JPH07190517A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH07190517A
JPH07190517A JP5332694A JP33269493A JPH07190517A JP H07190517 A JPH07190517 A JP H07190517A JP 5332694 A JP5332694 A JP 5332694A JP 33269493 A JP33269493 A JP 33269493A JP H07190517 A JPH07190517 A JP H07190517A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
refrigeration cycle
hcfc
cfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5332694A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
猛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5332694A priority Critical patent/JPH07190517A/en
Publication of JPH07190517A publication Critical patent/JPH07190517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To increase the amount of refrigerant circulation and ensure a required freezing capability by employing as a refrigerant an HFC refrigerant that has a higher boiling point than HCFC or has a greater gas ratio volume and setting standard operation frequency of a compressor to be 1, 1 to 2 times that upon the use of the HCFC. CONSTITUTION:Use of HFC, as a refrigerant, that has a higher boiling point or a greater gas ratio volume than HCFC(dichlorofluoromethane) or CFC (chlorofluorocarbon) ensures expansion of a standard operation frequency region of a compressor because of the temperature rise of the compressor being smaller. For this, HFC is used as a refrigerant to operate the compressor with its operation frequency set to be 1.1 to 2 times than upon the use of a conventional refrigerant(HCFC). Hereby, the identical freezing capability as the conventional one is ensured and the load to replace a refrigerant is reduced only with reduced alteration of the structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機などに使用
される冷凍サイクルに係り、特にHFC冷媒を用いた冷
凍サイクルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle used for an air conditioner and the like, and more particularly to a refrigeration cycle using HFC refrigerant.

【0002】[0002]

【従来の技術】一般に、空気調和機などに使用される冷
凍サイクルでは、圧縮機、凝縮器、膨脹弁および蒸発器
を配管で結び、これらの機器間に冷媒を循環させる。従
来、冷凍サイクル中を循環する冷媒としては、CFC
(クロロフルオロカーボン) もしくはHCFC (ハイド
ロクロロフルオロカーボン) が用いられており、オゾン
層破壊の原因となっていた。そこで、近年、オゾン層破
壊を引き起こさない冷媒として、HFC (ハイドロフル
オロカーボン) 冷媒への代替が進められている。
2. Description of the Related Art Generally, in a refrigeration cycle used for an air conditioner or the like, a compressor, a condenser, an expansion valve and an evaporator are connected by pipes, and a refrigerant is circulated between these devices. Conventionally, CFC has been used as a refrigerant circulating in a refrigeration cycle.
(Chlorofluorocarbon) or HCFC (hydrochlorofluorocarbon) is used, which has been a cause of ozone layer depletion. Therefore, in recent years, replacement of HFC (hydrofluorocarbon) refrigerant has been promoted as a refrigerant that does not cause ozone layer destruction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、HFC
冷媒は、CFCもしくはHCFC冷媒よりも、高沸点も
しくはガス比体積が大きいか、または低沸点もしくはガ
ス比体積が小さいため、CFCまたはHCFC冷媒用の
冷凍サイクルそのままでは、冷凍能力が低下する結果と
なる。特に、ガス比体積の大きいHFC冷媒では、蒸発
器内での蒸発に伴う圧力損失が増大し冷媒循環が阻害さ
れることから、従来レベルの冷凍能力を維持できなくな
り、また、ガス比体積の小さいHFC冷媒では、従来と
同等の排除容積を持つ圧縮機を用いると入力ロスが大き
くなり、効率低下につながることから、必要以上に冷凍
サイクルが大きくなり、製品のサイズアップ、ひいては
コストアップに繋がる。
[Problems to be Solved by the Invention] However, HFC
Since the refrigerant has a high boiling point or a large gas specific volume or a low boiling point or a gas specific volume smaller than that of the CFC or HCFC refrigerant, the refrigeration cycle of the CFC or HCFC refrigerant as it is results in a reduced refrigerating capacity. . In particular, with HFC refrigerants having a large gas specific volume, the pressure loss associated with evaporation in the evaporator increases and refrigerant circulation is hindered, so that the conventional level of refrigerating capacity cannot be maintained, and the gas specific volume is small. In the case of HFC refrigerant, if a compressor having the same excluded volume as the conventional one is used, the input loss becomes large and the efficiency is lowered, so that the refrigeration cycle becomes larger than necessary, leading to an increase in the size of the product and eventually an increase in the cost.

