JPH07190547A - Controller for heat pump type hot water supplying apparatus - Google Patents

Controller for heat pump type hot water supplying apparatus

Info

Publication number
JPH07190547A
JPH07190547A JP5337795A JP33779593A JPH07190547A JP H07190547 A JPH07190547 A JP H07190547A JP 5337795 A JP5337795 A JP 5337795A JP 33779593 A JP33779593 A JP 33779593A JP H07190547 A JPH07190547 A JP H07190547A
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
heat exchanger
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5337795A
Other languages
Japanese (ja)
Inventor
Shigeto Yamaguchi
成人 山口
Kanji Haneda
完爾 羽根田
Shinji Watanabe
伸二 渡辺
Koji Murozono
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5337795A priority Critical patent/JPH07190547A/en
Publication of JPH07190547A publication Critical patent/JPH07190547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To operate in a high efficiency with high coefficient of performance by conducting a single stage compressing cycle operation using a multi-circuit type in an area having a low supply hot water temperature corresponding to a boiled supply hot water temperature of a water side tube inlet at a heat exchanger for supplying hot water. CONSTITUTION:A control signal is fed according pieces of information of a signal receiving circuit and a superheat degree calculator by a compressor frequency calculator and an expansion valve opening calculator to control a frequency of a refrigerant two-stage compressor 2a and openings of first, second and third expansion valves 4a, 4b, 4c. A differential temperature between an inlet temperature of a water side tube 3c and a first predetermined temperature is calculated by a differential temperature calculator, transmitted to the signal receiving circuit from a signal transmitter, and an operation switching control signal is sent. First, second and third solenoid valves 7a, 7b, 7c are controlled in response to a final boiling temperature, i.e., the inlet temperature of the tube 3c of a hot water supplying heat exchanger 3a. Thus, a single-stage compressing cycle operation and a two-stage compressing cycle operation are switched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヒートポンプ式給湯機
の制御方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump water heater control system.

【0002】[0002]

【従来の技術】従来のヒートポンプ式給湯機は、図4に
示すように冷媒二段圧縮機を用いて給湯運転を行う構成
であった。
2. Description of the Related Art A conventional heat pump water heater has a structure in which hot water is supplied by using a refrigerant two-stage compressor as shown in FIG.

【0003】以下、図面を参照しながら、上記従来のヒ
ートポンプ式給湯機について説明する。
The conventional heat pump type water heater will be described below with reference to the drawings.

【0004】図4は、従来のヒートポンプ式給湯機の冷
凍サイクル図である。このヒートポンプ式給湯機で単段
圧縮サイクル運転を行うときの冷凍サイクル回路の流れ
は、冷媒二段圧縮機2aより給湯用熱交換器3aの冷媒
側配管3b、第一膨張弁4a、中間熱交換器6、第三膨
張弁4cおよび熱源側熱交換器5を経て、冷媒二段圧縮
機2aに戻る循環経路である。二段圧縮サイクル運転で
の冷凍サイクル回路の流れは、冷媒二段圧縮機2aより
給湯用熱交換器3aの冷媒側配管3b、第一膨張弁4a
を通過し、一部は第二膨張弁4bを経て中間熱交換器6
を通過し第二圧縮部2c吸入へ、一部は、中間熱交換器
6より第三膨張弁4c、熱源側熱交換器5を経て、第一
圧縮部2bの吸入へ戻る循環経路となっている。
FIG. 4 is a refrigeration cycle diagram of a conventional heat pump water heater. The flow of the refrigeration cycle circuit when performing a single-stage compression cycle operation in this heat pump type hot water supply device is that the refrigerant side pipe 3b of the hot water supply heat exchanger 3a from the refrigerant two-stage compressor 2a, the first expansion valve 4a, the intermediate heat exchange. It is a circulation path that returns to the refrigerant two-stage compressor 2a via the device 6, the third expansion valve 4c, and the heat source side heat exchanger 5. The flow of the refrigeration cycle in the two-stage compression cycle operation is as follows: the refrigerant two-stage compressor 2a, the refrigerant side pipe 3b of the hot water supply heat exchanger 3a, the first expansion valve 4a.
Through the second expansion valve 4b and a part of the intermediate heat exchanger 6
Passing through the second compression section 2c, and partly through the intermediate heat exchanger 6 through the third expansion valve 4c, the heat source side heat exchanger 5 and back to the suction of the first compression section 2b. There is.

【0005】冷媒は給湯用熱交換器3aの冷媒側配管3
bを通過する間に凝縮熱を放出し、水側配管3cを通過
する水と熱交換を行い、12の水側出口温度センサによ
り検出された水側配管3cの水側出口温度に対応して、
第一、第二、第三電磁弁の7a、7b、7cを開閉する
ことにより単段圧縮サイクル運転と二段圧縮サイクル運
転とを切替えた。一方、給水回路は、給水弁11の弁調
整により水循環量を調整するが、貯湯タンク9から水循
環ポンプ10により給湯水を汲み上げ、給湯用熱交換器
3aの水側配管3cにて冷媒ガスと熱交換を行い、貯湯
タンク9に戻る循環経路により形成されている。
Refrigerant is the refrigerant side pipe 3 of the hot water supply heat exchanger 3a.
Condensation heat is released while passing through b, heat exchange is performed with water passing through the water side pipe 3c, and the water side outlet temperature of the water side pipe 3c detected by the water side outlet temperature sensor 12 corresponds to the water side outlet temperature. ,
The single-stage compression cycle operation and the two-stage compression cycle operation were switched by opening and closing the first, second and third solenoid valves 7a, 7b and 7c. On the other hand, in the water supply circuit, the water circulation amount is adjusted by adjusting the valve of the water supply valve 11, but hot water is pumped up from the hot water storage tank 9 by the water circulation pump 10, and the refrigerant gas and heat are supplied to the water side pipe 3c of the hot water heat exchanger 3a. It is formed by a circulation path that is exchanged and returns to the hot water storage tank 9.

