JPH0719002A - Turbine blade having cooling flow passage - Google Patents

Turbine blade having cooling flow passage

Info

Publication number
JPH0719002A
JPH0719002A JP16488293A JP16488293A JPH0719002A JP H0719002 A JPH0719002 A JP H0719002A JP 16488293 A JP16488293 A JP 16488293A JP 16488293 A JP16488293 A JP 16488293A JP H0719002 A JPH0719002 A JP H0719002A
Authority
JP
Japan
Prior art keywords
cooling
hole
cooling air
air
insert member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16488293A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ochiai
宏行 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16488293A priority Critical patent/JPH0719002A/en
Publication of JPH0719002A publication Critical patent/JPH0719002A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve cooling effect by inserting an insert member in the hollow hole of a turbine blade, providing a supporting column for forming a cooling flow passage in which a clearance is set between the insert member and the inner wall surface of the hollow hole, and arranging a hole which allows cooling air to be blown out from the insert member on a vicinity shifted downstream from the supporting column body. CONSTITUTION:The blade main body 10 of a turbine blade is formed in a hollow structure, a plurality of hollow holes 13A, 13B enclosed by a side wall 11 and a bulkhead 12 are formed, and a cooling hole 11a and an exhaust port 11b which allows blowing out of a part of cooling air which passes through cooling passages 15A, 15B are provided on the side wall 11. Insert members 14A, 14B are formed in hollow structures having air chambers 14a, 14b, respectively, and a blowout hole 14c is opened to the outside cooling passages 15A, 15B. The blowout hole 14c is arranged in the vicinity of a position which is shifted downstream from a supporting column 16 for supporting the insert members 14A, 14B. Parallel flow of cooling air is disturbed by the supporting column 16, new cooling air is blown out from the blowout hole 14c toward the position where cooling air is weakened in a backward vicinity so as to improve cooling effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却流路を有するター
ビン翼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine blade having a cooling passage.

【0002】[0002]

【従来の技術】図4は、冷却流路を有するタービン翼の
例を示すもので、回転軸線Xの回りで矢印で示すように
回転させられる支持円板1の外周部に、複数のタービン
翼2が固定されている。
2. Description of the Related Art FIG. 4 shows an example of a turbine blade having a cooling flow path. A plurality of turbine blades are provided on an outer peripheral portion of a support disk 1 which is rotated around a rotation axis X as indicated by an arrow. 2 is fixed.

【0003】該タービン翼2の内部には、蛇行状等の冷
却流路3が形成されて、冷却空気の挿通が行なわれ、高
温ガスの影響によるタービン翼2の温度上昇を許容値以
下に抑制するように設定されている。
Inside the turbine blade 2, a meandering cooling passage 3 is formed to allow cooling air to pass therethrough, and to suppress the temperature rise of the turbine blade 2 due to the influence of high temperature gas below an allowable value. Is set to.

【0004】また、図5は冷却流路を有するタービン翼
の他の構造例を示すものである。該タービン翼にあって
は、軽量化と強度確保とを図るために、タービン翼(翼
本体)2を中空構造として、中空穴4を囲む側壁5を薄
くする一方で、中空穴4の中に空気室6aを有するイン
サート部材6を挿入するとともに、インサート部材6と
側壁5との間に介在状態に支持柱体7を複数配して、イ
ンサート部材6と側壁5との間隙によって冷却流路3を
確保するものである。さらに、図6に各矢印で示すよう
に、インサート部材6の空気室6aに送り込まれた冷却
空気を、噴出孔6bから側壁5に向けてシャワー状に噴
出させ、側壁5の内面近傍に新たな冷却空気を送り込ん
で、翼本体2の側壁5の冷却を促進させるとともに、冷
却空気の一部を冷却孔5aから側壁5の表面に噴出し
て、表面の高温化を抑制するようにしている。
FIG. 5 shows another structural example of a turbine blade having a cooling flow path. In order to reduce the weight and secure the strength of the turbine blade, the turbine blade (blade body) 2 has a hollow structure, and the side wall 5 surrounding the hollow hole 4 is thinned, while While inserting the insert member 6 having the air chamber 6a, a plurality of support columns 7 are arranged between the insert member 6 and the side wall 5, and the cooling channel 3 is formed by the gap between the insert member 6 and the side wall 5. To secure. Further, as shown by the arrows in FIG. 6, the cooling air sent into the air chamber 6a of the insert member 6 is jetted in a shower shape from the jet holes 6b toward the side wall 5, and a new air is generated near the inner surface of the side wall 5. Cooling air is sent to accelerate the cooling of the side wall 5 of the blade body 2, and at the same time, a part of the cooling air is jetted from the cooling hole 5a to the surface of the side wall 5 to suppress the temperature rise of the surface.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの技術
にあっては、いずれも冷却効果の点で解決すべき課題が
残されている。つまり、冷却空気を冷却流路3に沿って
挿通させる際に、冷却空気が平行流となって側壁5の内
面近傍に冷却空気層(クーリングエアフィルム)Cが形
成されるのであるが、この冷却空気層Cが、噴出孔6b
からの冷却空気流を遮って、低温状態の冷却空気が側壁
5の内面まで到達することを妨げる現象が生じ、冷却効
率が低下してしまうという技術的課題が残されている。
However, all of these techniques still have problems to be solved in terms of cooling effect. That is, when the cooling air is passed along the cooling flow path 3, the cooling air becomes a parallel flow and a cooling air layer (cooling air film) C is formed near the inner surface of the side wall 5. Air layer C is the ejection hole 6b
There is still a technical problem that the cooling efficiency is lowered due to the phenomenon that the cooling air flow from the inside is blocked to prevent the cooling air in the low temperature state from reaching the inner surface of the side wall 5.

【0006】本発明は、これらの課題に鑑みてなされた
もので、新たな低温状態の空気を翼本体の側壁の内面に
到達させて、冷却効果を向上させることを目的としてい
る。
The present invention has been made in view of these problems, and an object thereof is to make air in a new low temperature state reach the inner surface of the side wall of the blade body to improve the cooling effect.

【0007】[0007]

【課題を解決するための手段】本発明に係る冷却流路を
有するタービン翼にあっては、中空穴が形成される翼本
体と、翼本体の中空穴に挿入され冷却空気が送り込まれ
る空気室とその貯留冷却空気を噴出する噴出孔とを有す
るインサート部材と、インサート部材と中空穴の内壁面
との間に介在状態に配され間隙を設定してインサート部
材の回りに冷却流路を形成する支持柱体とを具備し、イ
ンサート部材の噴出孔が、支持柱体から冷却流路の下流
方向にずれた近傍位置に配される構成を採用している。
In a turbine blade having a cooling passage according to the present invention, a blade body having a hollow hole formed therein, and an air chamber inserted into the hollow hole of the blade body and supplied with cooling air. And an insert member having an ejection hole for ejecting the stored cooling air, and an insertion member disposed between the insert member and the inner wall surface of the hollow hole to set a gap to form a cooling flow path around the insert member. A support column is provided, and the ejection hole of the insert member is arranged at a position near the column shifted from the support column in the downstream direction of the cooling flow path.

【0008】[0008]

【作用】インサート部材の空気室に送り込まれた冷却空
気は、空気室に一時貯留された後に、噴出孔から冷却流
路の中に噴出させられる。この際に、冷却流路に冷却空
気流が生じていると、翼本体が内部から冷却されるが、
その冷却空気流は、支持柱体と交差することによって流
れが乱される。この冷却空気流の乱された箇所に、噴出
孔を経由した新たな冷却空気が噴出すると、低温状態の
空気が翼本体の側壁の内面に到達してその冷却を行なう
ことにより冷却効果が向上する。
The cooling air sent into the air chamber of the insert member is temporarily stored in the air chamber and then ejected from the ejection holes into the cooling passage. At this time, if a cooling air flow is generated in the cooling channel, the blade body is cooled from the inside,
The cooling air flow is disturbed by intersecting with the support columns. When new cooling air is ejected to the disturbed portion of the cooling air flow through the ejection holes, the low temperature air reaches the inner surface of the side wall of the blade body and cools it, thereby improving the cooling effect. .

【0009】[0009]

【実施例】以下、本発明に係る冷却流路を有するタービ
ン翼の一実施例について、図1ないし図3に基づいて説
明する。各図において、符号10は翼本体、11は側
壁、12は隔壁、13A,13Bは中空穴、14A,1
4Bはインサート部材、15A,15Bは冷却流路、1
6は支持柱体である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a turbine blade having a cooling passage according to the present invention will be described below with reference to FIGS. In each drawing, reference numeral 10 is a blade main body, 11 is a side wall, 12 is a partition wall, 13A and 13B are hollow holes, and 14A and 1
4B is an insert member, 15A and 15B are cooling channels, 1
6 is a support pillar.

【0010】前記翼本体10は、中空構造とされて、側
壁11と隔壁12とによって囲まれた複数の中空穴13
A,13Bを有しており、側壁11の適宜部分に、冷却
流路15A,15Bを挿通する冷却空気の一部を噴出し
て外表面を冷却するための冷却孔11aが形成され、縁
部に中空穴13Bと外部とを接続した状態の排気口11
bが形成される。
The blade body 10 has a hollow structure, and a plurality of hollow holes 13 surrounded by a side wall 11 and a partition wall 12.
A and 13B are provided, and a cooling hole 11a for cooling the outer surface by ejecting a part of the cooling air passing through the cooling flow paths 15A and 15B is formed in an appropriate portion of the side wall 11, and the edge portion is formed. Exhaust port 11 with hollow hole 13B connected to the outside
b is formed.

【0011】前記インサート部材14A,14Bは、翼
本体10の複数の中空穴13A,13Bにそれぞれ挿入
して、その回りの側壁11との間に冷却流路15A,1
5Bを形成するもので、冷却空気が送り込まれる空気室
14a,14bを有する中空構造であり、空気室14
a,14bとその外部(冷却流路15A,15B)とを
接続する噴出孔14cが適宜数明けられている。
The insert members 14A and 14B are respectively inserted into the plurality of hollow holes 13A and 13B of the blade body 10, and the cooling passages 15A and 1 are provided between the insert members 14A and 14B and the side wall 11 around them.
5B is formed, and is a hollow structure having air chambers 14a and 14b into which cooling air is sent.
A number of ejection holes 14c for connecting a and 14b and the outside thereof (cooling channels 15A and 15B) are appropriately opened.

【0012】そして、側壁11の内壁面とインサート部
材14A,14Bとの間には、間隙を設定することによ
って、冷却流路15A,15Bを確保するための支持柱
体16が、介在状態にかつ冷却流路15A,15Bと交
差状態に配される。
A support pillar 16 for ensuring the cooling flow passages 15A, 15B is provided between the inner wall surface of the side wall 11 and the insert members 14A, 14B by interposing a gap therebetween. The cooling channels 15A and 15B are arranged in an intersecting state.

【0013】さらに、インサート部材14A,14Bの
噴出孔14cは、図2に示すように、支持柱体16から
冷却流路15A,15Bの下流方向にずれた近傍位置に
配されるように設定される。
Further, as shown in FIG. 2, the ejection holes 14c of the insert members 14A, 14B are set so as to be arranged at positions near the support columns 16 and displaced in the downstream direction of the cooling channels 15A, 15B. It

【0014】このように構成されている冷却流路を有す
るタービン翼にあって、インサート部材14A,14B
の空気室14a,14bに冷却空気が送り込まれれる
と、冷却空気が空気室14a,14bに一時貯留された
後に、複数箇所において噴出孔14cから冷却流路15
A,15Bの中に、例えばシャワー状に噴出させられ
る。
In the turbine blade having the cooling passage thus configured, the insert members 14A, 14B
When the cooling air is sent into the air chambers 14a and 14b of the cooling chamber, the cooling air is temporarily stored in the air chambers 14a and 14b, and then the cooling passage 15 is ejected from the ejection holes 14c at a plurality of locations.
Into A and 15B, for example, it is jetted like a shower.

【0015】そして、冷却空気の一部は、図2に示すよ
うに、冷却流路15A,15Bに沿って流れて、側壁1
1の内面との接触によって側壁11を内面から冷却し、
次第に平行流に導かれる。
Then, as shown in FIG. 2, a part of the cooling air flows along the cooling flow paths 15A and 15B, and the side wall 1
Cooling the side wall 11 from the inner surface by contact with the inner surface of 1,
It gradually leads to a parallel flow.

【0016】また、冷却流路15A,15Bを挿通する
冷却空気は、支持柱体16と交差することによって、平
行流が乱されて支持柱体16の後方近傍位置で弱められ
た状態となる。この場合に、支持柱体16から冷却流路
15A,15Bの下流方向にずれた近傍位置に明けられ
た噴出孔14cから、冷却空気が噴出していると、図3
に示すように、冷却空気の平行な流れが乱されることに
よって、冷却空気層Cが一部消滅しつつある部分に、冷
却空気が合流することになり、低温状態の新たな空気が
容易に側壁11の内面に到達して、その冷却を行なうこ
とになる。このように、新たな冷却空気が冷却空気層C
に送り込まれて合流することによって、空気の入れ替え
が促進され、冷却効果が向上することになる。
Further, the cooling air passing through the cooling flow paths 15A and 15B intersects with the support columns 16 to disturb the parallel flow, so that the cooling air is weakened in the rear vicinity of the support columns 16. In this case, when the cooling air is ejected from the ejection holes 14c opened in the vicinity of the cooling columns 15A and 15B, which are displaced from the support columns 16 in the downstream direction, as shown in FIG.
As shown in FIG. 5, the parallel flow of the cooling air is disturbed, so that the cooling air joins the part where the cooling air layer C is partially disappearing, and the new air in the low temperature state is easily formed. After reaching the inner surface of the side wall 11, the cooling is performed. In this way, the new cooling air is the cooling air layer C.
By being sent to and merged with each other, the replacement of air is promoted and the cooling effect is improved.

