JPH07188717A - Method for controlling tapping velocity of iron and slag of blast furnace - Google Patents

Method for controlling tapping velocity of iron and slag of blast furnace

Info

Publication number
JPH07188717A
JPH07188717A JP5336077A JP33607793A JPH07188717A JP H07188717 A JPH07188717 A JP H07188717A JP 5336077 A JP5336077 A JP 5336077A JP 33607793 A JP33607793 A JP 33607793A JP H07188717 A JPH07188717 A JP H07188717A
Authority
JP
Japan
Prior art keywords
slag
tapping
speed
molten
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5336077A
Other languages
Japanese (ja)
Inventor
Masao Fujita
昌男 藤田
Osamu Iida
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5336077A priority Critical patent/JPH07188717A/en
Priority to PCT/JP1994/002240 priority patent/WO1995018237A1/en
Priority to KR1019950703640A priority patent/KR0166419B1/en
Priority to US08/495,466 priority patent/US5616166A/en
Priority to CN94191631A priority patent/CN1036016C/en
Priority to DE69419598T priority patent/DE69419598T2/en
Priority to EP95903979A priority patent/EP0688875B1/en
Publication of JPH07188717A publication Critical patent/JPH07188717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To adjust a flowing passage cross sectional area by contraction flow of molten iron and to control the flowing velocity of the molten iron and slag by mounting a communicating tube by connecting with a tapping hole at the outside of a furnace and applying magnetic energy to the molten iron flowing in the communicating tube to give the magnetic pressure. CONSTITUTION:The communicating tube 10 connected with the iron tapping hole 1 arranged at the furnace bottom 9 on the outside of the furnace is mounted and plural electromagnetic energy supplying bodies 11 are arranged in the longitudinal direction of the outer periphery of the communicating tube and surrounds the tube 10. At the time of tapping the molten iron 4 and the molten slag 5 stagnated in the furnace bottom 9 through the tapping hole 1 and flowing in the flowing passage 12 in the communicating tube 10, the electromagnetic energy is applied from the electromagnetic energy supplying bodies 11. By this method, the molten iron 4 is gathered to the center part of the passage 12 by receiving the magnetic pressure, and the molten slag 5 is forcedly pushed to the inner surface of the flowing passage 12, and the molten iron 4 and the molten slag 5 are separated to two liquid flows. The molten slag 5 is solidified and stuck to the inner wall surface of the flowing passage 12 to form the solidified layer by cooling in the cooling passage arranged in the communicating tube 10. By this method, the constant flowing passage diameter is kept and the flowing velocity of the tapped iron and slag can be kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉出銑孔から排出され
る溶銑滓の速度制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the speed of molten pig iron discharged from a tap hole of a blast furnace.

【0002】[0002]

【従来の技術】図6に示すように高炉炉底9内には溶銑
4と溶滓5とが溜まるが、溶銑4は溶滓5より比重が大
きいため溶銑4の上に溶滓5が分離した状態となってい
る。高炉炉底9内に溶銑4と溶滓5とが溜まったら出銑
孔1を開孔することにより炉内の溶銑4、溶滓5を出銑
孔1から出銑樋8に排出していた。
2. Description of the Related Art As shown in FIG. 6, molten pig iron 4 and molten slag 5 are accumulated in the bottom 9 of a blast furnace. However, since the molten pig iron 4 has a larger specific gravity than the molten slag 5, the molten slag 5 is separated on the molten pig iron 4. It is in the state of doing. When the hot metal 4 and the molten metal 5 were accumulated in the bottom 9 of the blast furnace, the hot metal 4 and the molten metal 5 in the furnace were discharged from the hot metal 1 to the hot metal gutter 8 by opening the hot metal tap 1 .

【0003】すなわち、高炉炉底9に設けた出銑孔1を
開孔して出銑滓する際には、図7に示すように出銑孔1
の前方に開孔機2を移動させ、開孔機2に装着したドリ
ル3(または金棒)を出銑孔1内に打ち込み、開孔する
ことによって図8に示すように高炉炉底9内に溜まって
いる溶銑4および溶滓5を出銑孔1を介して出銑樋8上
に排出する出銑滓作業が行われていた。
That is, when tapping the taphole 1 provided in the bottom 9 of the blast furnace to tap the taphole, as shown in FIG.
Of the drilling machine 2 is moved to the front of the blast furnace 2, and the drill 3 (or a gold rod) attached to the drilling machine 2 is driven into the taphole 1 to open the blast furnace bottom 9 as shown in FIG. The hot metal slag work was performed to discharge the accumulated hot metal 4 and slag 5 onto the hot metal gutter 8 through the hot metal hole 1.