【0006】従来の技術では、単段圧縮サイクル運転に
より給湯用熱交換器3aに導入された給湯水はここで一
循環のみで冷媒ガスと熱交換し、単段圧縮サイクル運転
と二段圧縮サイクル運転を切替えるのに最適とされる第
一所定温度に水側配管3cの出口温度を上昇させて貯湯
タンク9に溜め、次に、給水弁14を絞り水循環を減ら
して、二段圧縮サイクル運転に切替え、再び一循環のみ
で給湯用熱交換器3aで冷媒ガスと熱交換させ、最終沸
き上げ温度に沸き上げて貯湯タンク9に溜めた。従っ
て、初期温度から最終沸き上げ温度まで一循環水方式で
給湯水を沸き上げ、特に初期温度から第一所定温度まで
は、冷凍サイクル側は単段圧縮サイクル運転を行い、第
一所定温度から最終沸き上げ温度までは、二段圧縮サイ
クル運転を行なった。
[0006] In the prior art, the hot water supplied to the hot water supply heat exchanger 3a by the single-stage compression cycle operation exchanges heat with the refrigerant gas in only one circulation here, and the single-stage compression cycle operation and the second-stage compression cycle are performed. The outlet temperature of the water side pipe 3c is raised to a first predetermined temperature optimum for switching the operation and stored in the hot water storage tank 9, and then the water supply valve 14 is squeezed to reduce the water circulation to perform the two-stage compression cycle operation. The heat was exchanged with the refrigerant gas in the hot-water supply heat exchanger 3a by switching only once again, and was boiled to the final boiling temperature and stored in the hot water storage tank 9. Therefore, the hot water is boiled from the initial temperature to the final boiling temperature by the single circulating water method, and especially from the initial temperature to the first predetermined temperature, the refrigeration cycle performs the single-stage compression cycle operation, and the first predetermined temperature to the final temperature. A two-stage compression cycle operation was performed up to the boiling temperature.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来のヒートポンプ式給湯機において、一循環水方
式による単段圧縮サイクル運転では、一循環のみで給湯
用熱交換器を介して水側出口の水温を第一所定温度に昇
温させるため、給湯用熱交換器での水循環量も絞られて
単位時間当りの沸き上げ給湯量が減少して効率が悪い、
また単段圧縮で第一所定温度を保つ場合は冷凍サイクル
側の凝縮温度も第一所定温度以上に保持しなければなら
ない、すなわち凝縮温度と共に凝縮圧力も高くなるため
に圧縮機は圧縮比の高い状態で運転することになり、潤
滑油劣化、ピストン部損傷を生ずる課題を有し、更に圧
縮機効率および成績係数(給湯用熱交換器の能力に対す
る圧縮機入力の比率)が低下する。
However, in the conventional heat pump type hot water supply apparatus as described above, in the single-stage compression cycle operation by the single circulating water system, the water side outlet of the water side outlet is supplied through the hot water supply heat exchanger with only one circulation. Since the water temperature is raised to the first predetermined temperature, the amount of water circulation in the hot water supply heat exchanger is also throttled and the boiling water supply amount per unit time is reduced, resulting in poor efficiency.
When the first predetermined temperature is maintained in single-stage compression, the condensation temperature on the refrigeration cycle side must be maintained at the first predetermined temperature or higher, that is, the condensation pressure increases together with the condensation temperature, and thus the compressor has a high compression ratio. Therefore, there is a problem that the lubricating oil deteriorates and the piston part is damaged, and the compressor efficiency and the coefficient of performance (ratio of the compressor input to the capacity of the hot water heat exchanger) decrease.

【0008】本発明は、上記課題を解決すべくなされた
ものである。
The present invention has been made to solve the above problems.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に以下のような手段を講じた。
Means for Solving the Problems In order to solve the above problems, the following means were taken.