【0004】本発明は、上記事情に鑑みてなされたもの
で、その目的は、HFC冷媒を用いても、CFCもしく
はHCFC冷媒を用いた場合と同等の冷凍能力を得るこ
とができる冷凍サイクルを提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a refrigeration cycle capable of obtaining the same refrigerating capacity as when using a CFC or HCFC refrigerant even when using an HFC refrigerant. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、圧縮機、凝縮器、膨脹弁および蒸発器等を
配管で結んで冷媒を循環させる冷凍サイクルにおいて、
上記冷媒としてCFCもしくはHCFCより高沸点もし
くはガス比体積の大きなHFC冷媒を用いると共に、上
記圧縮機の標準運転周波数をCFCもしくはHCFC使
用時の 1.1〜2倍に設定したものである。
In order to achieve the above object, the present invention provides a refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator and the like are connected by piping to circulate a refrigerant.
An HFC refrigerant having a higher boiling point or a larger gas specific volume than CFC or HCFC is used as the refrigerant, and the standard operating frequency of the compressor is set to 1.1 to 2 times that of the CFC or HCFC.

【0006】ここで、圧縮機の運転周波数を従来と同一
とし、圧縮機の排除容量を14〜30 cc/rev の範囲に
設定してもよい。
Here, the operating frequency of the compressor may be the same as the conventional one, and the displacement of the compressor may be set in the range of 14 to 30 cc / rev.

【0007】また、冷凍サイクル中を循環する冷媒とし
てCFCもしくはHCFCより低沸点もしくはガス比体
積の小さなHFC冷媒を用いる場合には、圧縮機の排除
容量を5〜20 cc/rev の範囲に設定することが好まし
い。
When an HFC refrigerant having a lower boiling point or a smaller gas specific volume than CFC or HCFC is used as the refrigerant circulating in the refrigeration cycle, the displacement capacity of the compressor is set within the range of 5 to 20 cc / rev. It is preferable.

【0008】また、本発明は、冷凍サイクルを構成する
配管径を、使用するHFC冷媒の必要ガス体積流量の1
/2乗の2〜8倍の範囲に設定したものである。
Further, according to the present invention, the diameter of the pipe constituting the refrigeration cycle is set to 1 of the required gas volume flow rate of the HFC refrigerant used.
It is set in the range of 2 to 8 times the square.

【0009】[0009]

【作用】冷凍サイクル中を循環する冷媒として、CFC
もしくはHCFCよりも高沸点もしくはガス比体積の大
きなHFC冷媒を用いる場合、冷凍サイクルをなす圧縮
機の標準運転周波数を上げ、冷媒循環量を増加させれ
ば、ガス比体積が大きく潜熱量が小さい冷媒を用いて
も、必要な冷凍能力を確保することができる。特に、圧
縮機の標準運転周波数を、CFCもしくはHCFC使用
時の 1.1〜2倍に適性化すれば、CFCもしくはHCF
Cを用いた場合と同等の冷凍能力を得ることができる。
この場合、圧縮機の標準運転周波数が、CFCもしくは
HCFC使用時の2倍を越えると、圧縮機内の潤滑油や
摺動部の劣化が激しくなる。また逆に、1.1倍未満では
冷媒が良好に循環せず、能力確保が見込めない。
[Function] As a refrigerant circulating in the refrigeration cycle, CFC
Alternatively, when an HFC refrigerant having a higher boiling point or a larger gas specific volume than HCFC is used, if the standard operating frequency of the compressor forming the refrigeration cycle is increased and the refrigerant circulation amount is increased, the gas specific volume is large and the latent heat amount is small. The required refrigerating capacity can be secured even by using. In particular, if the standard operating frequency of the compressor is 1.1 to 2 times higher than that when using CFC or HCFC, CFC or HCF
The same refrigerating capacity as when C is used can be obtained.
In this case, when the standard operating frequency of the compressor exceeds twice as high as when the CFC or HCFC is used, deterioration of lubricating oil and sliding parts in the compressor becomes severe. On the other hand, if it is less than 1.1 times, the refrigerant does not circulate well and it is not possible to secure the capacity.

【0010】上述のように圧縮機の運転周波数を上げる
代りに、圧縮機の排除容量を従来の1.1〜2倍 (14〜
30 cc/rev ) とすることによっても、冷媒循環量を増
加させて、必要な冷凍能力を得ることができる。この場
合、圧縮機を従来と同じ運転周波数、即ち効率の高い周
波数で運転できることから、消費電力を低く押さえるこ
ともできる。
Instead of increasing the operating frequency of the compressor as described above, the excluded capacity of the compressor is 1.1 to 2 times (14 to
By setting the flow rate to 30 cc / rev), the refrigerant circulation amount can be increased to obtain the required refrigerating capacity. In this case, since the compressor can be operated at the same operating frequency as the conventional one, that is, a highly efficient frequency, it is possible to suppress power consumption to a low level.