【0004】出銑孔1からの出銑滓が終了したら図9に
示すように出銑孔1にマッドガン6を装着し、マッドガ
ン6内のマッド7を出銑孔1内に押し込むことにより閉
塞し、出銑滓を停止していた。このようにして出銑孔1
内に充填されたマッド7は出銑孔1の周辺からの熱によ
って乾燥固化される。次回の出銑滓に際してはこのよう
に固化したマッド7を再び開孔機2によって開孔し、出
銑滓を繰り返していた。
When the tap slag from the tap hole 1 is completed, a mud gun 6 is attached to the tap hole 1 as shown in FIG. 9, and the mud 7 in the mud gun 6 is pushed into the tap hole 1 to close it. , The pig iron was stopped. In this way, tap hole 1
The mud 7 filled inside is dried and solidified by heat from the periphery of the tap hole 1. In the next pig iron slag, the solidified mud 7 was opened again by the hole punching machine 2 and the tap slag was repeated.

【0005】従来の出銑滓作業では、出銑孔1内に充填
されたマッド7を開孔機2に装着したドリル3(または
金棒)によって開孔した直後には、出銑孔1に形成され
た孔径はドリル3(または金棒)の外径で決まる寸法に
なっている。このように出銑滓の初期には、孔径の小さ
い出銑孔1から出銑滓されるため、図10に示すように出
銑孔1からの出銑滓速度は、高炉内で鉄鉱石の還元溶融
により造銑滓される速度より小さいため高炉炉底9では
溶銑4、溶滓5ともに湯面が上昇することになる。
In the conventional tapping work, the mud 7 filled in the taphole 1 is formed in the taphole 1 immediately after it is opened by a drill 3 (or a gold rod) attached to the boring machine 2. The diameter of the formed hole is determined by the outer diameter of the drill 3 (or the gold rod). In this way, at the early stage of tapping, the tapping is carried out from the tapping hole 1 having a small hole diameter, so that the tapping rate from the tapping hole 1 is as high as that of iron ore in the blast furnace as shown in FIG. Since the speed is lower than the speed at which slag is produced by the reduction melting, the molten iron 4 and the slag 5 both rise in the molten metal surface at the bottom 9 of the blast furnace.

【0006】しかしながら、出銑の経過とともに、出銑
孔1を形成しているマッド7は出銑滓によって損耗され
るためしだいに出銑孔1の口径(面積)が大きくなると
同時に出銑孔1内を通過する圧損も減少するため出銑滓
の流速がしだいに大きくなる。このため出銑滓の過程で
出銑滓速度が造銑滓速度を追い越し高炉炉底9内の溶銑
4、溶滓5の湯面が低下するようになる。
However, as the tapping process progresses, the mud 7 forming the tapping hole 1 is worn away by the tapping slag, so that the diameter (area) of the tapping hole 1 gradually increases and at the same time the tapping hole 1 Since the pressure loss passing through the inside also decreases, the flow velocity of the tap slag gradually increases. Therefore, in the course of tapping slag, the tapping slag speed overtakes the pig iron slag speed, and the molten metal levels of the molten pig iron 4 and molten slag 5 in the blast furnace bottom 9 are lowered.

【0007】このように出銑孔1内の出銑滓速度が大き
くなると図11に示すように出銑孔1を形成しているマッ
ド7の損耗速度もますます大きくなり、出銑滓速度は加
速度的に増大する。出銑滓の増大により高炉炉底9内に
溜まった溶銑4、溶滓5の湯面レベルが下がり、溶滓5
の上面レベルが出銑孔1の炉内側レベルに近付いてくる
と、出銑孔1から炉内ガスが炉前に飛散するようになる
ので出銑滓を継続することが困難となる。
When the tapping speed in the taphole 1 is thus increased, the wear rate of the mud 7 forming the taphole 1 is also increased, as shown in FIG. 11, and the tapping speed is It increases at an accelerating rate. The level of molten metal 4 and molten metal 5 accumulated in the bottom 9 of the blast furnace decreases due to the increase in the amount of molten iron, and the molten metal 5
When the level of the upper surface of the furnace approaches the level of the inner side of the taphole 1 in the furnace, the gas in the furnace is scattered from the taphole 1 to the front of the furnace, which makes it difficult to continue the tapping slag.

【0008】この段階でマッドガン6により出銑孔1内
にマッド7を充填して出銑孔1を閉塞し、出銑滓を終了
する一方、もう一方の出銑孔1’(図6参照)を開孔機
を用いて開孔し、出銑孔1’から出銑滓を継続する。こ
のようにして出銑孔1’からの出銑滓が完了したら、再
び出銑孔1からの出銑滓を開始するという手順により一
対の出銑孔1、1’から交互に出銑滓を行っていた。
At this stage, the mud gun 6 fills the taphole 1 with the mud 7 to close the taphole 1 and finish the taphole, while the other taphole 1 '(see FIG. 6). Using a hole punching machine, the tapping slag is continued from the tapping hole 1 '. In this way, when the tap slag from the tap hole 1'is completed, the tap slag from the tap hole 1 is started again, and the tap slag is alternately discharged from the pair of tap holes 1 and 1 '. I was going.