【0010】すなわち、上記ヒートポンプ式給湯機の制
御方式は、前記単段圧縮サイクル運転と前記二段圧縮サ
イクル運転の切替えが最適となる給湯温度、つまり水側
サイクルでの沸き上げ給湯温度に対し、常時、成績係数
(給湯用熱交換器の能力に対する圧縮機入力の比率)が
高いサイクル運転が可能となるような運転切替え点を第
一所定温度とし、前記水側入口の給湯温度が前記第一所
定温度より低い領域では凝縮温度および凝縮圧力も低く
前記二段圧縮サイクル運転よりも成績係数の高い前記単
段圧縮サイクル運転を行い、前記第一所定温度より高温
となる最終沸き上げ給湯温度までの領域では凝縮温度お
よび凝縮圧力が高く、前記単段圧縮サイクル運転よりも
成績係数の高い前記二段圧縮サイクル運転を行なって、
常に高い成績係数が維持できるように前記単段圧縮サイ
クル運転と二段圧縮サイクル運転の切替えを行うが、前
記単段圧縮サイクル運転において、前記貯湯タンクから
前記水循環ポンプにより前記給湯用熱交換器に送り、冷
媒ガスと熱交換して前記貯湯タンクに戻す過程を複数回
行って給湯温度を段階的に前記第一所定温度に上昇させ
るという多循環水方式を用いて循環させて沸き上げ、給
湯温度が前記第一所定温度に達した後は従来のように上
記運転切替え制御手段により冷凍サイクル側は前記二段
圧縮サイクル運転に切替え、前記給湯用熱交換器で一循
環のみで冷媒ガスと熱交換して最終沸き上げ温度に昇温
する一循環水方式を用いたものである。
That is, in the control system of the heat pump type hot water supply apparatus, the hot water supply temperature at which the switching between the single-stage compression cycle operation and the two-stage compression cycle operation is optimal, that is, the boiling water supply temperature in the water side cycle, The operation switching point that enables cycle operation with a high coefficient of performance (ratio of compressor input to capacity of hot water heat exchanger) is always the first predetermined temperature, and the hot water supply temperature at the water side inlet is the first hot water temperature. In the region lower than the predetermined temperature, the condensing temperature and the condensing pressure are also low, the single-stage compression cycle operation having a higher coefficient of performance than the two-stage compression cycle operation is performed, and the temperature until the final boiling hot water temperature becomes higher than the first predetermined temperature. In the region, the condensation temperature and the condensation pressure are high, and the two-stage compression cycle operation having a higher coefficient of performance than the single-stage compression cycle operation is performed,
The single-stage compression cycle operation and the two-stage compression cycle operation are switched so that a high coefficient of performance can always be maintained.In the single-stage compression cycle operation, the hot water tank transfers the hot water supply heat exchanger to the hot water supply heat exchanger. It is circulated and boiled by using a multi-circulation water system in which the process of sending and exchanging heat with the refrigerant gas and returning to the hot water storage tank is performed a plurality of times to gradually raise the hot water supply temperature to the first predetermined temperature. After reaching the first predetermined temperature, the refrigeration cycle side is switched to the two-stage compression cycle operation by the operation switching control means as in the conventional case, and the heat exchange with the refrigerant gas is performed only once in the hot water heat exchanger. Then, the one circulating water system is used in which the temperature is raised to the final boiling temperature.

【0011】[0011]

【作用】本発明は、上記手段により次のような作用が生
じる。
According to the present invention, the following actions are brought about by the above means.

【0012】すなわち、従来と異なって、多循環水方式
による単段圧縮サイクル運転で段階的に給湯温度を前記
第一所定温度まで昇温することにより、高圧縮比での運
転が短時間となり圧縮機内部を保護すると共に従来の一
循環水方式による単段圧縮サイクル運転に比べ高い成績
係数での運転となり、総合的に従来より高いエネルギー
効率を実現できた。
That is, unlike the prior art, by increasing the hot water supply temperature stepwise to the first predetermined temperature in the single-stage compression cycle operation by the multi-circulation water system, the operation at a high compression ratio becomes short and the compression is shortened. In addition to protecting the inside of the machine, the operation was performed with a higher coefficient of performance than the conventional single-stage compression cycle operation using one circulating water system, and overall higher energy efficiency was achieved.

【0013】[0013]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。図1は、本発明の実施例に係るヒートポンプ
式給湯機のサイクル構成を示すものである。図示の如く
1は第一圧縮部2bおよびその第一圧縮部2bと直列に
接続した第二圧縮部2cを有して構成される冷媒二段圧
縮機2aを備えた室外機、3aは冷媒側配管3bと水側
配管3cを有する給湯用熱交換器、4aは第一膨張弁、
4bは第二膨張弁、4cは第三膨張弁、5は熱源側熱交
換器、6は中間熱交換器、7aは単段圧縮サイクル運転
と二段圧縮サイクル運転とを切替え制御する第一電磁弁
であり、7bは第一圧縮部の吸入に設けられた第二電磁
弁、7cは第二圧縮部の吐出側に設置された第三電磁
弁、また8aと9aは第一圧縮部2bの吸入側の温度と
圧力を検出する温度センサと圧力センサ、8bと9bは
第二圧縮部2cの吸入側の温度と圧力を検出する温度セ
ンサと圧力センサである。10はタンクユニットであ
り、11は貯湯タンク、12は水循環ポンプ、13aは
給湯用熱交換器3aにおける水側配管3cの出口温度を
測定する温度センサ、13bは水側配管3cの入口温度
を測定する温度センサ、そして14は給水弁である。冷
凍サイクルの流れおよび給水回路は従来と同じなのでこ
こでは省略する。次に、冷凍サイクル制御装置のブロッ
ク図を図2に示す。給湯用熱交換器3aの水側配管3c
の出入口温度を給湯温度検出回路14を通した後で温度
差を差温演算回路15で算出し、給水弁開度制御信号を
送ると共に、信号送出回路16に送り、16から信号受
信回路17へ送信する。一方、第一圧縮部2bと第二圧
縮部2c各々の吸入温度センサ8a、8bおよび吸入圧
力センサ9a、9bにより検出された温度と圧力におい
て、温度は吸入温度検出回路21を通して過熱度演算回
路20に送り、圧力は吸入圧力検出回路23より飽和温
度演算回路22に送られ過熱度演算回路20を通して冷
媒二段圧縮機2aの吸入における過熱度を算出する。信
号受信回路17と過熱度演算回路20の情報により、圧
縮機周波数演算回路18、膨張弁開度演算回路19にて
演算して圧縮機周波数制御信号と膨張弁開度制御信号を
送出し、冷媒二段圧縮機2aの周波数および第一膨張弁
4a、第二膨張弁4b、第三膨張弁4cの膨張弁開度を
制御する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cycle configuration of a heat pump water heater according to an embodiment of the present invention. As shown in the drawing, 1 is an outdoor unit having a refrigerant two-stage compressor 2a configured to have a first compression section 2b and a second compression section 2c connected in series with the first compression section 2b, and 3a is a refrigerant side. A heat exchanger for hot water supply having a pipe 3b and a water side pipe 3c, 4a is a first expansion valve,
Reference numeral 4b is a second expansion valve, 4c is a third expansion valve, 5 is a heat source side heat exchanger, 6 is an intermediate heat exchanger, and 7a is a first electromagnetic control for switching between single-stage compression cycle operation and two-stage compression cycle operation. 7b is a second solenoid valve provided on the suction side of the first compression section, 7c is a third solenoid valve provided on the discharge side of the second compression section, and 8a and 9a are on the first compression section 2b. A temperature sensor and a pressure sensor that detect the temperature and pressure on the suction side, and 8b and 9b are a temperature sensor and a pressure sensor that detect the temperature and pressure on the suction side of the second compression unit 2c. Reference numeral 10 is a tank unit, 11 is a hot water storage tank, 12 is a water circulation pump, 13a is a temperature sensor for measuring the outlet temperature of the water side pipe 3c in the hot water supply heat exchanger 3a, and 13b is the inlet temperature of the water side pipe 3c. Temperature sensor, and 14 is a water supply valve. The flow of the refrigeration cycle and the water supply circuit are the same as the conventional ones, and are omitted here. Next, a block diagram of the refrigeration cycle control device is shown in FIG. Water side pipe 3c of heat exchanger 3a for hot water supply
After passing the inlet / outlet temperature of the water through the hot water supply temperature detection circuit 14, the temperature difference is calculated by the temperature difference calculation circuit 15, and the water supply valve opening control signal is sent and also sent to the signal sending circuit 16 and from 16 to the signal receiving circuit 17. Send. On the other hand, at the temperatures and pressures detected by the suction temperature sensors 8a and 8b and the suction pressure sensors 9a and 9b of the first compression unit 2b and the second compression unit 2c, respectively, the temperature passes through the suction temperature detection circuit 21 and the superheat degree calculation circuit 20. The pressure is sent from the suction pressure detection circuit 23 to the saturation temperature calculation circuit 22, and the superheat degree in the suction of the refrigerant two-stage compressor 2a is calculated through the superheat calculation circuit 20. Based on the information of the signal receiving circuit 17 and the superheat degree calculating circuit 20, the compressor frequency calculating circuit 18 and the expansion valve opening calculating circuit 19 calculate and send out the compressor frequency control signal and the expansion valve opening control signal. The frequency of the two-stage compressor 2a and the expansion valve openings of the first expansion valve 4a, the second expansion valve 4b, and the third expansion valve 4c are controlled.

