JPH07188877A - Amorphous alloy for biological use - Google Patents
Amorphous alloy for biological useInfo
- Publication number
- JPH07188877A JPH07188877A JP5338664A JP33866493A JPH07188877A JP H07188877 A JPH07188877 A JP H07188877A JP 5338664 A JP5338664 A JP 5338664A JP 33866493 A JP33866493 A JP 33866493A JP H07188877 A JPH07188877 A JP H07188877A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous
- alloy
- corrosion resistance
- amorphous alloy
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、生体用非晶質合金に
関するものである。さらに詳しくは、歯科および整形外
科の分野におけるインプラント材料、医療用機材等に有
用な、耐食性に優れ、強度が大きく、非晶質形成能に優
れた生体用非晶質合金に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy for living body. More specifically, the present invention relates to an amorphous alloy for living body, which is useful for implant materials, medical equipment, etc. in the fields of dentistry and orthopedics, has excellent corrosion resistance, high strength, and excellent amorphous forming ability.
【0002】[0002]
【従来の技術】従来より、溶融状態の合金を急冷するこ
とにより、種々の組成および形状を有する非晶質合金が
得られることが知られている。この非晶質合金は、容易
に高い冷却速度が実現される単ロール法によって製造さ
れる場合が多く、これまでにFe系,Ni系,Co系,
Al系,Zr系あるいはTi系合金について数多くの非
晶質合金材料が開発されている。なかでもZr系やTi
系非晶質合金は、Al系非晶質合金に比べて格段に優れ
た耐食性を有し、人体への適用性および安全性も高く、
かつ高い熱的安定性を示し、また過冷却液体領域の幅が
広いため、過冷却液体領域を利用した加工を施すことが
可能であり、従来のFe族系やAl系非晶質合金とは異
なった新しいタイプの非晶質合金材料として種々の分野
への応用が期待されている。2. Description of the Related Art It has been known that amorphous alloys having various compositions and shapes can be obtained by rapidly cooling molten alloys. This amorphous alloy is often manufactured by a single roll method that easily realizes a high cooling rate. So far, Fe system, Ni system, Co system,
Many amorphous alloy materials have been developed for Al-based, Zr-based, and Ti-based alloys. Among them, Zr and Ti
Amorphous amorphous alloys have significantly better corrosion resistance than Al-based amorphous alloys, and have high applicability to human bodies and safety,
Moreover, since it exhibits high thermal stability and the width of the supercooled liquid region is wide, it is possible to perform processing using the supercooled liquid region. It is expected to be applied to various fields as a different type of amorphous alloy material.
【0003】一方、生体用として現在用いられている金
属材料は、貴金属、Co基合金、ステンレス鋼およびT
i合金がその大部分である。従来、このような生体用合
金の中でも、例えばインプラント用の金属材料として
は、Co−Cr−Mo系鋳造合金(vitallium) をはじめ
とするCo基合金、ステンレス鋼、さらには近年になっ
てTi−6Al−4Vを代表とするTi合金が用いられ
ている。また歯科用金属材料としては古くから一般的に
貴金属が広く用いられており、さらに、医療用機材など
に用いられる金属材料としてはメス、はさみ、ピンセッ
ト、クリップ等にステンレス鋼が多用されている。On the other hand, metallic materials currently used for living bodies include precious metals, Co-based alloys, stainless steel and T.
The i alloy is the majority. Conventionally, among such bio-alloys, for example, as a metal material for implants, Co-based alloys such as Co-Cr-Mo-based cast alloys (vitallium), stainless steel, and more recently Ti- A Ti alloy represented by 6Al-4V is used. Precious metals have been widely used as dental metal materials since ancient times, and stainless steel is widely used as scalpels, scissors, tweezers, clips and the like as metal materials used in medical equipment and the like.
【0004】[0004]
【発明が解決しようとする課題】このように生体用金属
材料としては、Co基合金、ステンレス鋼およびTi合
金が用いられているが、Co基合金やステンレス鋼の場
合には、Fe,Co,Cr等の生体に有毒な元素を多量
に含み、これらの材料を生体内で長時間使用するとこれ
らの元素が生体内に流れ出すという問題があった。ま
た、一般的にTi合金においては、その強度が低く、さ
らにV等の細胞毒性の強い元素を含むため、このような
Ti合金を生体用材料として使用することは困難であっ
た。As described above, the Co-based alloy, the stainless steel and the Ti alloy are used as the biomedical metal material. In the case of the Co-based alloy or the stainless steel, Fe, Co, There is a problem that a large amount of toxic elements such as Cr are contained in the living body, and when these materials are used in the living body for a long time, these elements flow out into the living body. In addition, since Ti alloys generally have low strength and further contain elements having strong cytotoxicity such as V, it has been difficult to use such Ti alloys as biomaterials.