【0011】また、冷凍サイクル中の冷媒として、CF
CもしくはHCFCより低沸点もしくはガス比体積の小
さなHFC冷媒を用いる場合は、上述とは逆に、圧縮機
の排除容量を従来よりも低くすれば、必要な冷凍能力を
確保できる。この場合、圧縮機の排除容量は、使用する
HFC冷媒の潜熱量およびガス比体積を考慮して定めら
れるが、大抵の場合、5〜30 cc/rev の範囲に設定す
ればよい。
As a refrigerant in the refrigeration cycle, CF is used.
When an HFC refrigerant having a lower boiling point or a smaller gas specific volume than C or HCFC is used, conversely to the above, the required refrigerating capacity can be secured by making the displacement of the compressor lower than in the conventional case. In this case, the excluded capacity of the compressor is determined in consideration of the latent heat amount and the gas specific volume of the HFC refrigerant used, but in most cases, it may be set in the range of 5 to 30 cc / rev.

【0012】また、冷凍サイクルを構成する配管径を、
使用するHFC冷媒の必要ガス体積流量の1/2乗の2
〜8倍の範囲に設定すれば、ガス比体積の大きいまたは
小さいHFC冷媒を用いても、必要最少限の大きさで、
従来レベルの冷凍能力を維持できる。
Further, the diameter of the piping that constitutes the refrigeration cycle is
2 to the power of 1/2 of the required gas volume flow rate of the HFC refrigerant used
If set in the range of up to 8 times, even if an HFC refrigerant having a large or small gas specific volume is used, the required minimum size is
The refrigeration capacity of the conventional level can be maintained.

【0013】[0013]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0014】図5は、空気調和機に使用される冷凍サイ
クルを示した図である。この冷凍サイクル1は、圧縮機
2、室外熱交換器3、膨脹弁4および室内熱交換器5を
順次配管6で接続して構成されている。7は冷・暖房運
転を切り換えるための四方弁である。冷房運転時、圧縮
機2で圧縮された冷媒ガスは、四方弁7を通過して室外
熱交換器3へ導かれ、そこで凝縮されて潜熱を放出す
る。室外熱交換器3で凝縮された冷媒は、膨脹弁4を通
過して室内熱交換器5へ導かれ、そこで室内の熱を受け
て蒸発し、その熱を潜熱として蓄積する。そして、室内
熱交換器5でガス状に相変化した冷媒は、四方弁7を通
って圧縮機2の吸込側に戻される。
FIG. 5 is a diagram showing a refrigeration cycle used in an air conditioner. The refrigeration cycle 1 is configured by connecting a compressor 2, an outdoor heat exchanger 3, an expansion valve 4 and an indoor heat exchanger 5 in sequence with a pipe 6. 7 is a four-way valve for switching between cooling and heating operation. During the cooling operation, the refrigerant gas compressed by the compressor 2 passes through the four-way valve 7 and is guided to the outdoor heat exchanger 3, where it is condensed and releases latent heat. The refrigerant condensed in the outdoor heat exchanger 3 passes through the expansion valve 4 and is guided to the indoor heat exchanger 5, where the indoor heat is received and evaporated, and the heat is accumulated as latent heat. Then, the refrigerant that has undergone a gas phase change in the indoor heat exchanger 5 is returned to the suction side of the compressor 2 through the four-way valve 7.

【0015】ところで、上述したような冷凍サイクル1
において、冷媒として従来のCFCもしくはHCFCに
代えて、これらより高沸点でガス比体積が大きいHFC
冷媒を用いると、冷凍サイクル1の冷凍能力が従来レベ
ルよりも低下してしまう。そこで、この実施例では、圧
縮機2の標準運転周波数を上昇させて、冷媒循環量を増
加させ、CFCもしくはHCFC冷媒使用時と同等の能
力をもつ空気調和機を実現するようにした。
By the way, the refrigeration cycle 1 as described above
In place of conventional CFCs or HCFCs as refrigerants, HFCs having a higher boiling point and a larger gas specific volume than these are used.
If a refrigerant is used, the refrigerating capacity of the refrigerating cycle 1 will be lower than the conventional level. Therefore, in this embodiment, the standard operating frequency of the compressor 2 is increased to increase the refrigerant circulation amount, and an air conditioner having the same capacity as when using a CFC or HCFC refrigerant is realized.