【0014】また、水側配管3cの入口温度と第一の所
定温度の温度差を差温演算回路15で算出し、信号送出
回路16より信号受信回路17へ送信されて運転切替え
制御信号を送出する。このヒートポンプ式給湯機では、
最終沸き上げ温度すなわち(表1)に示すように給湯用
熱交換器3aの水側配管3cの入口温度に応じて第一電
磁弁7a、第二電磁弁7b、第三電磁弁7cを制御する
ことにより単段圧縮サイクル運転および二段圧縮サイク
ル運転を切替える。
Further, the temperature difference between the inlet temperature of the water side pipe 3c and the first predetermined temperature is calculated by the temperature difference calculating circuit 15 and transmitted from the signal transmitting circuit 16 to the signal receiving circuit 17 to transmit the operation switching control signal. To do. In this heat pump type water heater,
The final boiling temperature, that is, as shown in (Table 1), the first solenoid valve 7a, the second solenoid valve 7b, and the third solenoid valve 7c are controlled according to the inlet temperature of the water side pipe 3c of the hot water supply heat exchanger 3a. This switches between single-stage compression cycle operation and two-stage compression cycle operation.

【0015】[0015]

【表1】 [Table 1]

【0016】図3は、給湯用熱交換器での沸き上げ給湯
温度に対する単段圧縮サイクル運転と二段圧縮サイクル
運転の成績係数を比較したものである。
FIG. 3 compares the coefficient of performance between the single-stage compression cycle operation and the two-stage compression cycle operation with respect to the boiling hot water supply temperature in the hot water supply heat exchanger.

【0017】このヒートポンプ式給湯機では、サイクル
運転切替え最適点温度(第一所定温度)を図3に示すよ
うに50℃、最終沸き上げ給湯温度を80℃とする。ま
ず、図3では給湯温度が50℃以下での単段圧縮サイク
ル運転において、給湯温度を20℃に沸き上げた時の成
績係数をa点、30℃に沸き上げた時の温度での成績係
数をb点、40℃に沸き上げたときの成績係数をc点、
50℃に沸き上げたときの成績係数をd点とすると、d
点は第一所定温度でもあるが、給湯温度が10〜50℃
の領域では凝縮温度が低いために凝縮圧力も低く圧縮縮
比となり、低圧縮比で圧縮機効率の高い単段圧縮サイク
ルの方が二段圧縮サイクルよりも成績係数が高くなって
いる。しかし、給湯温度が40〜50℃では凝縮温度と
共に圧縮比が高くなり単段圧縮サイクルの成績係数がの
低下が大きくなり、沸き上げ給湯温度が50℃になった
時点で、高圧縮比で圧縮機効率の高い二段圧縮サイクル
と交差する。
In this heat pump water heater, the optimum cycle temperature for switching the cycle operation (first predetermined temperature) is 50 ° C. and the final boiling water temperature is 80 ° C., as shown in FIG. First, in Fig. 3, in the single-stage compression cycle operation at a hot water supply temperature of 50 ° C or less, the coefficient of performance when the hot water supply temperature is boiled to 20 ° C is point a, and the coefficient of performance at the temperature when boiled to 30 ° C is the coefficient of performance. B point, the coefficient of performance when boiled to 40 ℃, c point,
If the coefficient of performance when heated to 50 ° C is d point, d
The point is also the first predetermined temperature, but the hot water supply temperature is 10 to 50 ° C
In the region of 1, the condensing pressure is low because of the low condensing temperature, and the compression reduction ratio is low, and the coefficient of performance is higher in the single-stage compression cycle with a low compression ratio and higher compressor efficiency than in the two-stage compression cycle. However, when the hot water supply temperature is 40 to 50 ° C, the compression ratio increases with the condensing temperature, and the coefficient of performance of the single-stage compression cycle decreases significantly. When the boiling hot water supply temperature reaches 50 ° C, compression is performed at a high compression ratio. It intersects with a highly efficient two-stage compression cycle.