【0005】従って、従来の結晶質合金とは異なり、耐
食性に優れ、強度が高い非晶質合金の開発が強く望まれ
ていた。また、たとえば生体用材料としては種々の形状
のバルク材への加工が必要であることから、固化技術の
適応が容易な粉末状の非晶質合金の製造が望まれる。そ
こでAl,TiやZrなどの活性金属元素を含む合金系
の場合は不活性ガスを用いる高圧ガスアトマイズ法によ
り製造することになるが、この方法では、一般的な生体
用非晶質合金の製造方法である単ロール法等に比べて冷
却速度が小さく、単ロール法によって厚さ30μm程度
の非晶質合金が作製できる合金組成を用いてアトマイズ
を行なっても非晶質単相からなる合金粉末が容易に得ら
れないという問題があった。Therefore, unlike conventional crystalline alloys, the development of an amorphous alloy having excellent corrosion resistance and high strength has been strongly desired. Further, for example, since it is necessary to process into bulk materials having various shapes as a biomaterial, it is desired to manufacture a powdery amorphous alloy which can be easily applied with a solidification technique. Therefore, in the case of an alloy system containing an active metal element such as Al, Ti or Zr, it is produced by a high pressure gas atomizing method using an inert gas. In this method, a general method for producing an amorphous alloy for living organisms is used. The cooling rate is smaller than that of the single roll method, etc., and even if atomization is performed using an alloy composition that can produce an amorphous alloy with a thickness of about 30 μm by the single roll method, an alloy powder consisting of an amorphous single phase is obtained. There was a problem that it was not easy to obtain.
【0006】このため、冷却速度が遅いガスアトマイズ
法の場合でも容易に非晶質合金が得られる非晶質形成能
に優れた生体用非晶質合金の実現が強く望まれていた。
この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来技術の欠点を解消し、耐食性に優れ、強度が
高く、かつ、冷却速度が遅くとも非晶質形成能に優れた
生体用非晶質合金を提供することを目的とするものであ
る。Therefore, there has been a strong demand for realization of an amorphous alloy for living body which has an excellent ability to form an amorphous body and can easily obtain an amorphous alloy even in the case of the gas atomizing method having a slow cooling rate.
The present invention has been made in view of the above circumstances, solves the drawbacks of the prior art, is excellent in corrosion resistance, high strength, and is excellent in amorphous forming ability even if the cooling rate is slow It is intended to provide an amorphous alloy.
【0007】[0007]
【課題を解決するための手段】この発明は、上記の課題
を解決するものであって、この発明の要旨は、組成式:
Zr100-a-b-c-d MaAlbXcYd(式中、MはTi
およびHfからなる群から選択される1種の元素または
その混合物、XはPtおよびPdから選択される1種の
元素またはその混合物、ZはCu,CoおよびNiから
なる群から選択される1種の元素またはその混合物、
a、b、cおよびdは、それぞれ原子%で表され、5≦
a≦55、2≦b≦30、2≦c≦45、5≦d≦4
0、20≦a+b+c+d≦80である)で示される組
成を有することを特徴とする生体用非晶質合金である。The present invention is to solve the above-mentioned problems, and the gist of the present invention is to provide a composition formula:
Zr 100-abcd MaAlbXcYd (where M is Ti
And one element selected from the group consisting of Hf or a mixture thereof, X is one element selected from Pt and Pd or a mixture thereof, and Z is one selected from a group consisting of Cu, Co and Ni. Elements or mixtures thereof,
a, b, c and d are each represented by atomic%, and 5 ≦
a ≦ 55, 2 ≦ b ≦ 30, 2 ≦ c ≦ 45, 5 ≦ d ≦ 4
0, 20 ≦ a + b + c + d ≦ 80), which is an amorphous alloy for living body.
【0008】この発明の非晶質合金において、Zrを基
本とし、上記の通りの元素成分との組合わせからなる合
金であることを必須としている。このうちの、Tiおよ
びHfは、いずれも強度、耐食性と非晶質形成能に優れ
た非晶質合金を得るために必須の元素であり、Tiおよ
びHfからなる群から選択される1種の元素またはその
混合物の含有量は、5原子%以上55原子%以下必要で
あり、好ましくは、10原子%以上45原子%以下が望
ましい。これらの元素の含有量が5原子%未満あるいは
55原子%を越えると、非晶質形成能が低下し、高圧ガ
スアトマイズ法や鋳造法等のような冷却速度が比較的遅
い液体急冷法の場合には非晶質単相の合金が得られなく
なる。In the amorphous alloy of the present invention, it is essential that the alloy is based on Zr and is a combination of the above-mentioned elemental components. Of these, Ti and Hf are both essential elements for obtaining an amorphous alloy excellent in strength, corrosion resistance and amorphous forming ability, and one of them selected from the group consisting of Ti and Hf. The content of the element or the mixture thereof needs to be 5 atomic% or more and 55 atomic% or less, and preferably 10 atomic% or more and 45 atomic% or less. When the content of these elements is less than 5 atom% or more than 55 atom%, the amorphous forming ability is lowered, and in the case of a liquid quenching method such as a high pressure gas atomizing method or a casting method, which has a relatively slow cooling rate. Amorphous single phase alloy cannot be obtained.
【0009】次に、Alの含有量は2原子%以上30原
子%以下であることが必要であり、好ましくは5原子%
以上25原子%以下であることが望ましい。Al含有量
が2原子%未満であると耐食性や強度が低く実用に供せ
ない。また、Alの含有量が30原子%を越えると、非
晶質形成能が低下し、冷却速度が比較的遅い液体急冷法
の場合には非晶質単相の合金が得られなくなる。Next, the Al content must be 2 at% or more and 30 at% or less, preferably 5 at%.
It is desirable that the content is 25 atomic% or less. If the Al content is less than 2 atomic%, the corrosion resistance and strength are low and it cannot be put to practical use. On the other hand, if the Al content exceeds 30 atomic%, the amorphous forming ability is lowered, and an amorphous single phase alloy cannot be obtained in the case of the liquid quenching method in which the cooling rate is relatively slow.
【0010】PdあるいはPtは非晶質形成能に優れた
非晶質合金を得るための必須の元素であり、Ptおよび
Pdから選択される1種またはその混合物についてはそ
の含有量は2原子%以上45原子%以下必要であり、よ
り好ましいその範囲は3原子%以上35原子%以下であ
る。PdあるいはPtの含有量が2原子%未満または4
5原子%を越えると非晶質形成能が低下し、冷却速度が
比較的遅い液体急冷法の場合には非晶質単相の合金が得
られなくなる。またさらに、PdあるいはPtの含有量
が45原子%を越えると耐食性が低下し実用に供するこ
とができない。Pd or Pt is an essential element for obtaining an amorphous alloy having an excellent amorphous forming ability, and the content of one or a mixture of Pd and Pd is 2 atomic%. It is necessary to be 45 atomic% or less, and the more preferable range is 3 atomic% or more and 35 atomic% or less. Pd or Pt content less than 2 atomic% or 4
If it exceeds 5 atomic%, the ability to form an amorphous material decreases, and an amorphous single phase alloy cannot be obtained in the case of the liquid quenching method in which the cooling rate is relatively slow. Furthermore, if the content of Pd or Pt exceeds 45 atomic%, the corrosion resistance decreases and it cannot be put to practical use.
【0011】また、この発明の生体用非晶質合金におい
ては、Cu,CoおよびNiは優れた非晶質形成能と強
度を得るための必須の元素であり、Cu,CoおよびN
iからなる群から選択される元素または混合物は、5原
子%以上40原子%以下必要であり、好ましくは、10
原子%以上30原子%以下が望ましい。Cu,Coおよ
びNiが5原子%未満の場合には、合金の非晶質形成能
が低下し、高圧ガスアトマイズ法や鋳造法のような冷却
速度が比較的遅い液体急冷法の場合には非晶質単相の合
金が得られなくなる。またこれらの含有量が40原子%
を越えると耐食性が低下し実用に供することができな
い。In the biomedical amorphous alloy of the present invention, Cu, Co and Ni are essential elements for obtaining excellent amorphous forming ability and strength.
The element or mixture selected from the group consisting of i must be 5 atomic% or more and 40 atomic% or less, preferably 10 atomic% or less.
It is desirable that the content is at least 30 atomic% and not less than 30 atomic%. When Cu, Co and Ni are less than 5 atomic%, the amorphous forming ability of the alloy is lowered, and in the case of a liquid quenching method such as a high pressure gas atomizing method or a casting method, which has a relatively slow cooling rate, it is amorphous. A single phase alloy cannot be obtained. The content of these is 40 atomic%
If it exceeds, the corrosion resistance is deteriorated and it cannot be put to practical use.
【0012】またこの発明においては、Ti,Hf,A
l,Pd,Pt,Co,CuおよびNiの合計の含有量
は、20原子%以上80原子%以下必要であり、好まし
くは、25原子%以上70原子%以下が望ましい。これ
らの元素の合計含有量が20原子%未満あるいは80原
子%を越える場合には、非晶質形成能が低下し、高圧ガ
スアトマイズ法や鋳造法のような冷却速度が比較的遅い
液体急冷法の場合には非晶質単相の合金が得られなくな
る。In the present invention, Ti, Hf, A
The total content of 1, Pd, Pt, Co, Cu and Ni needs to be 20 at% or more and 80 at% or less, preferably 25 at% or more and 70 at% or less. When the total content of these elements is less than 20 atom% or more than 80 atom%, the amorphous forming ability is lowered, and the liquid quenching method such as the high pressure gas atomizing method or the casting method having a relatively slow cooling rate is used. In that case, an amorphous single phase alloy cannot be obtained.