【0009】[0009]

【発明が解決しようとする課題】前述の従来技術による
出銑滓作業では次のような問題点があった。 (1)出銑滓に伴う炉前作業としては、出銑孔の開孔作
業、閉塞作業、出銑樋、溶滓樋の補修作業、出銑滓の繰
り返しによる準備作業があり、極めて負荷が大きい。こ
れら作業の削減が望まれるがマッドの損耗により一つの
出銑孔からの出銑時間が2〜4時間しかもたず2本の出
銑孔を交互に使用することになるため炉前作業員が2グ
ループ必要となり、省力化を阻害する。 (2)鋳床での溶銑予備処理設備および溶滓処理のため
の水滓処理設備は、出銑末期における溶銑、溶滓の最大
値に対応するに足る設備能力が必要となり、平均能力に
比べ著しく過大な設備能力を要する。 (3)出銑滓速度を調整する手段としては出銑孔を開孔
する時のドリル、金棒の径を変更する他に調整手段がな
く、したがって出銑滓速度は出銑孔を形成するマッドの
損耗量によって出銑滓速度が決まってしまう。このため
出銑速度が過少な時には炉内湯面レベルの異常上昇によ
り操業が不安定となり、過大な時には、溶銑予備処理や
水滓処理等での処理能力不足に伴うトラブルが生じる。 (4)開孔機およびマッドガンを用いる出銑滓作業で
は、開孔機、マッドガンをいくら機械化しても5〜10%
の開孔不良、マッド乾燥不良が生じ、これに伴う非定常
作業が発生し、炉前作業の省力化の実施を一層困難にす
る。 (5)出銑滓作業が2本の出銑孔によるバッチ作業であ
るため、溶銑温度、溶銑成分等の溶銑品質変動が大き
く、製銑部門と製鋼部門との間で行われる溶銑予備処理
等の作業に支障をきたすことになる。
SUMMARY OF THE INVENTION The above-mentioned prior art work on pig iron slag had the following problems. (1) Pre-furnace work associated with tap slag includes tap hole opening work, plugging work, tap sluice, molten slag repair work, and preparatory work by repeated tap slag. large. It is desirable to reduce these operations, but due to the wear of the mud, the tap time from one tap hole is only 2 to 4 hours, and two tap holes are used alternately, so the front worker Two groups are required, which hinders labor saving. (2) The hot metal pretreatment equipment and the slag treatment equipment for slag treatment in the cast floor require sufficient equipment capacity to handle the maximum values of hot metal and slag at the end of tapping, which is higher than the average capacity. Remarkably large equipment capacity is required. (3) As a means for adjusting the tapping speed, there is no adjusting means other than changing the diameter of the drill and the gold rod when opening the tapping hole. Therefore, the tapping speed is a mud that forms the tapping hole. The rate of tapping waste is determined by the amount of wear. For this reason, when the tapping speed is too low, the operation becomes unstable due to an abnormal rise in the level of the molten metal in the furnace, and when the tapping speed is too high, troubles occur due to insufficient processing capacity in the hot metal pretreatment and slag treatment. (4) 5 to 10% in tapping work using a hole puncher and mud gun, no matter how much the hole puncher and mud gun are mechanized.
2) Poor opening of holes and poor drying of mud occur, resulting in unsteady work, which makes it more difficult to perform labor saving work before the furnace. (5) Since the hot metal slag operation is a batch operation using two tap holes, there is a large change in hot metal quality such as hot metal temperature and hot metal components, and hot metal pretreatment, etc. performed between the hot metal production department and the steelmaking department. Work will be hindered.

【0010】本発明は、前述のような事情にかんがみて
なされたものであり、出銑孔からの出銑滓時間を大幅に
延長することができるとともに、出銑滓速度を可及的に
一定に制御することができる高炉の出銑滓速度制御方法
を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to greatly extend the time for tapping from the taphole and to keep the tapping speed as constant as possible. It is an object of the present invention to provide a method for controlling the tapping speed of slag in a blast furnace, which can be controlled at a high speed.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の請求項1記載の本発明は、高炉の出銑孔から排出され
る溶銑滓の速度を制御する方法であって、前記出銑孔の
炉外側に接続して導通管を装着し、この導通管の外周に
配設した電磁エネルギ供給体により、導通管内を流れる
溶銑に磁気エネルギを印加して電磁反発による磁気圧を
与え、溶銑の縮流により流路断面積を調整することを特
徴とする高炉の出銑滓速度制御方法である。
The present invention according to claim 1 for achieving the above object is a method for controlling the speed of molten pig iron discharged from a tap hole of a blast furnace, wherein the tap hole is Connected to the outside of the furnace, and equipped with a conducting tube, the electromagnetic energy supply body arranged on the outer periphery of this conducting tube applies magnetic energy to the hot metal flowing in the conducting tube to give a magnetic pressure by electromagnetic repulsion, A method for controlling the tapping speed of slag in a blast furnace, which is characterized in that the cross-sectional area of the flow path is adjusted by contracting flow.