【0018】従って、この50℃を運転切り替え最適点
とし、単段圧縮サイクル運転から二段圧縮サイクル運転
に切替えると成績係数の高い状態で運転可能となる。す
なわち、沸き上げ給湯温度が第一所定温度50℃より低
い低圧縮比の領域では二段圧縮サイクル運転よりも単段
圧縮サイクル運転を行う方が成績係数が高い値を示す
が、第一所定温度50℃より高温となる最終沸き上げ給
湯温度80℃までの高圧縮比の領域では凝縮温度および
凝縮圧力が高く、単段圧縮サイクル運転よりも二段圧縮
サイクル運転を行う方が、成績係数が高くなる。図3に
示すようにサイクル運転の切替えを、単段圧縮サイクル
曲線と二段圧縮サイクル曲線が交差する第一所定温度の
50℃で行うと、沸き上げ給湯温度に対し常に高い成績
係数を維持しながらサイクル運転を行うことが可能とな
る。従って、給水弁14の調整を行い給湯用熱交換器3
aでの水循環量を制御し、更に水側配管3cの入口温度
13bが第一所定温度50℃で単段圧縮サイクル運転か
ら二段圧縮サイクル運転に切替え、(表2)、(表3)
のモードで運転することにする。すなわち、水側配管3
cの入口給湯温度が50℃以下では電磁弁7aを閉鎖、
7b,7cを開放して単段圧縮サイクル運転を行い、水
側配管3cの入口給湯温度が50℃以上では電磁弁7
a、7b、7c全てを開放し、給水弁14を絞り、二段
圧縮サイクル運転を行う。
Therefore, if this 50 ° C. is set as the optimum operation switching point and the operation is switched from the single-stage compression cycle operation to the two-stage compression cycle operation, the operation can be performed with a high coefficient of performance. That is, the coefficient of performance is higher in the single-stage compression cycle operation than in the two-stage compression cycle operation in the low compression ratio range where the boiling hot water supply temperature is lower than the first predetermined temperature 50 ° C. The condensing temperature and condensing pressure are high in the region of high compression ratio up to the final boiling hot water supply temperature of 80 ° C, which is higher than 50 ° C, and the coefficient of performance is higher in the two-stage compression cycle operation than in the single-stage compression cycle operation. Become. As shown in FIG. 3, when the cycle operation is switched at the first predetermined temperature of 50 ° C. where the single-stage compression cycle curve and the second-stage compression cycle curve intersect, a high coefficient of performance is always maintained for the boiling hot water temperature. While it is possible to perform cycle operation. Therefore, the hot water supply heat exchanger 3 is adjusted by adjusting the water supply valve 14.
The water circulation amount in a is controlled, and further, the inlet temperature 13b of the water side pipe 3c is switched to the two-stage compression cycle operation from the single-stage compression cycle operation at the first predetermined temperature of 50 ° C. (Table 2), (Table 3).
I will drive in this mode. That is, the water side pipe 3
When the inlet hot water temperature of c is 50 ° C or lower, the solenoid valve 7a is closed,
When 7b and 7c are opened for single-stage compression cycle operation and the inlet hot water temperature of the water side pipe 3c is 50 ° C or higher, the solenoid valve 7
All of a, 7b, and 7c are opened, the water supply valve 14 is throttled, and the two-stage compression cycle operation is performed.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】この時の給水回路は(表2)のごとく単段
圧縮サイクル運転において、水側配管3cの出入口温度
差を10℃以下に抑えるように給水弁14の弁開度と圧
縮機の周波数を制御し、繰り返し給湯用熱交換器3aを
介して冷媒側配管3bと水側配管3cが熱交換を行い、
水側配管3cの出口給湯温度を20℃、30℃、40℃
と最終温度50℃まで4回に分けて沸き上げる多循環水
方式で行う。水側配管3cの入口給湯温度が50℃に到
達した後の給水回路は、効率の良い一循環のみで給湯用
熱交換器3aを介して冷媒と熱交換させ、最終沸き上げ
給湯温度の80℃に沸き上がるように、(表3)に示す
通り水側配管3cの出入口温度差を30℃に保持できる
ように給水弁14の弁開度と圧縮機周波数の制御を行
う。
In the water supply circuit at this time, as shown in (Table 2), in the single-stage compression cycle operation, the valve opening of the water supply valve 14 and the frequency of the compressor are controlled so that the inlet / outlet temperature difference of the water side pipe 3c is suppressed to 10 ° C. or less. The refrigerant side pipe 3b and the water side pipe 3c exchange heat repeatedly via the hot water supply heat exchanger 3a,
The outlet hot water supply temperature of the water side pipe 3c is 20 ° C, 30 ° C, 40 ° C.
And a multi-circulation water system in which the final temperature is raised to 50 ° C in four times. After the inlet hot water supply temperature of the water side pipe 3c reaches 50 ° C., heat is exchanged with the refrigerant through the hot water supply heat exchanger 3a through only one efficient circulation, and the final boiling hot water supply temperature of 80 ° C. As shown in (Table 3), the valve opening of the water supply valve 14 and the compressor frequency are controlled so that the inlet / outlet temperature difference of the water side pipe 3c can be maintained at 30 ° C.