【0013】従来の生体インプラント用材料として用い
られているステンレス鋼、Co合金およびTi合金の場
合には、その引張り強度が1000MPa以下であるの
に対し、この発明の生体用非晶質合金は、その引張り強
度が1500MPa以上であり、優れた強度を有してい
る。また、この発明の生体用非晶質金属は、優れた強度
とともに非常に優れた耐食性をも有しており、生体用材
料として広く利用されているオーステナイト系ステンレ
ス鋼よりも格段に優れた耐食性を示す。そのため、この
発明の生体用非晶質合金内に、Cu,CoおよびNi等
の生体毒性が強い元素を含んでいても使用上の問題はま
ったくない。In the case of stainless steel, Co alloy and Ti alloy used as conventional bioimplant materials, the tensile strength thereof is 1000 MPa or less, whereas the biocrystalline amorphous alloy of the present invention is Its tensile strength is 1500 MPa or more, and it has excellent strength. Further, the biomedical amorphous metal of the present invention has excellent corrosion resistance as well as excellent strength, and has significantly better corrosion resistance than austenitic stainless steel widely used as a biomaterial. Show. Therefore, even if the biogenic amorphous alloy of the present invention contains elements having strong biotoxicity such as Cu, Co and Ni, there is no problem in use.
【0014】さらに、この発明の生体用非晶質合金は優
れた非晶質形成能を有しているので、高圧ガスアトマイ
ズ法や鋳造法のような冷却速度が比較的遅い液体急冷法
の場合においても非晶質単相の合金が容易に得られる。
従って、例えば、高圧ガスアトマイズ法により得られた
この発明の非晶質合金粉末を用い、熱間プレスや熱間押
しだし加工法により任意の形状のバルク材の提供も可能
となる。Further, since the amorphous alloy for living body of the present invention has an excellent amorphous forming ability, it can be used in the liquid quenching method such as the high pressure gas atomizing method or the casting method, which has a relatively slow cooling rate. Also, an amorphous single phase alloy can be easily obtained.
Therefore, for example, by using the amorphous alloy powder of the present invention obtained by the high pressure gas atomization method, it is possible to provide a bulk material having an arbitrary shape by hot pressing or hot extrusion processing.
【0015】そして、この発明の生体用非晶質合金は、
優れた強度や耐食性に加えて高い非晶質形成能を持ち合
わせているので、構成元素の他に種々の元素を添加して
も非晶質合金を得ることができ、そのため非晶質形成能
が低下しない程度に、生体に毒性の少ない元素(例え
ば、Si,Au)などを数原子%以下の範囲で添加し、
生体用非晶質合金を得ることができる。The biological amorphous alloy of the present invention is
Since it has excellent strength and corrosion resistance as well as high amorphous forming ability, it is possible to obtain an amorphous alloy by adding various elements in addition to the constituent elements. Add elements that are less toxic to living organisms (for example, Si, Au) within the range of a few atomic% or less,
A living body amorphous alloy can be obtained.
【0016】この発明の生体用非晶質合金は、溶融状態
からの種々の方法で冷却固化させることにより得ること
ができるが、単ロール法、双ロール法、回転液中紡糸
法、回転液中噴霧法、ガスアトマイズ法等の生産性に優
れた液体急冷法を用いることが望ましい。例えば、この
発明の非晶質合金は優れた非晶質形成能を備えているの
で、溶融状態からの種々の液体や気体の冷媒を用いるア
トマイズ法で冷却固化させることにより、容易に非晶質
単相からなる球状粉末を得ることができる。そのような
球状粉末の作製には特に清浄なArやHe等の不活性ガ
スを用いる高圧ガスアトマイズ法が適している。The amorphous alloy for a living body of the present invention can be obtained by cooling and solidifying by various methods from a molten state, but it is a single roll method, a twin roll method, a rotating liquid spinning method, a rotating liquid. It is desirable to use a liquid quenching method having excellent productivity such as a spraying method or a gas atomizing method. For example, since the amorphous alloy of the present invention has excellent amorphous forming ability, it can be easily amorphous by cooling and solidifying by an atomizing method using various liquid or gas refrigerants from a molten state. A spherical powder consisting of a single phase can be obtained. A high-pressure gas atomization method using a clean inert gas such as Ar or He is particularly suitable for producing such a spherical powder.
【0017】なおこれらのアトマイズ法をこの発明の合
金に採用する場合、高圧ガスアトマイズ法においては、
この発明の合金を、アルゴン雰囲気中にてストッパーと
孔径0.5mm〜5.0mmのセラミックスノズルを備
えたセラミックスルツボ中で溶融した後、アルゴン雰囲
気中に噴出圧0.2〜5.0kg/cm2 でノズルから
溶湯を押しだし、30〜200kg/cm2 の圧力で噴
出させたAr等の不活性ガスでアトマイズすることによ
り球状の非晶質合金粉末を得ることができる。When these atomizing methods are applied to the alloy of the present invention, in the high pressure gas atomizing method,
The alloy of the present invention is melted in a ceramic crucible equipped with a stopper and a ceramic nozzle having a hole diameter of 0.5 mm to 5.0 mm in an argon atmosphere, and then the ejection pressure is 0.2 to 5.0 kg / cm in an argon atmosphere. A spherical amorphous alloy powder can be obtained by extruding the molten metal from the nozzle at 2 and atomizing it with an inert gas such as Ar ejected at a pressure of 30 to 200 kg / cm 2 .
【0018】[0018]
【実施例】以下実施例によって、さらにこの発明を具体
的に説明する。実施例1〜20,比較例1〜18 表1に示した実施例1〜20、表2に示した比較例1〜
16の各組成からなる合金を、石英管中、アルゴン雰囲
気下で溶融した後、孔径0.3mmの石英製ノズルを用
い、アルゴン雰囲気下、3000rpmで回転している
直径20cm程度の銅ロール上に噴出圧0.3kg/c
m2 で噴出し、急冷凝固させて、幅3mm、厚さ50μ
mの連続した急冷薄帯を作製した。The present invention will be described in more detail with reference to the following examples. Examples 1 to 20, Comparative Examples 1 to 18 Examples 1 to 20 shown in Table 1 and Comparative Examples 1 to 1 shown in Table 2
After melting the alloys having the compositions of 16 in a quartz tube in an argon atmosphere and using a quartz nozzle having a hole diameter of 0.3 mm, on a copper roll having a diameter of about 20 cm rotating at 3000 rpm in an argon atmosphere. Jet pressure 0.3kg / c
It squirts out at m 2 and is rapidly cooled and solidified, width 3mm, thickness 50μ
A continuous quenching ribbon of m was produced.
【0019】次に、作製したこれらの薄帯の非晶質相の
同定、耐食性および強度の測定を行なった。その結果を
それぞれ表1および表2に示す。相の同定について、X
線回折法により非晶質相特有のハローパターンが得られ
た状態を非晶質と判定し、非晶質と結晶相が混在する状
態を結晶質と判定した。耐食性は、急冷薄帯を1N−H
Clに100時間浸漬し、その腐食量から求めた。強度
σfは、インストロン引張り試験機を用い、長さ30m
mの急冷薄帯を4.2×10-4の歪速度で引張り試験を
行なうことにより求めた。Next, the amorphous phase of these produced ribbons was identified, and the corrosion resistance and strength were measured. The results are shown in Table 1 and Table 2, respectively. X for phase identification
The state in which a halo pattern peculiar to the amorphous phase was obtained by the line diffraction method was determined to be amorphous, and the state in which the amorphous phase and the crystalline phase were mixed was determined to be crystalline. Corrosion resistance is 1N-H for quenched ribbon
It was immersed in Cl for 100 hours, and the corrosion amount was calculated. The strength σf is 30 m in length using an Instron tensile tester.
It was determined by performing a tensile test on a quenched ribbon of m at a strain rate of 4.2 × 10 −4 .
【0020】表1および表2には、以上のようにして作
製され、その特性評価された薄帯の組織、強度σfおよ
び耐食性(腐食速度)を示した。表1および表2より明
らかなように、この発明の実施例1〜20は、非晶質単
相からなる薄帯が得られた。それに対し比較例1,2,
4,6,9〜12,14および15は、それぞれTi,
Al,Pd,Zr,HfあるいはPtがこの発明の合金
の組成範囲外であるため合金の非晶質形成能が低く、結
晶合金の薄帯が得られた。Tables 1 and 2 show the structure, strength σf, and corrosion resistance (corrosion rate) of the thin ribbons manufactured and characterized as described above. As is clear from Table 1 and Table 2, in Examples 1 to 20 of the present invention, ribbons composed of an amorphous single phase were obtained. On the other hand, Comparative Examples 1, 2,
4, 6, 9 to 12, 14 and 15 are Ti,
Since Al, Pd, Zr, Hf or Pt was out of the composition range of the alloy of the present invention, the amorphous forming ability of the alloy was low and a ribbon of crystalline alloy was obtained.
【0021】また表1および表2の結果より明らかなよ
うに、実施例1〜20のこの発明の非晶質合金は、いず
れも引張り強度1500MPa以上であり、比較例1〜
16のこの発明の範囲外の非晶質合金や結晶質合金ある
いは比較例17および18の市販されている厚さ50μ
mのステンレス薄やTi板に比べて格段に優れた強度を
示した。As is clear from the results shown in Tables 1 and 2, the amorphous alloys of Examples 1 to 20 of the present invention all have a tensile strength of 1500 MPa or more, and Comparative Examples 1 to
16 amorphous or crystalline alloys outside the scope of this invention or commercially available thicknesses of Comparative Examples 17 and 18 50μ
The strength was remarkably superior to that of the thin stainless steel plate of m or the Ti plate.
【0022】さらに、表1および表2の耐食性の結果か
ら実施例1〜20のこの発明の非晶質合金は、比較例1
〜7,9,11〜14および16のこの発明の範囲外の
非晶質合金や結晶質合金、比較例17のステンレス薄に
比べて格段に優れた耐食性を示した。Further, from the results of the corrosion resistance shown in Tables 1 and 2, the amorphous alloys of Examples 1 to 20 of the present invention were compared with Comparative Example 1
.About.7, 9, 11, 14 and 16, which are far superior to the amorphous alloys and crystalline alloys outside the scope of the present invention, and stainless steel of Comparative Example 17, the corrosion resistance was remarkably excellent.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】実施例21〜40,比較例19〜24 表3および表4に示す各種組成からなる合金を、アルゴ
ン雰囲気中にて、BN製のストッパーと孔径2.0mm
のBNノズルを下部に備えたBNルツボ中で300g溶
融した後、1400℃にてストッパーを上げると同時に
アルゴン雰囲気中に噴出圧0.5kg/cm2 でノズル
から溶湯を押しだし、溶湯となす角45度に配置された
18個の直径1mmの高圧ガスアトマイズノズルから1
00kg/cm2 の圧力で噴出させた4NのArガスに
よりアトマイズを行なった。そして表1に示す各種組成
からなる平均粒径25μmの球状の合金粉末を作製し
た。 Examples 21 to 40, Comparative Examples 19 to 24 Alloys having various compositions shown in Tables 3 and 4 were used, in an argon atmosphere, with a BN stopper and a hole diameter of 2.0 mm.
After melting 300g in a BN crucible equipped with a BN nozzle at the bottom, raise the stopper at 1400 ° C, and at the same time, extrude the molten metal from the nozzle at a jet pressure of 0.5 kg / cm 2 in an argon atmosphere to form an angle of 45 1 from 18 high pressure gas atomizing nozzles with a diameter of 1 mm
Atomization was performed with 4N Ar gas ejected at a pressure of 00 kg / cm 2 . Then, spherical alloy powders having various compositions shown in Table 1 and having an average particle diameter of 25 μm were prepared.
【0026】次に作製したこれらの粉末を25μm以
下、25〜44μm、44〜63μm、および63μm
以上の各粒度に分級し、それぞれの粒度の粉末について
非晶質相の同定をX線回折法により行なった。なお組織
の判定は、X線回折法により非晶質相単相が得られた場
合を非晶質と判定し、非晶質と結晶質が混在する場合を
結晶質と判定した。Next, these powders produced were 25 μm or less, 25 to 44 μm, 44 to 63 μm, and 63 μm.
The particles were classified into the above particle sizes, and the amorphous phase was identified by the X-ray diffraction method for the powders having the respective particle sizes. The texture was judged to be amorphous when an amorphous single phase was obtained by the X-ray diffraction method and crystalline when mixed with amorphous and crystalline.
【0027】その結果を表3および表4に示した。この
表3および表4より、実施例21〜40の合金粉末は、
この発明による合金組成からなり、非晶質形成能に優れ
るため、63μm以下の球状粉末においていずれも非晶
質単相からなる非晶質合金粉末が得られた。それに対し
て比較例19〜24はこの組成からはずれているため、
非晶質形成能が低く44μm以上の粒径の粉末において
非晶質単相が得られなかった。すなわち、比較例19〜
24の合金組成は比較例3,5,7,8,13および1
6と同一であるが、冷却速度の遅いガスアトマイズ法に
おいては、非晶質形成能が低いため非晶質単相の粉末が
大きい粉末粒径では、非晶質合金が得られなかった。The results are shown in Tables 3 and 4. From Table 3 and Table 4, the alloy powders of Examples 21 to 40 are
Because of the alloy composition according to the present invention and the excellent amorphous forming ability, amorphous alloy powders each having an amorphous single phase were obtained in spherical powders of 63 μm or less. On the other hand, since Comparative Examples 19 to 24 deviate from this composition,
Amorphous single phase was not obtained in the powder having a low amorphous forming ability and a particle size of 44 μm or more. That is, Comparative Examples 19 to
The alloy composition of 24 is Comparative Examples 3, 5, 7, 8, 13 and 1
Although the same as No. 6, in the gas atomization method with a slow cooling rate, an amorphous alloy could not be obtained with a large particle size of the amorphous single-phase powder due to its low amorphous forming ability.