【0016】図1は、上記圧縮機2の標準運転周波数に
対する圧縮機2表面の温度変化を示したグラフであり、
従来の冷媒としてクロロジフルオロメタン (HCFC)
を用いた場合と、本実施例の冷媒として1,1,1,2
−テトラフルオロエタン (HFC) を用いた場合のそれ
ぞれの特性を示す。グラフより明らかなように、クロロ
ジフルオロメタン (HCFC) では、沸点の関係から圧
縮機2の運転周波数UPに対する温度上昇が大きく、機
内の潤滑油や摺動部の劣化が激しくなるため、運転周波
数の上昇に限界がある。グラフでは、標準運転時 (最適
常用温度域内)、50〜80Hzが限界となっている。
これに対し、新冷媒として1,1,1,2−テトラフル
オロエタンを用いると、圧縮機2の温度上昇分が小さい
ために、圧縮機2の標準運転周波数域を拡大できる。グ
ラフでは、標準運転時、80〜130Hzまで運転周波
数域を拡大できることがわかる。
FIG. 1 is a graph showing the temperature change on the surface of the compressor 2 with respect to the standard operating frequency of the compressor 2.
Chlorodifluoromethane (HCFC) as a conventional refrigerant
Is used as the refrigerant of this embodiment, 1, 1, 1, 2
-Each characteristic when using tetrafluoroethane (HFC) is shown. As is clear from the graph, in chlorodifluoromethane (HCFC), the temperature rise with respect to the operating frequency UP of the compressor 2 is large due to the boiling point, and the deterioration of the lubricating oil and sliding parts inside the machine becomes severe. There is a limit to the rise. In the graph, the limit is 50 to 80 Hz during standard operation (in the optimum normal temperature range).
On the other hand, when 1,1,1,2-tetrafluoroethane is used as the new refrigerant, the standard operating frequency range of the compressor 2 can be expanded because the temperature rise of the compressor 2 is small. The graph shows that the operating frequency range can be expanded to 80 to 130 Hz during standard operation.

【0017】そこで、冷媒として1,1,1,2−テト
ラフルオロエタンを用い、圧縮機2の運転周波数を従来
冷媒 (クロロジフルオロメタン) 使用時の約1.6倍
(50Hz→80Hz) として運転したところ、クロロ
ジフルオロメタンを用いた場合と同等の冷凍能力2.5
kw相当を得ることができた。なお、圧縮機2の排除容
積は、クロロジフルオロメタン使用時と同じ14〜20
cc/rev とした。
Therefore, 1,1,1,2-tetrafluoroethane is used as the refrigerant, and the operating frequency of the compressor 2 is about 1.6 times that of the conventional refrigerant (chlorodifluoromethane).
When operated at (50Hz → 80Hz), the same refrigeration capacity of 2.5 when using chlorodifluoromethane
It was possible to obtain the equivalent of kw. The excluded volume of the compressor 2 is the same as when using chlorodifluoromethane, which is 14 to 20.
cc / rev

【0018】このように本実施例によれば、圧縮機2の
標準運転周波数を上昇させることにより、冷凍サイクル
1中での冷媒循環量を増大でき、潜熱量が小さくガス比
体積が大きいHFC冷媒であっても、従来のCFCもし
くはHCFC冷媒を用いた場合と同等の冷凍能力を得る
ことができる。また、本実施例によれば、圧縮機2の標
準運転周波数を上昇させるだけでよいため、CFCもし
くはHCFC冷媒用の冷凍サイクルに対して構造上極め
て少ない変更を施すだけで、HFC冷媒を使用できるよ
うになり、冷媒の代替に伴う負荷を低減できる。
As described above, according to this embodiment, by increasing the standard operating frequency of the compressor 2, the refrigerant circulation amount in the refrigeration cycle 1 can be increased, the latent heat amount is small, and the gas specific volume is large. Even in this case, it is possible to obtain the same refrigerating capacity as in the case of using the conventional CFC or HCFC refrigerant. Further, according to the present embodiment, since it is only necessary to increase the standard operating frequency of the compressor 2, it is possible to use the HFC refrigerant by making very few structural changes to the refrigeration cycle for the CFC or HCFC refrigerant. As a result, the load accompanying the replacement of the refrigerant can be reduced.

【0019】次に、本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0020】上述した実施例では、圧縮機2の運転周波
数を増加させて冷凍サイクル1中の冷媒循環量を増加さ
せたが、この実施例では、圧縮機2の排除容積を大きく
して冷媒循環量を増加させている。すなわち、従来の冷
媒であるクロロジフルオロメタン (HCFC) を用いる
と、圧縮機効率の観点から排除容積の増加に限界がある
が、新冷媒として1,1,1,2−テトラフルオロエタ
ンを用いると、圧縮機2の排除容積を飛躍的に増大でき
る。
In the above-described embodiment, the operating frequency of the compressor 2 is increased to increase the refrigerant circulation amount in the refrigeration cycle 1. However, in this embodiment, the displacement volume of the compressor 2 is increased and the refrigerant circulation is increased. The amount is increasing. That is, if chlorodifluoromethane (HCFC), which is a conventional refrigerant, is used, there is a limit to the increase in the excluded volume from the viewpoint of compressor efficiency, but if 1,1,1,2-tetrafluoroethane is used as the new refrigerant, Therefore, the excluded volume of the compressor 2 can be dramatically increased.

【0021】そこで、冷媒として1,1,1,2−テト
ラフルオロエタンを用い、圧縮機2の排除容積を従来冷
媒 (クロロジフルオロメタン) 使用時の約1.6倍 (3
0cc/rev) 、圧縮機2の運転周波数は同等として運転し
たところ、従来冷媒使用時と同等の冷凍能力2.5kw
および消費電力を得ることができた。
Therefore, 1,1,1,2-tetrafluoroethane is used as the refrigerant, and the displacement volume of the compressor 2 is about 1.6 times (3) that of the conventional refrigerant (chlorodifluoromethane).
0cc / rev), the operating frequency of the compressor 2 was the same, and the refrigerating capacity was 2.5kw, which is the same as when the conventional refrigerant was used.
And the power consumption could be obtained.

【0022】このように、圧縮機2の排除容積を増大さ
せれば、冷凍サイクル1中での冷媒循環量を増大でき、
潜熱量が小さくガス比体積が大きいHFC冷媒でも、従
来のCFCもしくはHCFC冷媒を用いた場合と同等の
冷凍能力を得ることができる。しかも、シリンダの容積
を増大させるなど圧縮機2の圧縮機構部を改造し、モー
タ部は従来構造そのままとすれば、図2に示すように、
圧縮機モータを効率の高い周波数領域で運転でき、消費
電力を低く押え、高い運転効率を得ることもできる。
In this way, if the displacement volume of the compressor 2 is increased, the refrigerant circulation amount in the refrigeration cycle 1 can be increased,
Even with an HFC refrigerant having a small amount of latent heat and a large gas specific volume, it is possible to obtain the same refrigerating capacity as when using a conventional CFC or HCFC refrigerant. Moreover, if the compression mechanism portion of the compressor 2 is modified by increasing the volume of the cylinder and the motor portion is left as it is, as shown in FIG.
The compressor motor can be operated in a highly efficient frequency range, power consumption can be kept low, and high operation efficiency can be obtained.

【0023】次に、本発明の第3の実施例について説明
する。
Next, a third embodiment of the present invention will be described.

【0024】上記実施例においては、従来冷媒であるク
ロロジフルオロメタンよりも高沸点あるいはガス比体積
の大きなHFC冷媒を用いる点について説明したが、こ
の実施例では、逆に、低沸点あるいはガス比体積の小さ
なHFC冷媒、例えば、ジフルオロメタンとペンタフル
オロエタンとの混合冷媒を用いる。このような混合冷媒
を用いる場合は、上述とは逆に、圧縮機2の排除容積を
小さくする。このときの圧縮機2の排除容積は、使用す
る冷媒の潜熱量およびガス比体積に基づいて決められる
が、上記混合冷媒を用いる場合は、クロロジフルオロメ
タンの場合に比し約0.7倍とする。
In the above embodiment, it was explained that an HFC refrigerant having a higher boiling point or a larger gas specific volume than that of chlorodifluoromethane which is a conventional refrigerant is used. However, in this embodiment, conversely, a low boiling point or a gas specific volume is used. A small HFC refrigerant, for example, a mixed refrigerant of difluoromethane and pentafluoroethane is used. When such a mixed refrigerant is used, contrary to the above, the excluded volume of the compressor 2 is reduced. The excluded volume of the compressor 2 at this time is determined based on the latent heat amount of the refrigerant to be used and the gas specific volume. When the mixed refrigerant is used, it is about 0.7 times as large as that of chlorodifluoromethane. To do.

【0025】そこで、冷媒としてジフルオロメタンとペ
ンタフルオロエタンとの混合冷媒を用い、圧縮機2の排
除容量をクロロジフルオロメタン使用時の0.7倍 (5
〜20 cc/rev ) に設定し、圧縮機2の運転周波数を同
等として運転したところ、クロロジフルオロメタンを用
いた場合と同等の冷凍能力2.5kw相当および消費電
力を得ることができた。
Therefore, a mixed refrigerant of difluoromethane and pentafluoroethane is used as the refrigerant, and the displacement capacity of the compressor 2 is 0.7 times (5 times that when chlorodifluoromethane is used).
.About.20 cc / rev) and operating at the same operating frequency of the compressor 2, a refrigerating capacity equivalent to 2.5 kw and power consumption equivalent to those using chlorodifluoromethane could be obtained.