【0022】従って、以上のように給湯温度が低温10
〜50℃の領域では多循環水方式によって(表2)のご
とく10℃に区切って50℃まで沸き上げることによ
り、図3の各温度における成績係数a点、b点、c点、
d点、特に給湯温度20〜40℃では圧縮比が低く、圧
縮機における容量効率が高くなり凝縮器での冷媒循環量
も増すことによって給湯能力が増大し、成績係数の高い
状態での運転が可能となった。そしてまた、多循環水方
式を用いることにより、成績係数の低い給湯温度50℃
のd点での運転時間が縮小され、短時間で給湯水を初期
温度10℃から50℃まで沸き上げることが可能となっ
た。もしここで、従来の一循環水方式による単段圧縮サ
イクル運転を行ったら、給湯能力が低く成績係数の低下
したd点の状態で初期温度10℃から50℃の給湯温度
を沸き上げることになり、このd点での給湯運転は、給
湯能力が低下するため水循環量は減らされ、50℃の給
湯水を沸き上げるのに多くの時間を要することになる。
よって、多循環水方式による単段圧縮サイクル運転を行
うことにより成績係数が向上し、第一所定温度に達した
後、一循環水方式で二段圧縮サイクル運転を行うことに
より、高圧縮比での単段圧縮サイクル運転時間が短縮さ
れ、圧縮機内部を保護すると共に高効率で運転可能なヒ
ートポンプ式給湯機を提供することができる。尚、
(1)減圧器としてここでは、膨張弁を用いたが、他の
減圧装置を用いても構わない。
Therefore, as described above, the hot water supply temperature is low 10
In the range of up to 50 ° C, the coefficient of performance at each temperature in Fig. 3 is a, b, and c by dividing the temperature into 10 ° C and boiling up to 50 ° C as shown in (Table 2) by the multiple circulating water system.
At point d, especially at a hot water supply temperature of 20 to 40 ° C, the compression ratio is low, the capacity efficiency of the compressor is high, and the amount of refrigerant circulating in the condenser is increased, so that the hot water supply capacity is increased, and operation in a state with a high coefficient of performance is achieved. It has become possible. Also, by using the multi-circulation water system, the hot water supply temperature is 50 ° C, which has a low coefficient of performance.
The operating time at point d was shortened, and the hot water could be boiled from the initial temperature of 10 ° C to 50 ° C in a short time. If the single-stage compression cycle operation by the conventional single circulating water system is performed here, the hot water supply temperature from the initial temperature of 10 ° C to 50 ° C is boiled up at the point d where the hot water supply capacity is low and the coefficient of performance is low. In the hot water supply operation at the point d, the water circulation capacity is reduced because the hot water supply capacity is reduced, and it takes a lot of time to boil the hot water supply water at 50 ° C.
Therefore, the coefficient of performance is improved by performing the single-stage compression cycle operation by the multi-circulation water method, and after the first predetermined temperature is reached, by performing the two-stage compression cycle operation by the single circulation water method, a high compression ratio is achieved. It is possible to provide a heat pump type water heater that can shorten the operation time of the single-stage compression cycle, protect the interior of the compressor, and operate with high efficiency. still,
(1) Although the expansion valve is used here as the pressure reducer, other pressure reducing devices may be used.

【0023】(2)サイクル運転切替え装置に電磁弁を
用いたが、他の切替え装置を用いても構わない。
(2) Although the solenoid valve is used as the cycle operation switching device, another switching device may be used.

【0024】(3)多循環水方式による単段圧縮サイク
ル運転では、沸き上げ給湯温度を10℃から50℃まで
10℃ずつ区切って4回で沸き上げたが、沸き上げ温度
と沸き上げ回数は限定しない。
(3) In the single-stage compression cycle operation by the multi-circulation water system, the boiling water temperature was raised from 10 ° C to 50 ° C in 10 ° C increments, and the boiling temperature was raised 4 times. Not limited.

【0025】(4)単段圧縮サイクル運転と二段圧縮サ
イクル運転を切替える最適運転切替え点となる第一所定
温度の設定は、他のどのような温度で切り替えても構わ
ない。
(4) The setting of the first predetermined temperature, which is the optimum operation switching point for switching between the single-stage compression cycle operation and the two-stage compression cycle operation, may be switched at any other temperature.

【0026】[0026]