【0012】請求項2記載の本発明は、電磁エネルギ供
給体から印加する電磁エネルギ供給量を制御し導通体内
を流れる溶銑の流路断面積を調整することによって出銑
速度と出滓速度を制御することを特徴とする請求項1記
載の高炉の出銑滓速度制御方法である。請求項3記載の
本発明は、導通管を冷却することにより、導通管の内面
側に溶滓の凝固層を付着させてセルフライニングすると
共に、冷却による抜熱量を調整して凝固層の厚みを変化
させ、溶銑および溶滓の流量を制御することを特徴とす
る請求項1記載の高炉の出銑滓制御方法である。
According to a second aspect of the present invention, the tapping speed and the tapping speed are controlled by controlling the amount of electromagnetic energy supplied from the electromagnetic energy supplier to adjust the cross-sectional area of the hot metal flowing in the conductor. The method for controlling the tapping speed of slag in a blast furnace according to claim 1, wherein According to the third aspect of the present invention, by cooling the conducting tube, a solidified layer of molten slag is attached to the inner surface side of the conducting tube to perform cell lining, and the amount of heat removed by cooling is adjusted to reduce the thickness of the solidified layer. The method for controlling tapping slag of a blast furnace according to claim 1, wherein the flow rates of the molten pig iron and the molten slag are controlled by changing the flow rates.

【0013】請求項4記載の本発明は、鋳床の出銑樋に
設けた流速測定器あるいはトピードカーの重量測定器に
より出銑速度を、また滓樋に設けた流速測定器により出
滓速度を測定し、この測定した出銑速度および出滓速度
を電磁エネルギ供給体にフィードバックすることによっ
て目標とする出銑速度および出滓速度に制御することを
特徴とする請求項2または3記載の高炉の出銑滓速度制
御方法である。
According to the present invention of claim 4, the tapping speed is measured by a flow velocity measuring device provided in the tap gutter of the casting floor or the weight measuring device of a toped car, and the tapping velocity is measured by a flow velocity measuring device provided in the tap gutter. The blast furnace according to claim 2 or 3, characterized in that the measured tapping speed and slag speed are controlled to the target tapping speed and slag speed by feeding back the measured tapping speed and slag speed to the electromagnetic energy supplier. This is a pig iron slag speed control method.

【0014】[0014]

【作用】本発明では、出銑孔の炉外側に導通管を装着
し、導通管の外周に配設した電磁エネルギ供給体によ
り、導通管内を流れる溶銑に磁気エネルギを印加し、電
磁反発による磁気圧を与え、溶銑の縮流により流路断面
積を調整することにより溶銑滓の排出速度を制御するの
で、出銑孔のマッド損耗に影響されることなく出銑滓速
度を自在に制御することが可能になる。
According to the present invention, a conducting tube is attached to the outer side of the tap hole, and a magnetic energy is applied to the hot metal flowing in the conducting tube by means of an electromagnetic energy supply body arranged on the outer periphery of the conducting tube, so that the magnetic field generated by electromagnetic repulsion is applied. Since the discharge speed of the molten pig iron is controlled by applying atmospheric pressure and adjusting the cross-sectional area of the flow path by the contraction flow of the molten pig iron, it is possible to freely control the tapping metal velocity without being affected by the mud wear of the taphole. Will be possible.

【0015】[0015]

【実施例】以下、本発明の構成および作用を実施例に基
づいて詳細に説明する。本発明では図1に示すように高
炉炉底9に配設した出銑孔1の炉外側に接続して導通管
10を装着する。導通管10の装着手段は特定しないが、た
とえば、マッドガンを装着するのに準じた機械的手段を
使用着脱できるようにしてもよい。導通管10の外周には
長手方向に複数個(図面では4個)の電磁エネルギ供給
体11が胴部を包囲するように配設してある。
EXAMPLES The structure and operation of the present invention will be described in detail below with reference to examples. In the present invention, as shown in FIG. 1, a conduit tube is connected to the outside of the tap hole 1 arranged in the bottom 9 of the blast furnace.
Wear 10. Although the mounting means of the conduit tube 10 is not specified, for example, a mechanical means similar to that of mounting a mud gun may be used so as to be attachable / detachable. A plurality of (four in the drawing) electromagnetic energy supply bodies 11 are arranged on the outer circumference of the conducting tube 10 so as to surround the body portion in the longitudinal direction.

【0016】高炉炉底9内に溜まった溶銑4および溶滓
5を出銑孔1を介して出銑し、導通管10内の流路12を流
れるときに、電磁エネルギ供給体11から電磁エネルギを
印加すると図2に示すように溶銑4は電磁反応による磁
気圧13を受け、図3に示すように導通管10内に形成され
た通路12の中心部に集まる。これにより溶滓5は、流路
12の内面側に押しやられ、中心部の溶銑4とその外側の
溶滓5との2液流に分離される。導通管10に設けた冷却
路14に水などの冷却媒体を流して冷却すれば、溶滓5は
導通管10の内部に設けた流路12の内壁面に凝固して付着
し、凝固層15を形成する。滓は熱伝導率が低いため凝固
層15は安定した断熱層となり、導通管10のセルフライニ
ングとなる。
When the molten pig iron 4 and the molten slag 5 accumulated in the bottom 9 of the blast furnace are tapped through the tap hole 1 and flow through the flow passage 12 in the conduit tube 10, the electromagnetic energy is supplied from the electromagnetic energy supplier 11. 2 is applied, the hot metal 4 receives a magnetic pressure 13 due to an electromagnetic reaction, and gathers at the center of the passage 12 formed in the conduit 10 as shown in FIG. As a result, the molten slag 5 is
It is pushed to the inner surface side of 12 and separated into two liquid streams of the hot metal 4 at the center and the slag 5 at the outside thereof. When a cooling medium such as water is made to flow through the cooling passage 14 provided in the conducting pipe 10 for cooling, the molten slag 5 is solidified and adheres to the inner wall surface of the flow passage 12 provided inside the conducting pipe 10, and the solidified layer 15 To form. Since the slag has a low thermal conductivity, the solidification layer 15 serves as a stable heat insulating layer, and serves as cell lining of the conduit 10.

【0017】このようにして導通管10の内面に滓セルフ
ライニングによる凝固層15が形成されると、出銑孔1内
のマッド7のように損耗を受けることがないので、一定
の流路径が保持され、出銑滓速度を一定に維持すること
ができる。図5に示すように出銑滓作業が進むに連れて
出銑孔1の孔径はマッドの損耗によって大きくなるが、
導通管10によって出銑滓速度が一定に保たれているの
で、出銑孔1内を流れる溶銑滓の排出速度は小さくな
る。このため出銑孔1内のマッド損耗速度も次第に小さ
くなり、従来のように出銑滓の経過とともにマッド損耗
が加速度的に大きくなるのとは対照的であり、大幅な出
銑時間の延長が達成される。
When the solidified layer 15 is formed on the inner surface of the conduit tube 10 by the slag cell flying as described above, it is not worn like the mud 7 in the taphole 1 and therefore has a constant flow path diameter. It is maintained and the tapping speed can be kept constant. As shown in FIG. 5, as the tapping work progresses, the hole diameter of the tapping hole 1 increases due to wear of the mud.
Since the speed of tapping slag is kept constant by the conduit tube 10, the discharge speed of the molten pig iron flowing in the tapping hole 1 becomes small. For this reason, the mud wear rate in the tap hole 1 also gradually decreases, which is in contrast to the conventional case in which mud wear increases at an accelerated rate with the progress of tap slag, and a significant increase in tap time is achieved. To be achieved.

【0018】次に図4に基づいて出銑孔1からの出銑速
度および出滓速度を制御する手順について説明する。導
通管10に設けた冷却路14に冷却水等の冷却媒体を流して
内壁を冷却するに際し、冷却媒体は制御弁24により流量
を制御して内壁からの抜熱を調整する。これにより導通
管10の内壁面に凝固して付着する凝固層15の層厚がコン
トロールされ、導通管10の流路12の断面積が調整でき
る。
Next, the procedure for controlling the tapping speed and the tapping speed from the tapping hole 1 will be described with reference to FIG. When a cooling medium such as cooling water is made to flow through the cooling passage 14 provided in the conducting pipe 10 to cool the inner wall, the flow rate of the cooling medium is controlled by the control valve 24 to adjust the heat removal from the inner wall. As a result, the layer thickness of the solidified layer 15 that solidifies and adheres to the inner wall surface of the conduit tube 10 is controlled, and the cross-sectional area of the flow path 12 of the conduit tube 10 can be adjusted.

【0019】一方、導通管10に形成された流路12の中心
部にある溶銑4は、電磁エネルギ供給体11から電磁エネ
ルギが印加され、電磁反発による電気圧を受けるが、こ
の際制御装置16より電磁エネルギの供給量を制御するこ
とにより電磁圧の強度を調整し、これによって溶銑4の
流路断面積がコントロールされる。このような導通管10
の外周に配設した電磁エネルギ供給体11による溶銑4の
流路断面制御と、導通管10の冷却により内壁面に形成さ
れる滓の凝固層15の厚み調整による流路12の流れ断面積
変更とにより、溶銑4および溶滓5の排出速度をそれぞ
れ独立に制御することが可能となる。
On the other hand, the hot metal 4 in the central portion of the flow path 12 formed in the conducting tube 10 is applied with electromagnetic energy from the electromagnetic energy supply body 11 and receives electric pressure due to electromagnetic repulsion. The intensity of the electromagnetic pressure is adjusted by controlling the supply amount of the electromagnetic energy to control the flow passage cross-sectional area of the hot metal 4. Such a conduit 10
Control of the flow passage cross section of the hot metal 4 by the electromagnetic energy supply body 11 arranged on the outer circumference of the flow passage, and change of the flow cross sectional area of the flow passage 12 by adjusting the thickness of the solidified layer 15 of the slag formed on the inner wall surface by cooling the conduit 10. By this, it becomes possible to independently control the discharge rates of the hot metal 4 and the molten slag 5.