【0026】このように、圧縮機の排除容積を従来冷媒
使用時に比し小さく設定することで、従来冷媒よりもガ
ス比体積の小さいHFC冷媒を用いても、従来同等の冷
凍能力を得ることができる。しかも、圧縮機の圧縮機構
部のみを改造して排除容積を減らし、モータ部を従来構
造そのままとすれば、図2に示すように、圧縮機モータ
を効率の高い領域で運転でき、消費電力を低く押さえ、
高い運転効率を得ることもできる。
As described above, by setting the displacement volume of the compressor to be smaller than that when the conventional refrigerant is used, even if an HFC refrigerant having a gas specific volume smaller than that of the conventional refrigerant is used, the same refrigerating capacity as before can be obtained. it can. Moreover, if only the compression mechanism part of the compressor is modified to reduce the excluded volume and the motor part has the conventional structure, as shown in FIG. 2, the compressor motor can be operated in a highly efficient region and power consumption can be reduced. Keep it low,
High operating efficiency can also be obtained.

【0027】次に、本発明の第4の実施例について説明
する。
Next, a fourth embodiment of the present invention will be described.

【0028】HFC冷媒として1,1,1,2−テトラ
フルオロエタンを用い、従来相当である冷凍能力2.5
kwの空気調和機を実現する場合、ガス比体積の大きい
上記冷媒が冷凍サイクル内、特に蒸発器を通過する際、
相変化に伴いガス化した出口側での圧力損失が増大する
ため、冷媒循環が阻害され、冷凍効率が大幅に低下す
る。また、HFC冷媒としてジフルオロメタンとペンタ
フルオロエタンとの混合物を用い、従来相当である冷凍
能力2.5kwの空気調和機を実現する場合、ガス比体
積の小さい上記混合冷媒が冷凍サイクル内、特に蒸発器
を通過する際、相変化に伴いガス化した出口側での圧力
損失は低下するため、冷凍サイクルの小型化を実現する
ことが可能となる。
Using 1,1,1,2-tetrafluoroethane as the HFC refrigerant, the refrigerating capacity of 2.5, which is equivalent to the conventional one, is used.
When realizing an air conditioner of kW, when the refrigerant having a large gas specific volume passes through the refrigeration cycle, particularly when passing through the evaporator,
Since the pressure loss on the gasified outlet side increases with the phase change, the refrigerant circulation is hindered and the refrigeration efficiency is significantly reduced. Further, when a mixture of difluoromethane and pentafluoroethane is used as an HFC refrigerant to realize an air conditioner with a refrigerating capacity of 2.5 kw, which is the conventional equivalent, the above-mentioned mixed refrigerant having a small gas specific volume is evaporated particularly in the refrigeration cycle. When passing through the refrigerator, the pressure loss on the outlet side gasified with the phase change decreases, so that the refrigeration cycle can be downsized.

【0029】すなわち、図3に示すように、1,1,
1,2−テトラフルオロエタンの蒸発器出入口での圧力
損失差は、従来冷媒であるクロロジフルオロメタンの蒸
発器出入口での圧力損失差よりも大きいため、冷凍効率
を維持しようとすると、蒸発器の出口側と圧縮機の吸込
側との間の低圧側配管径を大きくしなければならない。
他方、上記混合冷媒の蒸発器出入口での圧力損失差は、
クロロジフルオロメタンの蒸発器出入口での圧力損失差
よりも小さいため、上記低圧側の配管径を小さくするこ
とが可能となる。
That is, as shown in FIG.
Since the pressure loss difference between 1,2-tetrafluoroethane at the inlet and outlet of the evaporator is larger than the pressure loss difference at the inlet and outlet of chlorodifluoromethane, which is a conventional refrigerant, when trying to maintain refrigeration efficiency, The low pressure side pipe diameter between the outlet side and the suction side of the compressor must be increased.
On the other hand, the pressure loss difference at the evaporator inlet and outlet of the mixed refrigerant is
Since it is smaller than the pressure loss difference at the evaporator inlet / outlet of chlorodifluoromethane, it is possible to reduce the pipe diameter on the low pressure side.