【0028】[0028]
【表3】 [Table 3]
【0029】[0029]
【表4】 [Table 4]
【0030】[0030]
【発明の効果】この発明の生体用非晶質合金は、優れた
強度、耐食性および非晶質形成能を兼ね備えた非晶質合
金であり、熱間押しだしや熱間プレス等の種々の非晶質
固化技術を応用し任意の形状の非晶質合金に成形可能で
あり、新しいタイプの生体用材料としてインプラント用
材料や医療機材用材料に応用可能である。INDUSTRIAL APPLICABILITY The biological amorphous alloy of the present invention is an amorphous alloy having excellent strength, corrosion resistance and ability to form an amorphous material, and can be used in various amorphous materials such as hot extrusion and hot pressing. By applying the solidification technique, it can be formed into an amorphous alloy of any shape, and can be applied as a new type of biomedical material to implant materials and medical equipment materials.
フロントページの続き (72)発明者 増本 健 宮城県仙台市青葉区片平2丁目1−1 東 北大学金属材料研究所内 (72)発明者 井上 明久 宮城県仙台市青葉区片平2丁目1−1 東 北大学金属材料研究所内 (72)発明者 上埜 修司 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 網谷 健児 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内(72) Inventor Ken Masumoto, 1-1, Katahira, Aoba-ku, Sendai-shi, Miyagi, Tohoku University Institute for Materials Research (72) Akihisa Inoue, 1-1, Katahira, Aoba-ku, Sendai-shi, Miyagi (72) Inventor Shuji Kamino 23, Uji-kozakura, Uji-shi, Kyoto Prefecture Unitika Central Co., Ltd. (72) Inventor, Kenji Amitani, 23, Uji-kozakura, Uji-shi, Kyoto Unitika-sha, Central Research Company In-house
Claims (1)
cYd(式中MはTiおよびHfからなる群から選択さ
れる1種の元素またはその混合物、XはPtおよびPd
から選択される1種の元素またはその混合物、YはC
u,CoおよびNiからなる群から選択される1種の元
素またはその混合物、a、b、cおよびdは、それぞれ
原子%を表し、5≦a≦55、2≦b≦30、2≦c≦
45、5≦d≦40、20≦a+b+c+d≦80であ
る)で示される組成を有することを特徴とする生体用非
晶質合金。1. Compositional formula: Zr 100-abcd MaAlbX
cYd (where M is one element selected from the group consisting of Ti and Hf or a mixture thereof, X is Pt and Pd)
One element or a mixture thereof, Y is C
One element selected from the group consisting of u, Co and Ni or a mixture thereof, a, b, c and d each represent atomic%, 5 ≦ a ≦ 55, 2 ≦ b ≦ 30, 2 ≦ c ≤
45, 5 ≦ d ≦ 40, 20 ≦ a + b + c + d ≦ 80).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5338664A JPH07188877A (en) | 1993-12-28 | 1993-12-28 | Amorphous alloy for biological use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5338664A JPH07188877A (en) | 1993-12-28 | 1993-12-28 | Amorphous alloy for biological use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07188877A true JPH07188877A (en) | 1995-07-25 |
Family
ID=18320302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5338664A Pending JPH07188877A (en) | 1993-12-28 | 1993-12-28 | Amorphous alloy for biological use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07188877A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0905268A1 (en) * | 1997-08-29 | 1999-03-31 | Ykk Corporation | High-strength amorphous alloy and process for preparing the same |
WO2000026425A1 (en) * | 1998-10-30 | 2000-05-11 | Japan Science And Technology Corporation | High-strength high-toughness amorphous zirconium alloy |
US6231697B1 (en) | 1997-08-29 | 2001-05-15 | Akihisa Inoue | High-strength amorphous alloy and process for preparing the same |
EP1548143A1 (en) * | 2002-08-30 | 2005-06-29 | Japan Science and Technology Agency | Cu-BASE AMORPHOUS ALLOY |
CN1323180C (en) * | 2004-04-29 | 2007-06-27 | 大连盛辉钛业有限公司 | Medical titanium alloy for teeth outer part |
EP1534175A4 (en) * | 2002-08-19 | 2008-05-07 | Liquidmetal Technologies Inc | Medical implants |
JP2011172934A (en) * | 2003-06-27 | 2011-09-08 | Zuli Holdings Ltd | Amorphous metal alloy medical device |
US9155639B2 (en) | 2009-04-22 | 2015-10-13 | Medinol Ltd. | Helical hybrid stent |
US9456910B2 (en) | 2003-06-27 | 2016-10-04 | Medinol Ltd. | Helical hybrid stent |
CN110004325A (en) * | 2019-04-13 | 2019-07-12 | 常州世竟液态金属有限公司 | A kind of high-biocompatibility zircaloy |
CN112063937A (en) * | 2020-09-16 | 2020-12-11 | 松山湖材料实验室 | Nickel-free beryllium-free zirconium-based amorphous alloy and preparation method and application thereof |
-
1993
- 1993-12-28 JP JP5338664A patent/JPH07188877A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0905268A1 (en) * | 1997-08-29 | 1999-03-31 | Ykk Corporation | High-strength amorphous alloy and process for preparing the same |
US6231697B1 (en) | 1997-08-29 | 2001-05-15 | Akihisa Inoue | High-strength amorphous alloy and process for preparing the same |
WO2000026425A1 (en) * | 1998-10-30 | 2000-05-11 | Japan Science And Technology Corporation | High-strength high-toughness amorphous zirconium alloy |
US9795712B2 (en) | 2002-08-19 | 2017-10-24 | Crucible Intellectual Property, Llc | Medical implants |
EP1534175A4 (en) * | 2002-08-19 | 2008-05-07 | Liquidmetal Technologies Inc | Medical implants |
US9724450B2 (en) | 2002-08-19 | 2017-08-08 | Crucible Intellectual Property, Llc | Medical implants |
EP2289568A3 (en) * | 2002-08-19 | 2011-10-05 | Crucible Intellectual Property, LLC | Medical Implants |
EP1548143A4 (en) * | 2002-08-30 | 2006-03-22 | Japan Science & Tech Agency | Cu-BASE AMORPHOUS ALLOY |
EP1548143A1 (en) * | 2002-08-30 | 2005-06-29 | Japan Science and Technology Agency | Cu-BASE AMORPHOUS ALLOY |
US9456910B2 (en) | 2003-06-27 | 2016-10-04 | Medinol Ltd. | Helical hybrid stent |
JP2011172934A (en) * | 2003-06-27 | 2011-09-08 | Zuli Holdings Ltd | Amorphous metal alloy medical device |
US9956320B2 (en) | 2003-06-27 | 2018-05-01 | Zuli Holdings Ltd. | Amorphous metal alloy medical devices |
US10363152B2 (en) | 2003-06-27 | 2019-07-30 | Medinol Ltd. | Helical hybrid stent |
CN1323180C (en) * | 2004-04-29 | 2007-06-27 | 大连盛辉钛业有限公司 | Medical titanium alloy for teeth outer part |
US9155639B2 (en) | 2009-04-22 | 2015-10-13 | Medinol Ltd. | Helical hybrid stent |
CN110004325A (en) * | 2019-04-13 | 2019-07-12 | 常州世竟液态金属有限公司 | A kind of high-biocompatibility zircaloy |
CN112063937A (en) * | 2020-09-16 | 2020-12-11 | 松山湖材料实验室 | Nickel-free beryllium-free zirconium-based amorphous alloy and preparation method and application thereof |
CN112063937B (en) * | 2020-09-16 | 2022-03-22 | 松山湖材料实验室 | Nickel-free beryllium-free zirconium-based amorphous alloy and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6331218B1 (en) | High strength and high rigidity aluminum-based alloy and production method therefor | |
JP5705163B2 (en) | Implant containing biodegradable metal and method for producing the same | |
US5509978A (en) | High strength and anti-corrosive aluminum-based alloy | |
EP0339676B1 (en) | High strength, heat resistant aluminum-based alloys | |
JP2629152B2 (en) | Manufacturing method of compressed metal articles | |
JPH0774409B2 (en) | Artificial prosthesis made from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization | |
JPH07268528A (en) | High strength aluminum-based alloy | |
WO2004059019A1 (en) | Pt-BASE BULK SOLIDIFYING AMORPHOUS ALLOYS | |
EP0068545A2 (en) | Metal alloys for making alloys with ultra-fine uniformly dispersed crystalline phase | |
JPH0617524B2 (en) | Magnesium-titanium sintered alloy and method for producing the same | |
JPH07188877A (en) | Amorphous alloy for biological use | |
EP0584596A2 (en) | High strength and anti-corrosive aluminum-based alloy | |
EP0475101A1 (en) | High strength aluminum-based alloys | |
Pilliar | Manufacturing processes of metals: The porcessing and properties of metal implants | |
JPH07238336A (en) | High strength aluminum-base alloy | |
JPH06264200A (en) | Ti series amorphous alloy | |
JPH09263915A (en) | High strength and high ductility aluminum base alloy | |
EP0564814B1 (en) | Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same | |
JPH07188876A (en) | Amorphous alloy for biological use | |
CN112063937A (en) | Nickel-free beryllium-free zirconium-based amorphous alloy and preparation method and application thereof | |
JP2703481B2 (en) | High strength and high rigidity aluminum base alloy | |
JP3504401B2 (en) | High strength and high rigidity aluminum base alloy | |
US6017403A (en) | High strength and high rigidity aluminum-based alloy | |
JP3401555B2 (en) | Titanium-based amorphous alloy | |
EP0710730B1 (en) | High strength and high rigidity aluminium based alloy and production method therefor |