【発明の効果】本発明の実施例におけるヒートポンプ式
給湯機は、上記説明のように給湯用熱交換器での水側配
管入口の沸き上げ給湯温度に対応させて、給湯温度の低
い領域では多循環水方式を用いた単段圧縮サイクル運転
を行うことにより、従来の技術では行えなかった成績係
数の高い効効率運転を実現でき、その上、沸き上げ給湯
温度の高い高圧縮比の領域での運転時間も短時間とな
り、圧縮機の潤滑油劣化および軸受け損傷といった不具
合を解消すると共に圧縮機内部を保護することができ
た。また、単段圧縮サイクル運転と二段圧縮サイクル運
転を切替える最適切替え点温度(第一所定給湯温度)よ
り沸き上げ最終温度までは、従来通り一循環水方式を用
いたが、このように沸き上げ給湯温度に対し、多循環水
方式による単段圧縮サイクル運転と一循環水方式による
単段圧縮サイクル運転を行うことにより冷媒と給湯水と
の熱交換率を向上させ、従来よりも短時間で給湯水を沸
き上げることが可能となり、総合的にエネルギー効率の
高い冷凍サイクルを実現するヒートポンプ式給湯機を提
供することができた。
As described above, the heat pump type water heater according to the embodiment of the present invention corresponds to the boiling hot water supply temperature at the inlet of the water side pipe in the heat exchanger for hot water supply, and is high in the low hot water temperature range. By performing a single-stage compression cycle operation using the circulating water method, it is possible to realize an efficiency-efficiency operation with a high coefficient of performance, which was not possible with conventional technology, and in addition, in the high compression ratio region where the boiling water temperature is high. The operating time was shortened, and problems such as deterioration of the lubricating oil of the compressor and damage to the bearings could be resolved and the interior of the compressor could be protected. Also, from the optimum switching point temperature (first predetermined hot water temperature) for switching between single-stage compression cycle operation and two-stage compression cycle operation, the single circulating water system was used as before until the final temperature. The heat exchange rate between the refrigerant and the hot water is improved by performing a single-stage compression cycle operation using the multi-circulation water method and a single-stage compression cycle operation using the single-circulation water method, depending on the hot water supply temperature. It became possible to boil water, and it was possible to provide a heat pump water heater that realizes a refrigeration cycle with high energy efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヒートポンプ式給湯機の実施例におけ
る冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram in an embodiment of a heat pump water heater of the present invention.

【図2】同実施例の冷凍サイクル制御装置における圧縮
機周波数および電動膨張弁、電磁弁、給水弁の制御ブロ
ック図
FIG. 2 is a control block diagram of a compressor frequency and an electric expansion valve, a solenoid valve, and a water supply valve in the refrigeration cycle control device of the embodiment.

【図3】単段圧縮サイクル運転と二段圧縮サイクル運転
の沸き上げ給湯温度に対する成績係数の関係図
FIG. 3 is a diagram showing the relationship between the coefficient of performance and the boiling hot water temperature in the single-stage compression cycle operation and the two-stage compression cycle operation.

【図4】従来のヒートポンプ式給湯機の冷凍サイクル図FIG. 4 is a refrigeration cycle diagram of a conventional heat pump water heater.

【符号の説明】[Explanation of symbols]

