam portion and a weight portion supported by the beam portion and displaced according to a detected acceleration, and a piezoresistor is formed on a surface portion of the beam portion, and a lower portion of the semiconductor chip. The weight portion and a semiconductor pedestal joined so as to have an air gap of a required distance, and electrodes are formed on both facing surfaces of the weight portion and the pedestal that face each other across the air gap. In an acceleration sensor in which the sensor function is self-diagnosed by the static electricity generated by the applied voltage between both electrodes, a through hole is formed in at least one of the both electrodes, and the through hole is provided in the semiconductor portion in contact with the electrode. An acceleration sensor having a recess for reducing air damping formed by etching.
【請求項2】 梁部及び該梁部で支持され被検出加速度
に応じて変位する重り部を有し、前記梁部の表面部にピ
エゾ抵抗が形成された半導体チップと、該半導体チップ
の下部に前記重り部と所要間隔のエアギャップを有する
ように接合された半導体製の台座とを備え、前記エアギ
ャップを挟んで対向する前記重り部及び台座の対向両面
にはそれぞれ電極が形成され、該両電極間への印加電圧
で生じる靜電力によりセンサ機能を自己診断するように
した加速度センサにおいて、前記両電極の少なくとも一
方に複数個の貫通孔を所要間隔をおいて連設し、該電極
に接する半導体部には前記各貫通孔を通してエッチング
形成された複数の凹部の連通により端部が当該電極の端
縁外に開口したエアダンピング低減用の溝を有すること
を特徴とする加速度センサ。
2. A semiconductor chip having a beam portion and a weight portion supported by the beam portion and displaced according to a detected acceleration, and a piezoresistor is formed on a surface portion of the beam portion, and a lower portion of the semiconductor chip. The weight portion and a semiconductor pedestal joined so as to have an air gap of a required distance, and electrodes are formed on both facing surfaces of the weight portion and the pedestal that face each other across the air gap. In an acceleration sensor in which the sensor function is self-diagnosed by the static electricity generated by the applied voltage between both electrodes, a plurality of through holes are continuously provided at least one of the electrodes at a predetermined interval, and the electrodes are connected to the electrodes. The contacting semiconductor portion has a groove for reducing air damping, the end portion of which is opened to the outside of the end edge of the electrode due to communication of the plurality of recesses formed by etching through the through holes. Sensor.
【請求項3】 前記エアダンピング低減用の溝は、複数
個形成してなることを特徴とする請求項2記載の加速度
センサ。
3. The acceleration sensor according to claim 2, wherein a plurality of the air damping reducing grooves are formed.
JP5328548A 1993-12-24 1993-12-24 Acceleration sensor Expired - Fee Related JP3019701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328548A JP3019701B2 (en) 1993-12-24 1993-12-24 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328548A JP3019701B2 (en) 1993-12-24 1993-12-24 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH07191056A true JPH07191056A (en) 1995-07-28
JP3019701B2 JP3019701B2 (en) 2000-03-13

Family

ID=18211514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328548A Expired - Fee Related JP3019701B2 (en) 1993-12-24 1993-12-24 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP3019701B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517786A (en) * 2004-10-27 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reduction of air braking in MEMS devices
CN112255090A (en) * 2020-11-13 2021-01-22 深圳信息职业技术学院 Variable-hammer-face digital knocking hammer and composite material detection method
US20210132632A1 (en) * 2019-10-31 2021-05-06 Seiko Epson Corporation Physical quantity sensor, electronic apparatus, and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403527B2 (en) * 2013-08-01 2019-09-03 Miraial Co., Ltd. Packing structure for packing substrate storing container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517786A (en) * 2004-10-27 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reduction of air braking in MEMS devices
US20210132632A1 (en) * 2019-10-31 2021-05-06 Seiko Epson Corporation Physical quantity sensor, electronic apparatus, and vehicle
CN112255090A (en) * 2020-11-13 2021-01-22 深圳信息职业技术学院 Variable-hammer-face digital knocking hammer and composite material detection method

Also Published As

Publication number Publication date
JP3019701B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JP3803406B2 (en) Acceleration sensor
US5008774A (en) Capacitive accelerometer with mid-plane proof mass
US6263735B1 (en) Acceleration sensor
US6182509B1 (en) Accelerometer without proof mass
JP3434944B2 (en) Symmetric proof mass accelerometer with self-diagnosis capability and method of manufacturing the same
EP0490419B1 (en) Accelerometer
JPH0342791B2 (en)
JP3151956B2 (en) Acceleration sensor
JPH09113534A (en) Acceleration sensor
GB2212274A (en) Capacitive accelerometer and its fabrication method
JPH04370767A (en) Gas rate sensor
US7225675B2 (en) Capacitance type dynamic quantity sensor
JPH07191056A (en) Acceleration sensor
JP3019549B2 (en) Semiconductor acceleration sensor
JP3019444B2 (en) Semiconductor acceleration sensor
JPH07128365A (en) Semiconductor acceleration sensor and fabrication thereof
JP3189420B2 (en) Acceleration sensor
JPH05256869A (en) Semiconductor type acceleration sensor and its manufacture
JP2001066319A (en) Semiconductor accelerometer
JPH06268237A (en) Semiconductor acceleration sensor
JPH0624773Y2 (en) Semiconductor acceleration sensor
JPH09166618A (en) Semiconductor acceleration sensor
WO1998029749A1 (en) An accelerometer with a symmetrically bonded proof-mass and method of its fabrication method
JPH0313534B2 (en)
JP2006184014A (en) Acceleration sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees