JPH07190364A - Method and equipment for damping thermal acoustic vibration - Google Patents

Method and equipment for damping thermal acoustic vibration

Info

Publication number
JPH07190364A
JPH07190364A JP6275089A JP27508994A JPH07190364A JP H07190364 A JPH07190364 A JP H07190364A JP 6275089 A JP6275089 A JP 6275089A JP 27508994 A JP27508994 A JP 27508994A JP H07190364 A JPH07190364 A JP H07190364A
Authority
JP
Japan
Prior art keywords
combustion chamber
combustion
control
additional medium
value processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6275089A
Other languages
Japanese (ja)
Inventor
Melch Fischer
フィッシャー メルヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of JPH07190364A publication Critical patent/JPH07190364A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/11Purpose of the control system to prolong engine life
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Abstract

PURPOSE: To reduce an acoustic vibration within a combustion chamber without having any relation with the type of fuel (liquid-like or gaseous fuel) by a method wherein a location showing a thermal discharging variation in respect to combustion is controlled for controlling combustion. CONSTITUTION: A pressure sensor 15 is arranged at a location showing a powerful pressure variation, for example, within a combustion chamber 3 to measure a pressure variation related to a thermal acoustic vibration, accepts the pressure variation and transmits a generated signal to a measured value processing preparation device 16. The measured signal released from hindrance by the measured value processing preparation device 16, and amplified to a required level is transmitted to a measured value processing device 17. A signal properly processed with a required phase shift being performed within a control loop comprising a pressure sensor 15, a control device 2 and a control valve 14 and the like at the measured value processing device reaches the control device 18. The control device 18 may generate a required amount of operation for controlling the control valve 14. With such an arrangement as above, it is possible to perform an effective attenuation of thermal acoustic vibration within the combustion chamber 3 without having any relation with the type of fuel (liquid or gaseous fuel).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料技術の分野に関す
る。つまり本発明は、流入する燃料が燃焼室内で、殊に
ガスタービンの燃焼室内で、燃焼する際に発生する熱音
響的な振動を減衰させるための方法であって、燃焼室内
の圧力変動を測定し、かつ測定した圧力変動に従って燃
焼を位相正しく制御して、圧力変動が減少するように燃
焼に影響を及ぼす形式のものに関する。
This invention relates to the field of fuel technology. That is, the present invention is a method for attenuating thermoacoustic vibrations that occur during combustion of inflowing fuel in a combustion chamber, particularly in a combustion chamber of a gas turbine, and measures pressure fluctuations in the combustion chamber. And controlling combustion correctly in accordance with the measured pressure fluctuations to affect combustion so that pressure fluctuations are reduced.

【0002】このような方法は、例えばドイツ国特許第
4040745号明細書によって公知である。
Such a method is known, for example, from DE 40 40 745 A1.

【0003】更に本発明は上述の方法を実施するための
装置に関する。
The invention further relates to a device for carrying out the method described above.

【0004】[0004]

【従来の技術】定置式ガスタービン、航空原動機又はそ
れに類似する物の燃焼室内で燃料を燃焼する場合には、
燃焼過程に基いて適当な割合で、(熱音響的な)振動を
励起する不安定性又は圧力変動が発生する。このような
熱音響的な振動は外方に向ってハム音、雑音又はガタガ
タ音として感じられる。これらの音は、単に不都合な音
源であるというだけでなく、不均一な燃焼による有害物
質の増加や、燃焼室に許容できないような高い機械的な
負荷をもたらし、極端な場合には火炎を消滅せしめるお
それがある。
2. Description of the Related Art When burning fuel in a combustion chamber of a stationary gas turbine, an aircraft engine or the like,
Due to the combustion process, instabilities or pressure fluctuations that excite (thermoacoustic) vibrations occur at appropriate rates. Such thermoacoustic vibration is felt outward as hum, noise, or rattle. These sounds are not only an inconvenient sound source, but also increase harmful substances due to uneven combustion, unacceptably high mechanical load, and extinguish flame in extreme cases. There is a risk of being punished.

【0005】この種の熱音響的な振動を有効に抑えるこ
とができるようにするため、過去において既に、有効に
減衰させるための種々の提案がなされている(冒頭で述
べた明細書又はドイツ国特許第3439903号明細書
参照)。冒頭で述べた明細書に提案されている方法は、
燃料を非周期的に供給することに基いている。その機能
原理は所謂レーレイの規準(Rayleigh−Kri
terium)を基礎にしている。この規準によれば相
互相関函数
In order to be able to effectively suppress this type of thermoacoustic vibration, various proposals have already been made in the past for effective damping (in the specification mentioned at the beginning or in Germany). See Japanese Patent No. 3439903). The method proposed in the specification mentioned at the beginning is
It is based on supplying fuel aperiodically. Its functional principle is the so-called Rayleigh-Kri standard.
terium). According to this criterion, the cross-correlation function

【0006】[0006]

【数1】 [Equation 1]

【0007】が正の値を採った場合に、燃焼室内に音響
振動が発生する。
When takes a positive value, acoustic vibration occurs in the combustion chamber.

【0008】上述の従来の技術によれば、燃料の供給を
介して相互相関函数が最小になるように、熱放出におけ
る変動を制御することができるようにするために、調節
部材が提案されている。液状の燃料に対してはこの種の
調節部材が存在している。しかしガス状の燃料に対して
は使用可能な調節部材が存在していない。ガス状燃料の
ための調節部材の問題点は、燃焼に対しガス供給導管内
に寄生的に変動が形成され、これが燃焼に更に不都合な
影響を与えるという点である。
According to the above-mentioned prior art, an adjusting member has been proposed in order to be able to control the variation in heat release so that the cross-correlation function is minimized through the supply of fuel. There is. Regulators of this kind exist for liquid fuels. However, there are no control elements available for gaseous fuels. The problem with regulating members for gaseous fuels is that there is a parasitic variation in the gas supply conduit with respect to combustion, which has a further adverse effect on combustion.

【0009】[0009]

【発明が解決しようとする課題】従って本発明の課題
は、冒頭で述べた方法を改良して、簡単な形式で燃料種
類(液状又はガス状)に無関係に燃焼室内の熱音響的な
振動を効果的に減衰できるようにすると共に、この方法
を実施するためこれに適した装置を提供することにあ
る。
SUMMARY OF THE INVENTION The object of the present invention is therefore to improve the method described at the outset in such a way that, in a simple manner, the thermoacoustic oscillations in the combustion chamber are independent of the fuel type (liquid or gaseous). The object is to provide an apparatus suitable for carrying out the method, as well as enabling effective damping.

【0010】[0010]

【課題を解決するための手段】本発明では冒頭で述べた
形式の方法において、燃焼の制御のために、燃焼に関連
して熱放出変動を行う個所を制御することによって、上
記課題を解決することができた。この制御は燃料供給自
体を介して行うのではなくて、本発明の方法は、液状燃
料とガス状燃料の両者に矛盾なしに使用可能である。
SUMMARY OF THE INVENTION The present invention solves the above problems in a method of the type described at the outset by controlling the location of the heat release variation associated with combustion for combustion control. I was able to. This control is not performed via the fuel supply itself, but the method of the present invention can be used consistently with both liquid and gaseous fuels.

【0011】つまり本発明の考え方は、その大きさに応
じて熱放出変動に影響を与えるのではなくて、熱放出変
動を行う個所に影響を与えようとする考え方である。こ
のような手段によって相互相関函数が同じ様に最小化せ
しめられる。基本的に熱放出変動個所は、例えば燃焼室
の輪郭又は火炎の輪郭を変更することによってこれを変
えることができる。しかしこの様な輪郭の変更は、燃焼
室の構造を不必要に複雑化せしめるコスト高な機械装置
を出現せしめる結果になるであろう。
In other words, the idea of the present invention is not to affect the heat release fluctuation depending on the size thereof, but to try to affect the place where the heat release fluctuation is performed. Cross-correlation functions are likewise minimized by such means. Basically, the heat-emission variation point can be changed, for example by changing the contour of the combustion chamber or the contour of the flame. However, such contour changes would result in the emergence of costly machinery that would unnecessarily complicate the structure of the combustion chamber.

【0012】従って本発明に基く有利な実施例にあって
は、熱放出変動個所の制御を点火時点の制御によって行
っている。点火時点の変更乃至点火遅延によって、燃料
の流れに基いて自動的に、点火位置の変更ひいては熱放
出変動個所の変動が行われる。
Therefore, in an advantageous embodiment according to the present invention, the control of the heat release fluctuation point is performed by controlling the ignition timing. By changing the ignition timing or the ignition delay, the ignition position is changed and the heat release fluctuation portion is automatically changed based on the fuel flow.

【0013】本発明に基く方法の別の有利な構成におい
て点火時点の制御を、燃焼室内に付加的な媒体を吹き込
むことによって行う場合は、特に簡単かつ有効に点火時
点に影響を与えることができる。その際自明なことでは
あるが、目指す減衰結果を実現するためには吹き込みを
位相正しく行う必要がある。
In a further advantageous embodiment of the method according to the invention, the ignition timing can be influenced particularly simply and effectively if the ignition timing is controlled by blowing additional medium into the combustion chamber. . At that time, it is self-evident that, in order to achieve the desired attenuation result, it is necessary to perform the blowing in the correct phase.

【0014】第1の別の実施例の場合には、点火遅延を
大きくするために付加的な媒体を吹き込む。その際有利
には水が付加的な媒体として使用される。
In the case of the first alternative embodiment, additional medium is blown in to increase the ignition delay. Water is then preferably used as additional medium.

【0015】第2の別の実施例の場合には、点火遅延を
小さくする付加的な媒体を吹き込む。その際有利には水
素又はCOが付加的な媒体として使用される。
In the case of the second alternative embodiment, an additional medium is injected to reduce the ignition delay. Hydrogen or CO is preferably used here as additional medium.

【0016】本発明の方法を実施するための装置は、圧
力変動を測定するための第1手段と、熱放出個所を制御
するための第2手段とによって特徴づけられており、該
第2手段は第1手段と協働して、制御装置を介し作用結
合を行いかつ1つの制御ループを形成している。
The device for carrying out the method according to the invention is characterized by a first means for measuring pressure fluctuations and a second means for controlling the heat release point, said second means. Cooperates with the first means to make an operative connection via the control device and form a control loop.

【0017】本発明に基く装置の別の有利な構成にあっ
ては、第1手段が燃焼室内に配置された及び又はその後
方に配置された少くとも1つの圧力センサを有し、かつ
第2手段が燃焼室内に配置された少くとも1つの噴射ノ
ズルを有し、該噴射ノズルは、制御弁の設けられた供給
導管を介して点火遅延を制御するための付加的な媒体に
よって負荷可能であるという特徴を有している。
In a further advantageous development of the device according to the invention, the first means have at least one pressure sensor arranged in and / or behind the combustion chamber, and the second means. The means has at least one injection nozzle arranged in the combustion chamber, which injection nozzle is loadable by an additional medium for controlling the ignition delay via a supply conduit provided with a control valve. It has the characteristics of

【0018】これ以外の構成例がその他の付属請求項に
述べられている。
Other exemplary configurations are mentioned in the other appended claims.

【0019】[0019]

【実施例】次に本発明を、添付の図面に関連した実施例
に基いて詳しく説明することにする。
The invention will now be described in more detail on the basis of an embodiment in connection with the accompanying drawings.

【0020】添付の図1には、大容量火力発電所の電流
発生用に使用されているのと同じ様な、(定置式)ガス
タービンの概略が図示されている。ガスタービン1は圧
縮機部分5と、後続のタービン入口7を備えた燃焼室
と、タービン部分4とを有している。圧縮機部分5とタ
ービン部分4との両者には、固定翼及び動翼の環状体が
交互に配置されている。回転している動翼は1つの共通
なタービン軸6に固定されている。燃焼空気は、右側の
圧縮機入口において吸い込まれ、圧縮機部分5内で圧縮
され、高圧の元で(この例ではリング状の)燃焼室3内
に導入される。この位置において空気は、燃料供給導管
10、燃料リング導管9及び多数の燃料噴射ノズル8を
介して燃焼室3内に吹き込まれる燃料と混合する。この
空気燃料混合物が点火されて火炎となって燃焼する。発
生した高温の燃焼ガスが高速度でタービン入口7を貫通
してタービン部分4内に流入し、その位置で燃焼ガス
は、その運動エネルギを少くとも部分的に動翼を介して
回転するタービン軸6に伝達する。
FIG. 1 of the accompanying drawings shows a schematic of a (stationary) gas turbine similar to that used for generating current in large capacity thermal power plants. The gas turbine 1 has a compressor section 5, a combustion chamber with a trailing turbine inlet 7, and a turbine section 4. Annular bodies of fixed blades and moving blades are alternately arranged in both the compressor portion 5 and the turbine portion 4. The rotating blades are fixed to one common turbine shaft 6. The combustion air is sucked in at the compressor inlet on the right side, compressed in the compressor part 5 and introduced under high pressure into the (chamber-shaped in this example) combustion chamber 3. In this position the air mixes with the fuel which is blown into the combustion chamber 3 via the fuel supply conduit 10, the fuel ring conduit 9 and the multiple fuel injection nozzles 8. This air-fuel mixture is ignited to form a flame and burn. The generated high-temperature combustion gas passes through the turbine inlet 7 at a high speed and flows into the turbine portion 4, where the combustion gas rotates its kinetic energy at least partially through the rotor blades. 6.

【0021】燃焼の際燃焼室3内で発生する熱音響的な
振動は、熱放出変動の位置つまり火炎の状態及び又は形
状が、不都合な圧力変動の基準に基いて変化しかつ制御
されることによって、減衰されるような影響を受ける。
このため、少くとも1つの圧力センサ15と、制御装置
2と、付加的な媒体を燃焼室3内に制御して吹き込むた
めの制御弁14とを有している制御ループが形成されて
いる。
The thermoacoustic oscillations that occur in the combustion chamber 3 during combustion are such that the position of the heat release fluctuations, ie the state and / or shape of the flame, changes and is controlled on the basis of unfavorable pressure fluctuation criteria. Is affected by the attenuation.
To this end, a control loop is formed which has at least one pressure sensor 15, a control device 2 and a control valve 14 for controlling and blowing additional medium into the combustion chamber 3.

【0022】圧力センサ15は強力な圧力変動個所に、
つまり例えば燃焼室3自体内に又は−図1に図示のよう
に−タービン入口7に配置されている。この圧力センサ
15は、熱音響的な振動に関連する圧力変動を測定して
これを受容し、かつ発生した信号を後方に配置された測
定値処理準備装置16に伝達する。測定値処理準備装置
16は例えば適したフィルタ回路及び前増幅器を有して
おり、これらが測定信号を妨害から解放しかつ更なる処
理のために必要なレベルに増幅している。続いてそのよ
うに処理された測定信号が後続の測定値処理装置17に
伝達され、該処理装置17は、制御ループ内で必要な位
相移動を行うことができるように構成されている。この
作業は、アナログ式の手段によって又はマイクロプロセ
ッサの使用によるデジタル式の手段によって行われる。
The pressure sensor 15 has a strong pressure fluctuation location,
It is arranged, for example, in the combustion chamber 3 itself or-as shown in Figure 1-at the turbine inlet 7. The pressure sensor 15 measures and accepts pressure fluctuations associated with thermoacoustic vibrations and transmits the generated signal to a measurement value preparation device 16 arranged behind it. The measurement value preparation device 16 has, for example, suitable filter circuits and preamplifiers, which release the measurement signal from interference and amplify it to the level required for further processing. The measurement signal thus processed is then transmitted to the subsequent measurement value processing device 17, which is arranged to be able to perform the required phase shift in the control loop. This work is done by analog means or by digital means by the use of a microprocessor.

【0023】適当に処理された信号は測定値処理装置1
7から制御装置18の入口に到達し、該制御装置18が
制御弁14の制御のために必要な操作量を発生させる。
操作量の形式は、制御弁14が電気式、液体式又は空気
式のいづれで作動するかによって調整される。制御弁1
4は付加的な媒体のための供給導管13内に配置されて
いて、対応する噴射ノズル12への媒体の供給を制御し
ており、該噴射ノズル12は、リング導管11に接続さ
れていて媒体を燃焼室3内に吹き込んでいる。噴射ノズ
ル12は有利には燃焼室3内の火炎の方に向いていて、
火炎方向に対し横方向に又は平行に配向されている。ノ
ズル自体はリング状又は個々のノズルとして形成されて
いる。重要なことは、付加的な媒体が経験的に正確に、
火炎の燃焼形式に依存する、点火遅延の影響が特に顕著
である所定のゾーンに吹き込まれうるようにするという
ことである。
The appropriately processed signal is the measured value processing device 1.
7 to reach the inlet of the control device 18, and the control device 18 generates the manipulated variable necessary for controlling the control valve 14.
The type of manipulated variable is adjusted depending on whether the control valve 14 operates electrically, liquidly or pneumatically. Control valve 1
4 is arranged in the supply conduit 13 for the additional medium and controls the supply of the medium to the corresponding jet nozzle 12, said jet nozzle 12 being connected to the ring conduit 11 Are blown into the combustion chamber 3. The injection nozzle 12 is preferably directed towards the flame in the combustion chamber 3,
It is oriented laterally or parallel to the flame direction. The nozzle itself is formed as a ring or as an individual nozzle. Importantly, the additional medium is empirically accurate,
The effect is to allow injection into certain zones where the effect of ignition delay is particularly pronounced, depending on the type of combustion of the flame.

【0024】付加的な媒体として液体、特に水が使用さ
れている場合には、図示の制御装置を特に簡単に構成す
ることができる。この構成例の利点は、液状媒体のため
の適した調節部材、つまり制御弁14が存在していると
いうことである。水を吹き込むことによって公知の形式
で点火遅延時間を大きくすることができる。適正な位相
移動を伴った吹込みが行われた場合には、冒頭で述べた
相互相関函数が最小になる。
If a liquid, in particular water, is used as additional medium, the control device shown can be constructed in a particularly simple manner. The advantage of this configuration is that there is a suitable regulating member for the liquid medium, namely the control valve 14. By blowing water, the ignition delay time can be increased in a known manner. When the injection with proper phase shift is performed, the cross-correlation function described at the beginning is minimized.

【0025】しかし対応する調節部材が存在している場
合には、点火遅延時間を長くするため水の代りにガス状
の付加媒体を吹き込むことも考えられる。同じ様に、点
火遅延時間を長くする媒体の代りに遅延時間を短くする
ような(液状又はガス状の)媒体を使用することも考え
られる。このように作動するガス状の媒体の例としてこ
こでは水素及び一酸化炭(CO)を挙げることができ
る。
However, if a corresponding control element is present, it is also conceivable to blow in a gaseous additional medium instead of water in order to increase the ignition delay time. It is likewise conceivable to use a medium (liquid or gaseous) with a shorter ignition delay time instead of a medium with a longer ignition delay time. Hydrogen and carbon monoxide (CO) can be mentioned here as examples of gaseous media operating in this way.

【0026】本発明の利用は勿論、実施例で図示した、
定置式ガスタービンのリング状の主燃焼室に限定される
ものではない。幾何学的に別の形状の燃焼室、後燃焼
室、航空原動機又はそれに類似するものに使用した場合
にも、同じ様な結果が得られる。
The use of the present invention is, of course, illustrated in the embodiments,
It is not limited to the ring-shaped main combustion chamber of the stationary gas turbine. Similar results are obtained when used in geometrically different shaped combustion chambers, after-combustion chambers, aviation engines or the like.

【0027】全体として本発明によって、燃焼過程の際
に発生する熱音響的な振動を燃料の種類とは無関係に減
衰させ又は完全に抑制することのできる、燃焼室を運転
するための方法及び装置を達成することができる。
As a whole, according to the invention, a method and a device for operating a combustion chamber in which the thermoacoustic oscillations occurring during the combustion process can be damped or completely suppressed independent of the type of fuel Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスタービンの燃焼室内の熱音響的な振動を、
付加的な媒体を燃焼室内に制御して吹き込むことによっ
て有効に減衰させることのできる、本発明に基く制御装
置の有利な実施例の図である。
FIG. 1 shows thermoacoustic vibrations in a combustion chamber of a gas turbine,
FIG. 5 is a diagram of an advantageous embodiment of a control device according to the invention, which can be effectively damped by the controlled blowing of additional medium into the combustion chamber.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 制御装置 3 燃焼室(リング状) 4 タービン部分 5 圧縮機部分 6 タービン軸 7 タービン入口 8 燃料噴射ノズル 9 燃料リング導管 10 燃料供給導管 11 リング導管(付加媒体の) 12 噴射ノズル(付加媒体の) 13 供給導管(付加媒体の) 14 制御弁 15 圧力センサ 16 測定値処理準備装置 17 測定値処理装置 18 制御装置 1 Gas Turbine 2 Control Device 3 Combustion Chamber (Ring) 4 Turbine Part 5 Compressor Part 6 Turbine Shaft 7 Turbine Inlet 8 Fuel Injection Nozzle 9 Fuel Ring Conduit 10 Fuel Supply Conduit 11 Ring Conduit (Additional Medium) 12 Injection Nozzle ( Additional medium) 13 Supply conduit (of additional medium) 14 Control valve 15 Pressure sensor 16 Measured value processing preparation device 17 Measured value processing device 18 Control device

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 流入する燃料が燃焼室(3)内で、殊に
ガスタービン(1)の燃焼室内で、燃焼する際に発生す
る熱音響的な振動を減衰させるための方法であって、燃
焼室(3)内の圧力変動を測定し、かつ測定した圧力変
動に従って燃焼を位相正しく制御して、圧力変動が減少
するように燃焼に影響を及ぼす形式のものにおいて、 燃焼の制御のために、燃焼に関連して熱放出変動を行う
個所を制御することを特徴とする、熱音響的な振動を減
衰させるための方法。
1. A method for attenuating thermoacoustic vibrations which occur during combustion of inflowing fuel in a combustion chamber (3), in particular in a combustion chamber of a gas turbine (1), In the type in which the pressure fluctuation in the combustion chamber (3) is measured, and the combustion is controlled in phase according to the measured pressure fluctuation to affect the combustion so that the pressure fluctuation is reduced, , A method for damping thermo-acoustic oscillations, characterized in that it controls the location of the heat release fluctuations associated with combustion.
【請求項2】 熱放出変動個所の制御を点火時点の制御
によって行うことを特徴とする、請求項1記載の方法。
2. The method according to claim 1, characterized in that the control of the heat release fluctuation point is performed by controlling the ignition timing.
【請求項3】 点火時点の制御を、燃焼室内へ付加的な
媒体を吹き込むことによって行うことを特徴とする、請
求項2記載の方法。
3. Method according to claim 2, characterized in that the control of the ignition timing is carried out by blowing additional medium into the combustion chamber.
【請求項4】 点火遅延を大きくする付加的な媒体を吹
き込むことを特徴とする、請求項3記載の方法。
4. Method according to claim 3, characterized in that an additional medium is blown to increase the ignition delay.
【請求項5】 点火遅延を小さくする付加的な媒体を吹
き込むことを特徴とする、請求項3記載の方法。
5. Method according to claim 3, characterized in that additional medium is blown in to reduce the ignition delay.
【請求項6】 付加的な媒体が液状の媒体であることを
特徴とする、請求項3から5までのいずれか1項記載の
方法。
6. The method according to claim 3, wherein the additional medium is a liquid medium.
【請求項7】 点火遅延を大きくするために付加的な媒
体として水を吹き込むことを特徴とする、請求項6記載
の方法。
7. A method according to claim 6, characterized in that water is blown in as an additional medium in order to increase the ignition delay.
【請求項8】 付加的な媒体がガス状の媒体であること
を特徴とする、請求項3から5までのいずれか1項記載
の方法。
8. A method according to any one of claims 3 to 5, characterized in that the additional medium is a gaseous medium.
【請求項9】 点火遅延を小さくするために付加的な媒
体として水素又はCOを吹き込むことを特徴とする、請
求項8記載の方法。
9. Method according to claim 8, characterized in that hydrogen or CO is blown in as additional medium in order to reduce the ignition delay.
【請求項10】 圧力変動を測定するための第1手段と
熱放出個所を制御するための第2手段とが設けられてお
り、該第2手段は制御装置(2)を介して第1手段と作
用結合され、かつ1つの制御ループを形成していること
を特徴とする、請求項1から9までのいずれか1項記載
の方法を実施するための装置。
10. A first means for measuring the pressure fluctuations and a second means for controlling the heat release point are provided, the second means via the control device (2). Device for carrying out the method according to any one of claims 1 to 9, characterized in that it is operatively coupled to and forms a control loop.
【請求項11】 第1手段が燃焼室(3)内に配置され
た及び又はその後方に配置された少くとも1つの圧力セ
ンサ(15)を有し、かつ第2手段が燃焼室(3)内に
配置された少くとも1つの噴射ノズル(12)を有し、
該噴射ノズル(12)は、制御弁(14)の設けられた
供給導管(13)を介して点火遅延を制御するための付
加的な媒体によって負荷可能であることを特徴とする、
請求項10記載の装置。
11. The first means has at least one pressure sensor (15) arranged in and / or behind the combustion chamber (3), and the second means comprises the combustion chamber (3). Having at least one injection nozzle (12) disposed therein,
The injection nozzle (12) is characterized in that it can be loaded by an additional medium for controlling the ignition delay via a supply conduit (13) provided with a control valve (14),
The device according to claim 10.
【請求項12】 制御装置(2)が直列回路で測定値処
理準備装置(16)と測定値処理装置(17)と制御駆
動装置(18)とを有し、測定値処理準備装置(16)
の入口が圧力センサ(15)と、また制御駆動装置(1
8)の出口が制御弁(14)と、夫々作用結合している
ことを特徴とする、請求項11記載の装置。
12. The control device (2) comprises a measurement value processing preparation device (16), a measurement value processing device (17) and a control drive device (18) in a series circuit, and the measurement value processing preparation device (16).
The inlet of the pressure sensor (15) and also the control drive (1
12. Device according to claim 11, characterized in that the outlets of 8) are each operatively connected to a control valve (14).
【請求項13】 測定値処理準備装置(16)が、殊に
正しい位相の調節のために制御ループの内に設けられて
いることを特徴とする、請求項12記載の装置。
13. Arrangement according to claim 12, characterized in that a measurement value preparation device (16) is provided in the control loop, in particular for the correct phase adjustment.
JP6275089A 1993-11-16 1994-11-09 Method and equipment for damping thermal acoustic vibration Pending JPH07190364A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4339094A DE4339094A1 (en) 1993-11-16 1993-11-16 Damping of thermal-acoustic vibrations resulting from combustion of fuel
DE4339094.3 1993-11-16

Publications (1)

Publication Number Publication Date
JPH07190364A true JPH07190364A (en) 1995-07-28

Family

ID=6502712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275089A Pending JPH07190364A (en) 1993-11-16 1994-11-09 Method and equipment for damping thermal acoustic vibration

Country Status (2)

Country Link
JP (1) JPH07190364A (en)
DE (1) DE4339094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248833A (en) * 2000-01-07 2001-09-14 Alstom Power Schweiz Ag Method and device for suppressing eddy current in fluid- power machine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526369A1 (en) * 1995-07-20 1997-01-23 Dvgw Ev Method and appliance for eliminating fluctuations in flames and pressure in furnace with flame-producing burner
EP0754908B2 (en) * 1995-07-20 2001-04-18 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Method and apparatus for suspressing flame and pressure vibrations in a furnace
GB2306216B (en) * 1995-10-13 1997-12-24 Us Energy Combustor oscillating pressure stabilization and method
DE19542918A1 (en) * 1995-11-17 1997-05-22 Asea Brown Boveri Device for damping thermoacoustic pressure vibrations
DE19615910B4 (en) * 1996-04-22 2006-09-14 Alstom burner arrangement
DE19636093B4 (en) * 1996-09-05 2004-07-29 Siemens Ag Method and device for acoustic modulation of a flame generated by a hybrid burner
RU2186298C2 (en) * 1996-09-16 2002-07-27 Сименс Акциенгезелльшафт Method and device for fuel and air combustion
WO1998034067A1 (en) 1997-02-04 1998-08-06 Siemens Aktiengesellschaft Combustion device and method for actively damping combustion vibrations
JP2002513130A (en) 1998-04-23 2002-05-08 シーメンス アクチエンゲゼルシヤフト Combustion chamber equipment
WO1999056059A1 (en) 1998-04-23 1999-11-04 Siemens Aktiengesellschaft Combustion chamber assembly
US6560967B1 (en) 1998-05-29 2003-05-13 Jeffrey Mark Cohen Method and apparatus for use with a gas fueled combustor
DE19829398A1 (en) * 1998-07-01 2000-01-05 Asea Brown Boveri Gas turbine with reduced noise operation
JP4472181B2 (en) 1998-08-31 2010-06-02 シーメンス アクチエンゲゼルシヤフト Burner equipment
EP0987495B1 (en) 1998-09-16 2003-10-29 ALSTOM (Switzerland) Ltd Method for minimizing thermo-acoustic vibrations in gas turbine combustion chambers
DE19934612A1 (en) 1999-07-23 2001-01-25 Abb Alstom Power Ch Ag Method for actively suppressing fluid mechanical instabilities in a combustion system and combustion system for carrying out the method
EP1199521A1 (en) 2000-10-16 2002-04-24 Siemens Aktiengesellschaft Gas turbine and method for gas turbine ring combustion chamber vibration damping
DE10056124A1 (en) 2000-11-13 2002-05-23 Alstom Switzerland Ltd Burner system with staged fuel injection and method of operation
EP1215382B1 (en) 2000-12-16 2007-08-22 ALSTOM Technology Ltd Method of operating a premix burner
US20020157400A1 (en) 2001-04-27 2002-10-31 Siemens Aktiengesellschaft Gas turbine with combined can-type and annular combustor and method of operating a gas turbine
WO2004010052A1 (en) * 2002-07-19 2004-01-29 Alstom Technology Ltd Method for controlling the introduction of inert media into a combustion chamber
DE10257275A1 (en) * 2002-12-07 2004-06-24 Alstom Technology Ltd Method and device for influencing thermoacoustic vibrations in combustion systems
DE10325455A1 (en) * 2003-06-05 2004-12-30 Alstom Technology Ltd Method for operating an annular burner arrangement in an intermediate heating stage of a multi-stage combustion device of a gas turbine
US9464573B2 (en) 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
EP2119964B1 (en) 2008-05-15 2018-10-31 Ansaldo Energia IP UK Limited Method for reducing emissons from a combustor
EP2119966A1 (en) 2008-05-15 2009-11-18 ALSTOM Technology Ltd Combustor with reduced carbon monoxide emissions
CN108870439A (en) * 2018-07-27 2018-11-23 中国东方电气集团有限公司 A kind of combustion oscillation control structure for combustion apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1495015A (en) * 1975-09-01 1977-12-14 British Petroleum Co Monitoring and/or control of burners
FR2490786A1 (en) * 1980-09-25 1982-03-26 Centre Nat Rech Scient METHOD FOR CONTROLLING A COMBUSTION FLAME AND MICROPHONE PROBE FOR ITS IMPLEMENTATION
GB2219070B (en) * 1988-05-27 1992-03-25 Rolls Royce Plc Fuel injector
US5097656A (en) * 1989-12-29 1992-03-24 Sundstrand Corporation Dual purpose apparatus for turbine engine exhaust noise and anti-surge air noise reduction
EP0611434A1 (en) * 1991-11-15 1994-08-24 Siemens Aktiengesellschaft Arrangement for suppressing combustion-caused vibrations in the combustion chamber of a gas turbine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248833A (en) * 2000-01-07 2001-09-14 Alstom Power Schweiz Ag Method and device for suppressing eddy current in fluid- power machine

Also Published As

Publication number Publication date
DE4339094A1 (en) 1995-05-18

Similar Documents

Publication Publication Date Title
JPH07190364A (en) Method and equipment for damping thermal acoustic vibration
US6464489B1 (en) Method and apparatus for controlling thermoacoustic vibrations in a combustion system
US5428951A (en) Method and apparatus for active control of combustion devices
US4557106A (en) Combustion system for a gas turbine engine
JP4429730B2 (en) gas turbine
JP4958709B2 (en) Device for reducing combustor acoustics
JP4059923B2 (en) Method and apparatus for acoustic modulation of flame generated from a hybrid burner
JP5820574B2 (en) System and method for controlling combustion dynamics of a gas turbine
JP6243621B2 (en) Acoustic resonator located in the flow sleeve of a gas turbine combustor
EP1030112B1 (en) Combustor tuning
US20130269353A1 (en) Combustion system for a gas turbine comprising a resonator
JP2012117807A (en) Wide frequency response tunable resonator
JP4347643B2 (en) Premixed burner and gas turbine and method of burning fuel
US20080118343A1 (en) Combustion control for a gas turbine
CN109073221B (en) High frequency acoustic damper for combustor liner
JPH04121425A (en) Active controller inhibiting instability resulting from combustion
JP2013525737A (en) Burner device and vibration damping method for this kind of burner
US6170265B1 (en) Method and device for minimizing thermoacoustic vibrations in gas-turbine combustion chambers
JP2004316506A (en) Combustor, gas turbine, and jet engine
JPH09269107A (en) Apparatus and method for combustion vibration suppression
JPH06147484A (en) Combustion controller
JP5054988B2 (en) Combustor
US20020029573A1 (en) Method for reducing thermoacoustic vibrations in turbo machines with a burner system
EP1557609A1 (en) Device and method for damping thermoacoustic oscillations in a combustion chamber
US6698209B1 (en) Method of and appliance for suppressing flow eddies within a turbomachine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050107