【0017】一方、冷却流路15Bの下流に送り込まれ
た余剰空気は、側壁11に配された排気口11bから翼
本体10の外に排出される。
On the other hand, the surplus air sent to the downstream side of the cooling flow path 15B is discharged to the outside of the blade body 10 through the exhaust port 11b arranged on the side wall 11.

【0018】〔他の実施態様〕本発明にあっては、一実
施例に代えて以下の技術を採用することができる。 a)空気室14a,14b及び冷却流路15A,15B
を任意数配すること。 b)支持柱体16の横断面形状を任意とすること。
[Other Embodiments] In the present invention, the following technique can be adopted instead of one embodiment. a) Air chambers 14a, 14b and cooling channels 15A, 15B
Arrange any number of. b) The cross-sectional shape of the support pillar 16 is arbitrary.

【0019】[0019]

【発明の効果】本発明に係る冷却流路を有するタービン
翼によれば、以下のような効果を奏する。 (1) 翼本体の中空穴に挿入され送り込まれた冷却空
気を噴出する噴出孔を有するインサート部材と、インサ
ート部材と中空穴の内壁面との間に介在状態に配され間
隙を設定してインサート部材の回りに冷却流路を形成す
る支持柱体とを具備し、インサート部材の噴出孔が、支
持柱体から冷却流路の下流方向にずれた近傍位置に配さ
れる構成を採用することにより、新たな低温状態の空気
を順次翼本体の側壁の内面に到達させて、翼本体の冷却
を効率よく実施することができる。 (2) 支持柱体の後方に冷却空気流を送り込む簡単な
構造であるから、容易に実施することができる。 (3) インサート部材の噴出孔の近傍に支持柱体が配
されることにより、軽量化の際の強度低下を防止するこ
とができる。
The turbine blade having the cooling passage according to the present invention has the following effects. (1) An insert member having an ejection hole for ejecting the cooling air which is inserted into the hollow hole of the blade body and ejects the cooling air, and an insert which is arranged in an interposing state between the insert member and the inner wall surface of the hollow hole to set a gap. By including a support columnar body that forms a cooling flow path around the member, and the ejection holes of the insert member are arranged in a vicinity position displaced from the support columnar body in the downstream direction of the cooling flow path. It is possible to cool the blade body efficiently by making the new low temperature air sequentially reach the inner surface of the side wall of the blade body. (2) Since it has a simple structure in which the cooling air flow is sent to the rear of the support column, it can be easily implemented. (3) By disposing the supporting columnar body in the vicinity of the ejection hole of the insert member, it is possible to prevent a reduction in strength when the weight is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る冷却流路を有するタービン翼の一
実施例を示す横断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a turbine blade having a cooling channel according to the present invention.

【図2】図1の冷却流路と支持柱体と噴出孔との関係を
示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the relationship between the cooling passages, the support columns, and the ejection holes of FIG.

【図3】図2における冷却空気流の混合状態を示す模式
図である。
FIG. 3 is a schematic diagram showing a mixed state of cooling air streams in FIG.

【図4】冷却流路を有するタービン翼の構造例を示す斜
視図である。
FIG. 4 is a perspective view showing a structural example of a turbine blade having a cooling channel.

【図5】タービン翼の従来例を示す横断面図である。FIG. 5 is a cross-sectional view showing a conventional example of a turbine blade.

【図6】冷却流路とインサート部材の噴出孔との関係を
示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing the relationship between the cooling flow path and the ejection holes of the insert member.

【符号の説明】[Explanation of symbols]

10 翼本体 11 側壁 11a 冷却孔 11b 排気口 12 隔壁 13A,13B 中空穴 14A,14B インサート部材 14a,14b 空気室 14c 噴出孔 15A,15B 冷却流路 16 支持柱体 X 回転軸線 C 冷却空気層(クーリングエアフィルム) 10 Blade Main Body 11 Side Wall 11a Cooling Hole 11b Exhaust Port 12 Partition 13A, 13B Hollow Hole 14A, 14B Insert Member 14a, 14b Air Chamber 14c Jet Hole 15A, 15B Cooling Channel 16 Support Pillar X Rotating Axis C Cooling Air Layer (Cooling) Air film)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空穴が形成される翼本体と、翼本体の
中空穴に挿入され冷却空気が送り込まれる空気室とその
貯留冷却空気を噴出する噴出孔とを有するインサート部
材と、インサート部材と中空穴の内壁面との間に介在状
態に配され間隙を設定してインサート部材の回りに冷却
流路を形成する支持柱体とを具備し、インサート部材の
噴出孔が、支持柱体から冷却流路の下流方向にずれた近
傍位置に配されることを特徴とする冷却流路を有するタ
ービン翼。
1. An insert member having an airfoil body having a hollow hole formed therein, an air chamber inserted into the hollow hole of the airfoil body and into which cooling air is sent, and an ejection hole for ejecting the stored cooling air, and an insert member. A support columnar body which is disposed in an intervening state between the inner wall surface of the hollow hole and forms a cooling flow path around the insert member by setting a gap, and the ejection hole of the insert member is cooled from the support columnar body. A turbine blade having a cooling flow passage, which is arranged at a position shifted in the downstream direction of the flow passage.
JP16488293A 1993-07-02 1993-07-02 Turbine blade having cooling flow passage Withdrawn JPH0719002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16488293A JPH0719002A (en) 1993-07-02 1993-07-02 Turbine blade having cooling flow passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16488293A JPH0719002A (en) 1993-07-02 1993-07-02 Turbine blade having cooling flow passage

Publications (1)

Publication Number Publication Date
JPH0719002A true JPH0719002A (en) 1995-01-20

Family

ID=15801698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16488293A Withdrawn JPH0719002A (en) 1993-07-02 1993-07-02 Turbine blade having cooling flow passage

Country Status (1)

Country Link
JP (1) JPH0719002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174688A (en) * 2009-01-28 2010-08-12 Ihi Corp Turbine blade
EP3333368A1 (en) * 2016-12-08 2018-06-13 Doosan Heavy Industries & Construction Co., Ltd. Cooling structure for vane
KR101877644B1 (en) * 2016-12-08 2018-07-11 두산중공업 주식회사 Cooling Structure for Vane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174688A (en) * 2009-01-28 2010-08-12 Ihi Corp Turbine blade
EP3333368A1 (en) * 2016-12-08 2018-06-13 Doosan Heavy Industries & Construction Co., Ltd. Cooling structure for vane
JP2018096376A (en) * 2016-12-08 2018-06-21 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Vane cooling structure
KR101877644B1 (en) * 2016-12-08 2018-07-11 두산중공업 주식회사 Cooling Structure for Vane
US10968755B2 (en) 2016-12-08 2021-04-06 DOOSAN Heavy Industries Construction Co., LTD Cooling structure for vane

Similar Documents

Publication Publication Date Title
EP1247940B1 (en) Gas turbine stationary blade
EP3333368B1 (en) Cooling structure for vane
US4616976A (en) Cooled vane or blade for a gas turbine engine
EP0810349B1 (en) Cooling of a turbine blade
US3301526A (en) Stacked-wafer turbine vane or blade
KR20170015234A (en) Turbo-engine component
US6824359B2 (en) Turbine blade
EP1363075B1 (en) Heat shield panels for use in a combustor for a gas turbine engine
US3799696A (en) Cooled vane or blade for a gas turbine engine
US9151173B2 (en) Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
US7121787B2 (en) Turbine nozzle trailing edge cooling configuration
JPH1089005A (en) High temperature member cooling device
JP2010019259A (en) Method and apparatus for providing film cooling to turbine component
KR20170015239A (en) Method for cooling a turbo-engine component and turbo-engine component
US6474947B1 (en) Film cooling hole construction in gas turbine moving-vanes
CZ292382B6 (en) Cooling system for an airfoil, in particular gas turbine blade airfoil
KR20070066843A (en) Turbine blade tip cooling
JP2006112429A (en) Gas turbine engine part
JP2001317302A (en) Film cooling for closed loop cooled airfoil
JPH04232336A (en) Vane for gas turbine engine for which curved air film cooling hole is provided
US8613597B1 (en) Turbine blade with trailing edge cooling
JPH0610704A (en) Air foil device
JP2001073707A (en) Rear-edge cooling passage causing partial turbulence for gas turbine nozzle
JP2004044572A (en) Turbine blade and gas turbine equipped with its turbine blade
KR20060043297A (en) Microcircuit cooling for a turbine airfoil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905