【0020】溶銑樋17の溶銑流速測定器18またはトピー
ドカー19の重量測定器20より得た出銑速度と、溶銑樋21
の溶滓流速測定器22より得た出滓速度とを制御装置23に
入力し、制御装置23で目標とする出銑速度、出滓速度と
の差を演算する。そして目標との差に基づいて制御装置
23より制御弁24および制御装置16へ制御信号を出すと、
制御弁24の開度が制御され、導通管10に設けた冷却路に
供給する冷却媒体の流量をコントロールする。
The tapping speed obtained from the hot metal flow velocity measuring device 18 of the hot metal gutter 17 or the weight measuring device 20 of the tope car 19 and the hot metal gutter 21
The slag velocity obtained from the slag flow velocity measuring device (22) is input to the control device (23), and the control device (23) calculates the target tapping speed and the difference between the slag velocity and the target. And the controller based on the difference from the target
When a control signal is output from 23 to the control valve 24 and the control device 16,
The opening of the control valve 24 is controlled to control the flow rate of the cooling medium supplied to the cooling passage provided in the conduit 10.

【0021】この場合、制御弁24の開度を制御する代わ
りに電磁エネルギ供給体11から印加する磁気エネルギの
供給量をコントロールするか、あるいは、冷却媒体の流
量および磁気エネルギの供給量を同時にコントロールす
ることもできる。このような導通管10の冷却路14への冷
却媒体供給量および/または電磁エネルギ供給体11へ印
加する電磁エネルギ供給量のコントロールにより、導通
管10の内面に形成される凝固層15の厚み調整と、導通管
10の中心部に存在する溶銑4の流路断面積調整との組み
合わせにより所期の出銑滓速度を得ることが可能にな
る。
In this case, instead of controlling the opening degree of the control valve 24, the amount of magnetic energy applied from the electromagnetic energy supplier 11 is controlled, or the flow rate of the cooling medium and the amount of magnetic energy are simultaneously controlled. You can also do it. The thickness of the solidified layer 15 formed on the inner surface of the conduit tube 10 is adjusted by controlling the amount of cooling medium supplied to the cooling passage 14 of the conduit tube 10 and / or the amount of electromagnetic energy supplied to the electromagnetic energy supplier 11. And the conduit
By combining with the flow passage cross-sectional area adjustment of the hot metal 4 existing in the central part of 10, it becomes possible to obtain the desired tapping speed.

【0022】図5に示すように出銑孔1の径(断面積)
がマッドの損耗に伴って大きくなるのは避けることはで
きないが本発明では導通管10によって出銑滓速度が一定
に保たれている。このため、出銑孔1の孔径が大きくな
るにつれて出銑孔1内の流速は逆に小さくなるので、出
銑孔1を形成するマッドの損耗速度がしだいに小さくな
ってくる。したがって従来のように出銑滓の排出が進む
とともにマッド損耗が加速度的に大きくなり、出銑滓速
度が過大になるのとは対照的であり、マッドの加速度的
な損耗を伴うことなく導通管10による所定速度の出銑滓
コントロールによる出銑滓時間の大幅な延長が達成され
る。
As shown in FIG. 5, the diameter (cross-sectional area) of the tap hole 1
However, in the present invention, the tapping speed is kept constant by the conduit tube 10 in the present invention. Therefore, as the hole diameter of the taphole 1 increases, the flow velocity inside the taphole 1 decreases conversely, and the wear rate of the mud forming the taphole 1 gradually decreases. Therefore, in contrast to the conventional method in which mud wear increases at an accelerated rate with the progress of tap slag discharge, which makes the tap slag speed too high, the conduit pipe does not experience accelerated mud wear. A significant extension of the pig iron slag time is achieved by controlling the pig iron slag at a predetermined speed by 10.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、次
のような効果を得ることができる。 (1)導通管による一定速度の出銑滓を達成できるた
め、出銑滓速度の過少過大に伴うトラブルが解消でき、
鋳床における溶銑予備処理、水滓処理設備の負荷軽減が
実現できる。 (2)出銑時間が大幅に延長できるのに伴い、出銑回数
を大幅に低減できるため、炉前作業負荷を大幅に軽減で
き、炉前の省力化が達成できる。 (3)出銑速度の一定化と出銑時間の延長より、溶銑品
質の変動を大幅に低減でき、次工程の溶銑予備処理の精
錬コストの低減が達成できる。 (4)高炉内造銑滓に合致した出銑滓速度が可能となる
ため、炉底での貯銑、貯滓レベルが一定となり、高炉の
安定操業に貢献することができる。
As described above, according to the present invention, the following effects can be obtained. (1) Since the tapping slag at a constant speed can be achieved by the conduit pipe, the troubles due to the excessive or excessive tapping speed can be solved,
It is possible to reduce the load on the hot metal pretreatment and slag treatment equipment in the casting floor. (2) As the tapping time can be greatly extended, the number of tapping operations can be greatly reduced, so that the work load before the furnace can be significantly reduced and labor saving before the furnace can be achieved. (3) By making the tapping speed constant and prolonging the tapping time, fluctuations in the quality of the hot metal can be significantly reduced, and the refining cost of the hot metal pretreatment in the next step can be reduced. (4) Since the pig iron slag speed that matches the ironmaking slag inside the blast furnace is possible, the pig iron storage and slag level at the furnace bottom become constant, which can contribute to stable operation of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る高炉炉底部における装置
を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an apparatus at the bottom of a blast furnace according to an embodiment of the present invention.

【図2】溶銑が磁気圧を受けて縮径する状況を示す説明
図である。
FIG. 2 is an explanatory diagram showing a situation in which the hot metal is subjected to a magnetic pressure to reduce its diameter.

【図3】図1のA−A矢視を示す断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG.

【図4】本発明の制御系統を示すフロー図である。FIG. 4 is a flowchart showing a control system of the present invention.

【図5】本発明による出銑孔のマッド損耗速度、出銑孔
径および出銑滓速度の推移を示す線図である。
FIG. 5 is a diagram showing a transition of a mud wear rate of a taphole, a taphole diameter, and a tap rate according to the present invention.

【図6】従来例に係る高炉炉底部の縦断面図である。FIG. 6 is a vertical sectional view of a furnace bottom portion of a blast furnace according to a conventional example.

【図7】従来例に係る出銑孔の開孔機による開孔状況を
示す縦断面図である。
FIG. 7 is a vertical cross-sectional view showing a hole opening state by a hole punching machine according to a conventional example.

【図8】従来例に係る出銑孔からの出銑状況を示す縦断
面図である。
FIG. 8 is a vertical cross-sectional view showing a state of tapping from a taphole according to a conventional example.

【図9】従来例に係る出銑孔のマッドガンによる閉塞状
況を示す断面図である。
FIG. 9 is a cross-sectional view showing a closed state of a tap hole according to a conventional example by a mud gun.

【図10】出銑滓速度および造銑滓速度の推移を示す線図
である。
[Fig. 10] Fig. 10 is a diagram showing a transition of a pig iron slag speed and a pig iron slag speed.

【図11】出銑孔のマッド損耗速度と出銑孔内の溶銑滓流
速との関係を示す線図である。
FIG. 11 is a diagram showing a relationship between a mud wear rate of a taphole and a flow rate of molten pig iron in the taphole.

【符号の説明】[Explanation of symbols]

1 出銑孔 2 開孔機 3 ドリル 4 溶銑 5 溶滓 6 マッドガン 7 マッド 8 出銑樋 9 高炉炉底 10 導通管 11 電磁エネルギ供給体 12 流路 13 磁気圧 14 冷却器 15 凝固層 16 制御装置 17 溶銑樋 18 溶銑流速測定器 19 トピードカー 20 重量測定器 21 滓樋 22 溶滓流速測定器 23 制御装置 24 制御弁 1 tapping hole 2 drilling machine 3 drill 4 molten pig 5 molten slag 6 mud gun 7 mud 8 tapping gutter 9 blast furnace bottom 10 conduit tube 11 electromagnetic energy supply body 12 flow path 13 magnetic pressure 14 cooler 15 solidification layer 16 controller 17 Hot metal gutter 18 Hot metal flow velocity measuring device 19 Toped car 20 Weight measuring device 21 Slag gutter 22 Slag flowing velocity measuring device 23 Control device 24 Control valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高炉の出銑孔から排出される溶銑滓の速
度を制御する方法であって、前記出銑孔の炉外側に接続
して導通管を装着し、この導通管の外周に配設した電磁
エネルギ供給体により、導通管内を流れる溶銑に磁気エ
ネルギを印加して電磁反発による磁気圧を与え、溶銑の
縮流により流路断面積を調整することを特徴とする高炉
の出銑滓速度制御方法。
1. A method for controlling the speed of molten pig iron discharged from a tap hole of a blast furnace, which is connected to the outside of the tap hole and is provided with a conduit pipe, and a conduit pipe is attached to the outer periphery of the conduit pipe. The installed electromagnetic energy supply body applies magnetic energy to the hot metal flowing in the conduit to apply magnetic pressure by electromagnetic repulsion, and adjusts the cross-sectional area of the flow path by the contraction of the hot metal. Speed control method.
【請求項2】 電磁エネルギ供給体から印加する電磁エ
ネルギ供給量を制御し、導通体内を流れる溶銑の流路断
面積を調整することによって出銑速度と出滓速度を制御
することを特徴とする請求項1記載の高炉の出銑滓速度
制御方法。
2. The tapping speed and the tapping speed are controlled by controlling the amount of electromagnetic energy supplied from the electromagnetic energy supplier and adjusting the flow passage cross-sectional area of the hot metal flowing in the conductor. The method for controlling the tapping speed of a blast furnace according to claim 1.
【請求項3】 導通管を冷却することにより、導通管の
内面側に溶滓の凝固層を付着させてセルフライニングす
ると共に、冷却による抜熱量を調整して凝固層の厚みを
変化させ、溶銑および溶滓の流量を制御することを特徴
とする請求項1記載の高炉の出銑滓制御方法。
3. By cooling the conducting tube, a solidified layer of molten slag is attached to the inner surface side of the conducting tube for cell flying, and the amount of heat removed by cooling is adjusted to change the thickness of the solidified layer. The method for controlling tapping slag of a blast furnace according to claim 1, wherein the flow rate of the slag and the slag is controlled.
【請求項4】鋳床の出銑樋に設けた流速測定器あるいは
トピードカーの重量測定器により出銑速度を、また滓樋
に設けた流速測定器により出滓速度を測定し、この測定
した出銑速度および出滓速度を電磁エネルギ供給体にフ
ィードバックすることによって目標とする出銑速度およ
び出滓速度を制御することを特徴とする請求項2または
3記載の高炉の出銑滓速度制御方法。
4. A tapping speed is measured by a flow velocity measuring device provided in a tap gutter of a casting floor or a weight measuring device of a toped car, and a tap velocity is measured by a flow velocity measuring device provided in a tap gutter. The method for controlling the tapping speed of the blast furnace according to claim 2 or 3, wherein the target tapping speed and tapping speed are controlled by feeding back the tapping speed and tapping speed to the electromagnetic energy supplier.
JP5336077A 1993-12-28 1993-12-28 Method for controlling tapping velocity of iron and slag of blast furnace Pending JPH07188717A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5336077A JPH07188717A (en) 1993-12-28 1993-12-28 Method for controlling tapping velocity of iron and slag of blast furnace
PCT/JP1994/002240 WO1995018237A1 (en) 1993-12-28 1994-12-27 Tapping method of blast furnace
KR1019950703640A KR0166419B1 (en) 1993-12-28 1994-12-27 Tapping method of blast furnace
US08/495,466 US5616166A (en) 1993-12-28 1994-12-27 Tapping method for blast furnace
CN94191631A CN1036016C (en) 1993-12-28 1994-12-27 Tapping method of blast furnace
DE69419598T DE69419598T2 (en) 1993-12-28 1994-12-27 Tapping process for blast furnaces
EP95903979A EP0688875B1 (en) 1993-12-28 1994-12-27 Tapping method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336077A JPH07188717A (en) 1993-12-28 1993-12-28 Method for controlling tapping velocity of iron and slag of blast furnace

Publications (1)

Publication Number Publication Date
JPH07188717A true JPH07188717A (en) 1995-07-25

Family

ID=18295463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336077A Pending JPH07188717A (en) 1993-12-28 1993-12-28 Method for controlling tapping velocity of iron and slag of blast furnace

Country Status (1)

Country Link
JP (1) JPH07188717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530011A (en) * 2008-08-07 2011-12-15 ティーエムティー タッピング−メジャリング−テクノロジー ゲゼルシャフトミット ベシュレンクテル ハフツング Hot water discharge channel for discharging iron and metal melts and molten slag from metallurgical vessels such as blast furnaces and melting furnaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530011A (en) * 2008-08-07 2011-12-15 ティーエムティー タッピング−メジャリング−テクノロジー ゲゼルシャフトミット ベシュレンクテル ハフツング Hot water discharge channel for discharging iron and metal melts and molten slag from metallurgical vessels such as blast furnaces and melting furnaces

Similar Documents

Publication Publication Date Title
US3618917A (en) Channel-type induction furnace
US4580616A (en) Method and apparatus for controlled solidification of metals
US5123631A (en) Method of and apparatus for continuously discharging molten metal and slag
JPH07188717A (en) Method for controlling tapping velocity of iron and slag of blast furnace
EP0688875B1 (en) Tapping method of blast furnace
US3066364A (en) Pouring technique for continuous casting
JPH07188718A (en) Method for controlling tapping velocity of iron and slag from tapping hole of blast furnace
JPH07188719A (en) Method for separating tapped iron and slag of blast furnace
US5027881A (en) Continuous casting apparatus
JPH07145414A (en) Method for tapping molten metal from metal melting furnace and tapping hole thereof
JP2607659B2 (en) Quantitative tapping device for rock wool melt
JPH10273707A (en) Method for controlling flowing quantity of tapped iron and slag in iron tapping hole in blast furnace and iron tap hole
US3948647A (en) Method of melting solid iron in a gas cupola
JP2000336416A (en) Device for controlling speed of tapping iron and slag in blast furnace
JPS59202142A (en) Heating method of nozzle to be immersed into tundish
CN100465562C (en) Arrangement and method for tapping a molten phase from a smelting furnace
EP0179790B1 (en) Improvements in casting furnaces
WO2022172770A1 (en) Method for manufacturing ingot iron by using electric furnace provided with imaging apparatus
US4169723A (en) Process of melting blast-furnace cast-iron
JPH1112616A (en) Method for controlling tapping speed of iron and slag in blast furnace
JPH0625372B2 (en) Blast furnace tapping method and tapping device
JPH0390505A (en) Method for reducing remaining iron at the time of blowing down in blast furnace
SU996456A1 (en) Method for producing steel
RU2184327C2 (en) Unit for preparing liquid metal to ingot and blank casting
Fernandes Process of Melting Blast-Furnace Cast Iron