1 室外機 2a 冷媒二段圧縮機 2b 第一圧縮部 2c 第二圧縮部 3a 給湯用熱交換器 3b 冷媒側配管 3c 水側配管 4a 第一膨張弁 4b 第二膨張弁 4c 第三膨張弁 5 熱源側熱交換器 6 中間熱交換器 7a 第一電磁弁 7b 第二電磁弁 7c 第三電磁弁 8a 第一圧縮部吸入温度センサ 8b 第二圧縮部吸入温度センサ 9 タンクユニット 10 貯湯タンク 11 水循環ポンプ 12a 水側入口温度センサ 12b 水側出口温度センサ 13 給水弁 1 Outdoor Unit 2a Refrigerant Two-Stage Compressor 2b First Compressor 2c Second Compressor 3a Hot Water Heat Exchanger 3b Refrigerant Side Pipe 3c Water Side Pipe 4a First Expansion Valve 4b Second Expansion Valve 4c Third Expansion Valve 5 Heat Source Side heat exchanger 6 Intermediate heat exchanger 7a First solenoid valve 7b Second solenoid valve 7c Third solenoid valve 8a First compression unit suction temperature sensor 8b Second compression unit suction temperature sensor 9 Tank unit 10 Water storage tank 11 Water circulation pump 12a Water side inlet temperature sensor 12b Water side outlet temperature sensor 13 Water supply valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 宏治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Murozono 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第一圧縮部と第二圧縮部を有し、容量可変
の冷媒二段圧縮機と前記冷媒二段圧縮機で圧縮された冷
媒ガスと水側サイクルとの間で熱交換させる給湯用熱交
換器、減圧器、蒸発器を接続して冷凍サイクルを構成
し、前記第一圧縮部及び前記第二圧縮部のいずれか一方
を運転する単段圧縮サイクル、前記第一圧縮部および前
記第二圧縮部を直列に接続して同時に運転する二段圧縮
サイクルと、前記第一圧縮部と前記第二圧縮部を並列に
接続して同時運転する並列圧縮サイクルとを切替える運
転切替え制御手段を有し、一方、貯湯タンク、水循環ポ
ンプ、前記給湯用熱交換器での水循環量を制御する水循
環量制御手段を有し、順次接続して水側サイクルを構成
し、前記給湯用熱交換器水側入口の温度と出口の温度を
検出する第一温度検出手段および第二温度検出手段、前
記第一圧縮部と第二圧縮部吸入での冷媒の状態を検出す
る第一冷媒状態検出手段と第二冷媒状態検出手段を設
け、また前記減圧器の減圧割合を調節する減圧制御手段
および前記冷媒二段圧縮機の容量を制御する容量制御手
段を有し、この第一および第二温度検出手段により検出
された水側入口と出口の温度差を算出する差温演算回路
を設け、また前記第一および第二冷媒状態検出手段から
圧縮部吸入における過熱度を算出する過熱度演算回路を
設け、その各々の演算結果に応じて圧縮機の容量および
水循環量を制御し、前記第一温度検出手段により検出さ
れた水側入口の温度が初期温度から初期温度と最終沸き
上げ温度との間に位置する第一所定温度に達するまで冷
凍サイクル側は前記単段圧縮サイクル運転を行い、前記
給湯用熱交換器に導入される水は前記貯湯タンクから前
記水循環ポンプにより前記給湯用熱交換器に送り、冷媒
ガスと熱交換して、前記貯湯タンクに戻す過程を複数回
行って水側入口温度を段階的に前記第一所定温度に上昇
させるという多循環水方式を用いて循環させ、水側の入
口温度が前記第一所定温度に達した後、冷凍サイクル側
は上記運転切替え制御手段により前記二段圧縮サイクル
運転に切替え、前記給湯用熱交換器に導入される水はこ
の給湯用熱交換器で一循環のみで冷媒ガスと熱交換して
最終沸き上げ温度に上昇させるという一循環水方式を用
いて循環させることを特徴とするヒートポンプ式給湯機
の制御装置。
1. Heat exchange between a refrigerant two-stage compressor having a first compression part and a second compression part, the capacity of which is variable, and a refrigerant gas compressed by the two-stage refrigerant compressor and a water side cycle. A heat exchanger for hot water supply, a decompressor, and an evaporator are connected to form a refrigeration cycle, and a single-stage compression cycle for operating either one of the first compression section and the second compression section, the first compression section and Operation switching control means for switching between a two-stage compression cycle in which the second compression section is connected in series and operated simultaneously, and a parallel compression cycle in which the first compression section and the second compression section are connected in parallel and operated simultaneously. On the other hand, a hot water storage tank, a water circulation pump, and water circulation amount control means for controlling the amount of water circulation in the heat exchanger for hot water supply, which are sequentially connected to form a water side cycle. The first temperature detection to detect the temperature of the water side inlet and the temperature of the outlet Means and second temperature detecting means, first refrigerant state detecting means and second refrigerant state detecting means for detecting the state of the refrigerant at the suction of the first compression part and the second compression part, and the decompression ratio of the decompressor. And a capacity control means for controlling the capacity of the refrigerant two-stage compressor, and a difference for calculating the temperature difference between the water side inlet and the outlet detected by the first and second temperature detecting means. A temperature arithmetic circuit is provided, and a superheat degree arithmetic circuit for calculating the superheat degree in the suction of the compression section from the first and second refrigerant state detecting means is provided, and the capacity of the compressor and the water circulation amount are calculated according to the respective arithmetic results. The single-stage compression is performed on the refrigeration cycle side until the temperature of the water side inlet detected by the first temperature detecting means reaches a first predetermined temperature located between the initial temperature and the final boiling temperature. Cycle luck The water introduced into the hot water supply heat exchanger is sent from the hot water storage tank to the hot water supply heat exchanger by the water circulation pump, exchanges heat with the refrigerant gas, and is returned to the hot water storage tank a plurality of times. The water side inlet temperature is circulated using a multi-circulation water system in which the water side inlet temperature is raised stepwise to the first predetermined temperature, and after the water side inlet temperature reaches the first predetermined temperature, the refrigeration cycle side performs the above operation. The switching control means switches to the two-stage compression cycle operation, and the water introduced into the hot water supply heat exchanger exchanges heat with the refrigerant gas in only one circulation in the hot water supply heat exchanger to raise the final boiling temperature. A control device for a heat pump water heater, which circulates using one circulating water system.
JP5337795A 1993-12-28 1993-12-28 Controller for heat pump type hot water supplying apparatus Pending JPH07190547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5337795A JPH07190547A (en) 1993-12-28 1993-12-28 Controller for heat pump type hot water supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5337795A JPH07190547A (en) 1993-12-28 1993-12-28 Controller for heat pump type hot water supplying apparatus

Publications (1)

Publication Number Publication Date
JPH07190547A true JPH07190547A (en) 1995-07-28

Family

ID=18312043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5337795A Pending JPH07190547A (en) 1993-12-28 1993-12-28 Controller for heat pump type hot water supplying apparatus

Country Status (1)

Country Link
JP (1) JPH07190547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045143A1 (en) * 2004-10-26 2006-05-04 Quantum Energy Technologies Pty Limited Control system for heat pump water heaters
JP2020165647A (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045143A1 (en) * 2004-10-26 2006-05-04 Quantum Energy Technologies Pty Limited Control system for heat pump water heaters
JP2020165647A (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle apparatus
WO2020203708A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US11236934B2 (en) Refrigeration cycle apparatus
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
CN100371656C (en) Refrigeration cycle apparatus
KR101212698B1 (en) Heat pump type speed heating apparatus
JP4411870B2 (en) Refrigeration equipment
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
JP2004340470A (en) Refrigeration unit
GB1571528A (en) Heat pump system with rotary compressor
US11927376B2 (en) Refrigeration cycle apparatus
US20040107710A1 (en) Air conditioning system and method for controlling the same
WO2020064014A1 (en) Vehicle temperature management system
KR20120077106A (en) A load active heat pump combined two parallel single stage compressor
KR100511953B1 (en) Compressor control device for air-conditioner using multi compressors and compressor control method for the same
JP6712766B2 (en) Dual refrigeration system
JP2654222B2 (en) Cooling / heating mixed type multi-refrigeration cycle
JPS6249160A (en) Heat-pump hot-water supply device
JPH07190547A (en) Controller for heat pump type hot water supplying apparatus
JPH0886528A (en) Refrigerating device
WO2022004256A1 (en) Refrigeration system and heat source unit
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
US6669102B1 (en) Method for operating air conditioner in warming mode
JP3661014B2 (en) Refrigeration equipment
KR100857565B1 (en) Method for controlling air conditionner
KR101199115B1 (en) Heat pump water heater and method of controlling thereof
JPH04263742A (en) Refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20131126