【0030】そこで、本発明者らは、これら物性の異な
るHFC冷媒について試験をした結果、図4に示すごと
く最適使用配管径の範囲 (冷媒の必要ガス体積流量の1
/2乗の2〜8倍) を得た。従って、冷凍サイクル1を
構成する配管6の径を、図4の範囲内で設定することに
より、冷凍サイクル1自体大型化させることなく、従来
の冷凍サイクルと同等の能力および効率を得ることがで
きる。
Therefore, as a result of testing the HFC refrigerants having different physical properties, the inventors of the present invention have found that as shown in FIG. 4, the optimum pipe diameter range (the required gas volume flow rate of the refrigerant is 1
/ 2 to 8 times). Therefore, by setting the diameter of the pipe 6 constituting the refrigeration cycle 1 within the range of FIG. 4, it is possible to obtain the same capacity and efficiency as the conventional refrigeration cycle without increasing the refrigeration cycle 1 itself. .

【0031】[0031]

【発明の効果】以上要するに本発明によれば、次のごと
く優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0032】(1) 請求項1によれば、CFCもしくはH
CFC冷媒より高沸点もしくはガス比体積が大きい冷媒
を用いても、従来の冷凍サイクルと同等の冷凍能力を得
ることができる。
(1) According to claim 1, CFC or H
Even if a refrigerant having a higher boiling point or a larger gas specific volume than the CFC refrigerant is used, the same refrigerating capacity as that of the conventional refrigerating cycle can be obtained.

【0033】(2) 請求項2によれば、CFCもしくはH
CFC冷媒より高沸点もしくはガス比体積が大きい冷媒
を用いても、従来の冷凍サイクルと同等の冷凍能力を得
ることができる他、高い運転効率を得ることもできる。
(2) According to claim 2, CFC or H
Even if a refrigerant having a higher boiling point or a larger gas specific volume than that of the CFC refrigerant is used, the same refrigerating capacity as that of the conventional refrigerating cycle can be obtained, and high operating efficiency can be obtained.

【0034】(3) 請求項3によれば、CFCもしくはH
CFC冷媒より低沸点もしくはガス比体積が小さい冷媒
を用いても、従来の冷凍サイクルと同等の冷凍能力を得
ることができる。
(3) According to claim 3, CFC or H
Even if a refrigerant having a lower boiling point or a smaller gas specific volume than the CFC refrigerant is used, the same refrigerating capacity as that of the conventional refrigerating cycle can be obtained.

【0035】(4) 請求項4によれば、CFCもしくはH
CFC冷媒よりもガス比体積の大きいもしくは小さい種
々の冷媒を用いても、大型化することなく適正サイズの
構造にて、必要冷凍能力を得ることができる。
(4) According to claim 4, CFC or H
Even if various refrigerants having a gas specific volume larger or smaller than that of the CFC refrigerant are used, the required refrigerating capacity can be obtained with a structure of an appropriate size without increasing the size.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧縮機の運転周波数に対する圧縮機表面の温度
変化を示すグラフである。
FIG. 1 is a graph showing a temperature change on a compressor surface with respect to a compressor operating frequency.

【図2】圧縮機の運転周波数に対する圧縮機モータ効率
の変化を示すグラフである。
FIG. 2 is a graph showing a change in compressor motor efficiency with respect to a compressor operating frequency.

【図3】冷凍サイクル中の蒸発器出入口での圧力損失を
示したグラフである。
FIG. 3 is a graph showing pressure loss at an evaporator inlet / outlet during a refrigeration cycle.

【図4】使用する冷媒に対する最適使用配管径範囲を示
した図である。
FIG. 4 is a diagram showing an optimum pipe diameter range for use with a refrigerant.

【図5】冷凍サイクルの構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 2 圧縮機 3 室外熱交換器 4 膨脹弁 5 室内熱交換器 6 配管 1 Refrigeration cycle 2 Compressor 3 Outdoor heat exchanger 4 Expansion valve 5 Indoor heat exchanger 6 Piping

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨脹弁および蒸発器等
を配管で結んで冷媒を循環させる冷凍サイクルにおい
て、上記冷媒としてCFCもしくはHCFCより高沸点
もしくはガス比体積の大きなHFC冷媒を用いると共
に、上記圧縮機の標準運転周波数をCFCもしくはHC
FC使用時の 1.1〜2倍に設定したことを特徴とする冷
凍サイクル。
1. A refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator, and the like are connected by pipes to circulate a refrigerant, and an HFC refrigerant having a higher boiling point or a larger gas specific volume than CFC or HCFC is used as the refrigerant. , The standard operating frequency of the compressor is CFC or HC
A refrigeration cycle characterized by being set to 1.1 to 2 times that when using FC.
【請求項2】 圧縮機、凝縮器、膨脹弁および蒸発器等
を配管で結んで冷媒を循環させる冷凍サイクルにおい
て、上記冷媒としてCFCもしくはHCFCより高沸点
もしくはガス比体積の大きなHFC冷媒を用いると共
に、上記圧縮機の排除容量を14〜30 cc/rev の範囲
に設定したことを特徴とする冷凍サイクル。
2. A refrigeration cycle in which a refrigerant is circulated by connecting a compressor, a condenser, an expansion valve, an evaporator and the like with piping, and an HFC refrigerant having a higher boiling point or a larger gas specific volume than CFC or HCFC is used as the refrigerant. A refrigeration cycle in which the displacement of the compressor is set in the range of 14 to 30 cc / rev.
【請求項3】 圧縮機、凝縮器、膨脹弁および蒸発器等
を配管で結んで冷媒を循環させる冷凍サイクルにおい
て、上記冷媒として、CFCもしくはHCFCより低沸
点もしくはガス比体積の小さなHFC冷媒を用いると共
に、上記圧縮機の排除容量を5〜20 cc/rev の範囲に
設定したことを特徴とする冷凍サイクル。
3. A HFC refrigerant having a lower boiling point or a smaller gas specific volume than CFC or HCFC is used as the refrigerant in a refrigeration cycle in which a refrigerant is circulated by connecting a compressor, a condenser, an expansion valve, an evaporator and the like with pipes. In addition, a refrigeration cycle characterized in that the displacement capacity of the compressor is set in the range of 5 to 20 cc / rev.
【請求項4】 圧縮機、凝縮器、膨脹弁および蒸発器等
を配管で結んで冷媒を循環させる冷凍サイクルにおい
て、上記配管径を上記冷媒の必要ガス体積流量の1/2
乗の2〜8倍の範囲に設定したことを特徴とする冷凍サ
イクル。
4. A refrigeration cycle in which a refrigerant is circulated by connecting a compressor, a condenser, an expansion valve, an evaporator and the like with piping, and the diameter of the piping is 1/2 of the required gas volumetric flow rate of the refrigerant.
A refrigerating cycle characterized by being set in a range of 2 to 8 times the power of 2.
JP5332694A 1993-12-27 1993-12-27 Refrigeration cycle Pending JPH07190517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332694A JPH07190517A (en) 1993-12-27 1993-12-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332694A JPH07190517A (en) 1993-12-27 1993-12-27 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH07190517A true JPH07190517A (en) 1995-07-28

Family

ID=18257843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332694A Pending JPH07190517A (en) 1993-12-27 1993-12-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH07190517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2011002217A (en) * 2009-05-18 2011-01-06 Panasonic Corp Refrigerating device and air conditioning apparatus
WO2013084455A1 (en) * 2011-12-08 2013-06-13 パナソニック株式会社 Heat exchanger and air conditioner provided with same
JP2013139990A (en) * 2011-12-08 2013-07-18 Panasonic Corp Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2011002217A (en) * 2009-05-18 2011-01-06 Panasonic Corp Refrigerating device and air conditioning apparatus
WO2013084455A1 (en) * 2011-12-08 2013-06-13 パナソニック株式会社 Heat exchanger and air conditioner provided with same
JP2013139990A (en) * 2011-12-08 2013-07-18 Panasonic Corp Air conditioner
JPWO2013084455A1 (en) * 2011-12-08 2015-04-27 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
EP1431684A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
WO1989002455A1 (en) Refrigerant
JP2017145975A (en) Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
JPH01108292A (en) Refrigerant
JPH08145489A (en) Refrigerator and operating method therefor
Hwang et al. Comparison of R-290 and two HFC blends for walk-in refrigeration systems
Bolaji Theoretical assessment of new low global warming potential refrigerant mixtures as eco-friendly alternatives in domestic refrigeration systems
Chowdhury et al. A review on energy and exergy analysis of two-stage vapour compression refrigeration system
JP2009300023A (en) Refrigerating cycle device
JPH0655941B2 (en) Coolant
EP2668455A2 (en) System to perform a vapor compression refrigeration cycle using water as the refrigerant
JP2020073640A (en) Refrigeration cycle apparatus
JPH07190517A (en) Refrigeration cycle
JPH075880B2 (en) Coolant
JPH0925480A (en) Hydraulic fluid
JP6725639B2 (en) Refrigeration cycle equipment
JP2867932B2 (en) Coolant
CN114907817B (en) Environment-friendly mixed refrigeration working medium, refrigerant and refrigeration system
JPH09221664A (en) Working fluid
Usharani et al. Analysis of CO2 Refrigeration System in a Super Market: An Experimental Approach
JPH08151569A (en) Working fluid
JPH08127767A (en) Working fluid
JPH09208941A (en) Hydraulic fluid
JPH01103689A (en) Refrigerant
JPH07190519A (en) Refrigeration cycle

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Effective date: 20040915

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees