JPH07186156A - Mold for synthetic resin material and others - Google Patents

Mold for synthetic resin material and others

Info

Publication number
JPH07186156A
JPH07186156A JP33340593A JP33340593A JPH07186156A JP H07186156 A JPH07186156 A JP H07186156A JP 33340593 A JP33340593 A JP 33340593A JP 33340593 A JP33340593 A JP 33340593A JP H07186156 A JPH07186156 A JP H07186156A
Authority
JP
Japan
Prior art keywords
mold
plating
particles
fluororesin
fluororesin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33340593A
Other languages
Japanese (ja)
Inventor
Naoki Matsubara
直樹 松原
Yoichi Sugiyama
洋一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP33340593A priority Critical patent/JPH07186156A/en
Publication of JPH07186156A publication Critical patent/JPH07186156A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a mold with a film having improved mold release characteristics, water repellency, oil repellency, lubricating properties, etc., by using a film prepd. by means of an electroless composite plating method. CONSTITUTION:A mold for molding a synthetic resin material, etc., is prepd. by a method wherein a base material for the mold is immersed in a plating bath wherein fluororesin particles with characteristic shape and dimension are dispersed and electroless plating is performed to co-deposit the fluororesin particles on the surface of the base material of the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂材等の成型用金
型、より詳しくはシリコンゴム,ウレタン,エポキシ,
ABS等の合成樹脂材等の成型に用いられる成型用金型
に関するものである。
FIELD OF THE INVENTION The present invention relates to a mold for molding a synthetic resin material, more specifically, silicone rubber, urethane, epoxy,
The present invention relates to a molding die used for molding a synthetic resin material such as ABS.

【0002】[0002]

【従来の技術】従来、シリコンゴム,ウレタン,エポキ
シ,ABS等の合成樹脂材を成型する場合に使用される
金型の表面には一般的に硬質なクロムメッキが施されて
いる。この硬質クロムメッキは、皮膜硬度が高く、耐摩
耗性に優れている反面、コストが高くなるばかりでなく
形状によっては均一電着性に劣り、成型製品の成型製品
の精度が低いという問題がある。また、離型性に乏し
く、そのため毎日離型剤を塗布する必要があり、作業効
率の低下や製品への悪影響がある上に、離型剤中に含ま
れるフロンによるオゾン層の破壊なども問題などもあっ
た。
2. Description of the Related Art Conventionally, a hard chrome plating is generally applied to the surface of a mold used for molding a synthetic resin material such as silicon rubber, urethane, epoxy, ABS or the like. This hard chrome plating has a high coating hardness and excellent wear resistance, but on the other hand, it not only increases the cost but also has a problem that the uniform electrodeposition is inferior depending on the shape and the precision of the molded product is low. . In addition, the mold release property is poor, and therefore it is necessary to apply a mold release agent every day, which reduces work efficiency and adversely affects the product, and also causes problems such as the destruction of the ozone layer due to CFCs contained in the mold release agent. There was such a thing.

【0003】このような背景から離型性を向上させ、か
つ作業効率を向上させる方法としてフッ素樹脂系離型剤
を用いて金型表面に被膜を形成することが考えられ、そ
の被膜形成方法としてフッ素樹脂系の離型剤を均一に塗
装し焼き付ける方法、あるいは平均粒径1μm以下のフ
ッ素樹脂系の微粒子を分散させたメッキ浴を用いた分散
メッキ法等が知られている。
From such a background, as a method of improving the mold releasability and improving the working efficiency, it is considered to form a film on the surface of the mold by using a fluororesin releasing agent. Known methods include a method of uniformly coating and baking a fluororesin-based release agent, and a dispersion plating method using a plating bath in which fine particles of a fluororesin having an average particle diameter of 1 μm or less are dispersed.

【0004】[0004]

【発明が解決しようとする課題】ところで前記フッ素樹
脂系の離型剤の塗装、焼き付ける方法においては離型性
は改善するものの耐久性に問題がある。即ち、数十ショ
ット程度の成型で離型不良となり生産性が低下すること
となっている。一方、後者の分散メッキ法による場合に
おいても前者に比し多少耐久性は向上するものの数百シ
ョット程度で離型性不良となり実用に供することができ
ないという問題があった。
By the way, in the method of coating and baking the above-mentioned fluororesin-based mold release agent, the mold releasability is improved, but there is a problem in durability. In other words, the molding of several tens of shots results in a poor mold release, resulting in a decrease in productivity. On the other hand, even when the latter dispersion plating method is used, the durability is slightly improved as compared with the former method, but there is a problem in that the mold releasability becomes poor after about several hundred shots and it cannot be put to practical use.

【0005】[0005]

【課題をを解決するための手段】本発明は前記従来技術
の問題点を解決するためになされたものであって、フッ
素樹脂粒子を分散させたメッキ浴に基材を浸漬し、無電
解メッキすることにより前記基材の表面に前記フッ素樹
脂粒子を共析させた合成樹脂材等の成型用金型を提供せ
んとするものである。
The present invention has been made to solve the above-mentioned problems of the prior art, in which electroless plating is performed by immersing a substrate in a plating bath in which fluororesin particles are dispersed. By doing so, a mold for molding a synthetic resin material or the like in which the fluororesin particles are co-deposited on the surface of the base material is provided.

【0006】そしてフッ素樹脂粒子としては分子量80
00〜2万で、かつメジアン径1〜30μmの非球形、
好ましくは短繊維形状が用いられその分散量は50g/
リットル〜500g/リットルとなるよう調整される。
The fluororesin particles have a molecular weight of 80.
An aspherical shape having a median diameter of 1 to 30 μm
Preferably, a short fiber shape is used and the dispersion amount is 50 g /
It is adjusted to be from liter to 500 g / liter.

【0007】[0007]

【作 用】前記構成の合成樹脂材等の成型用金型によれ
ば、被膜上に突起するフッ素樹脂粒子はメッキ金属によ
って十分強固に固定されるため長期間にわたり離型性が
保持される。
[Operation] According to the molding die of the synthetic resin material or the like having the above structure, the fluororesin particles protruding on the coating film are sufficiently firmly fixed by the plating metal, so that the mold releasability is maintained for a long period of time.

【0008】[0008]

【実 施 例】本発明で用いられる無電解メッキ液とし
ては、好ましくは無電解ニッケルメッキ浴が使用できる
が、その他無電解銅メッキ液、無電解錫メッキ液等、無
電解複合メッキ可能なものであれば特に限定されないこ
とは言うまでもない。又、金型基材としては特に限定さ
れず、鉄鋼、銅、ステンレス鋼,アルミニウム、マグネ
シウム、鋳鉄、亜鉛及びこれら金属の合金、及び触媒付
与された樹脂、セラミックス等が使用できる。
[Example] The electroless plating solution used in the present invention is preferably an electroless nickel plating bath, but other electroless copper plating solutions, electroless tin plating solutions, etc. capable of electroless composite plating It goes without saying that there is no particular limitation so long as it is. Further, the mold base material is not particularly limited, and steel, copper, stainless steel, aluminum, magnesium, cast iron, zinc and alloys of these metals, and catalyst-added resins, ceramics and the like can be used.

【0009】本発明において用いられるフッ素樹脂粒子
にはポリテトラフルオロエチレン粒子が好適に使用され
るが、フッ素原子を表面に持つ樹脂の粒子であれば特に
限定されないことは言うまでもない。又、高密度に共析
させるための条件として、フッ素樹脂粒子の分子量は高
分子としての8000〜20万の範囲がよく、特に1万
〜5万のものが好適に使用される。
Polytetrafluoroethylene particles are preferably used as the fluororesin particles used in the present invention, but it goes without saying that they are not particularly limited as long as they are particles of a resin having fluorine atoms on the surface. As conditions for high-density co-deposition, the molecular weight of the fluororesin particles is preferably in the range of 8,000 to 200,000 as a polymer, and particularly preferably 10,000 to 50,000.

【0010】又、フッ素樹脂粒子のメジアン径は1μm
〜30μmである必要があり、特に1μm〜10μmの
ものが好適に使用される。又、フッ素樹脂粒子の形状は
非球形の不定形状であるか、円柱状である必要はないに
しても短繊維状のやや細長い形状であることが好まし
く、共析時の各粒子は各粒子を覆う界面活性剤の極性の
作用で相互に反発しながら表面へ引きつけられることに
なり、その結果、粒子は表面に対して植毛されたように
立った状態で被膜に取り込まれていくことになる。
The median diameter of the fluororesin particles is 1 μm.
It is necessary to be 30 μm, and those having a thickness of 1 μm to 10 μm are preferably used. Further, the shape of the fluororesin particles is a non-spherical indefinite shape, or preferably a short fiber-like slightly elongated shape even if it is not required to be cylindrical, and each particle at the time of eutectoid is Due to the polar effect of the covering surfactant, they repel each other and are attracted to the surface, and as a result, the particles are taken into the coating while standing as if they were flocked to the surface.

【0011】その結果、粒子は高密度に共析させられる
ことになり、マトリックス金属への密着性が向上する
上、後述の熱処理による流動性を持つ部分が表面に多く
なり、表面の樹脂層が厚くなるため耐久性が向上する等
の効果を持つことになるので、非球形、特に短繊維状の
粒子形状であることは重要である。本発明において無電
解メッキ浴へのフッ素樹脂粒子の添加量は、液1リット
ル当たり50g以上の量で分散させる必要があり、特
に、100g/リットル以上の条件で著しくその離型
性、撥水・撥油性等の効果が大きくなる。ただし、添加
量はあまり多過ぎてもそれほど効果は増大せず、コスト
やメッキ浴作製時の作業を考慮すれば、多くても500
g/リットル迄が実用上限界であり、添加量は100g
/リットル〜200g/リットルの条件が好ましく使用
される。
As a result, the particles can be co-deposited at a high density, the adhesion to the matrix metal is improved, and more fluid parts are formed on the surface by the heat treatment described later, and the resin layer on the surface is formed. Since the thickness increases, the durability and other effects are improved. Therefore, it is important that the particles have an aspherical shape, particularly a short fiber shape. In the present invention, the addition amount of the fluororesin particles to the electroless plating bath needs to be dispersed in an amount of 50 g or more per liter of the liquid, and particularly under the condition of 100 g / liter or more, releasability and water repellency The effects such as oil repellency are increased. However, if the addition amount is too much, the effect does not increase so much, and if the cost and the work at the time of making the plating bath are taken into consideration, it is at most 500.
The practical limit is up to g / liter, and the addition amount is 100 g.
The condition of / liter to 200 g / liter is preferably used.

【0012】又、フッ素樹脂粒子は撥水性が高いので、
その粒子をメッキ浴に均一に分散させるためには、常法
に従ってカチオン系の界面活性剤を使用する。この様な
公知の界面活性剤として特に限定されるものではない
が、第4級アンモニウム塩、第2・第3アミン類、イン
ダゾリン類、ポリオキシエチレン系、ポリエチレンイミ
ン系、エステル系、カルボン酸系、スルホン酸系等が例
示される。
Also, since the fluororesin particles have high water repellency,
In order to uniformly disperse the particles in the plating bath, a cationic surfactant is used according to a conventional method. Such known surfactants are not particularly limited, but include quaternary ammonium salts, secondary / tertiary amines, indazolines, polyoxyethylene-based, polyethyleneimine-based, ester-based and carboxylic acid-based surfactants. , Sulfonic acid type and the like are exemplified.

【0013】本発明における熱処理は、無電解メッキに
よって得られた被膜の離型性、撥水撥油性等の効果をよ
り向上させるために好ましい工程である。300℃以上
の熱処理によって表面のフッ素樹脂粒子が流動性を持
ち、粒子自身が広がり、お互いに重なり合うことによ
り、表面はより高密度にフッ素樹脂によって覆われるこ
とになる。
The heat treatment in the present invention is a preferable step in order to further improve the effects such as releasability and water / oil repellency of the coating film obtained by electroless plating. By the heat treatment at 300 ° C. or higher, the fluororesin particles on the surface have fluidity, and the particles themselves spread and overlap each other, so that the surface is covered with the fluororesin with a higher density.

【0014】この現象のためには、300℃以上400
℃以下の熱処理が必要であるが、処理温度が高くなると
表面のフッ素樹脂の蒸発による消失量が多くなるので、
好ましくはフッ素樹脂のガラス転移点である320℃以
上、350℃以下の範囲においての不活性雰囲気での熱
処理が好適に使用される。又、被膜製造に無電解ニッケ
ルメッキ浴を使用した場合、その被膜は熱処理によって
ビッカース硬度がHv600程度に上昇するので、成型
加工機械部品及び金型への適用にはより効果的である。
For this phenomenon, 300 ° C. or higher and 400
Heat treatment at or below ℃ is required, but the higher the treatment temperature, the greater the amount of loss due to evaporation of the fluororesin on the surface.
Heat treatment in an inert atmosphere is preferably used in the range of 320 ° C. or higher and 350 ° C. or lower, which is the glass transition point of the fluororesin. Further, when an electroless nickel plating bath is used for manufacturing the coating, the coating increases its Vickers hardness to about Hv600 by heat treatment, and is more effective for application to molding machine parts and dies.

【0015】次に本発明者が行った実験例を示す。 実験例(1〜3) 下記組成のニッケルメッキ浴をベース組成とした。 塩化ニッケル : 30g/リットル 次亜リン酸ナトリウム : 10g/リットル ヒドロキシ酸ナトリウム: 50g/リットル 水 : 残部 上記調整したメッキ浴中にポリテトラフルオロエチレン
粒子(メジアン径6μm以下PTFE粒子という)を50,
130,200(g/リットル)の濃度で添加し、カチ
オン系界面活性剤(第4給アンモニウム塩系)をPTFE粒
子の量に応じて適量使用して分散させた。
Next, an example of an experiment conducted by the present inventor will be shown. Experimental Examples (1 to 3) A nickel plating bath having the following composition was used as a base composition. Nickel chloride: 30 g / liter Sodium hypophosphite: 10 g / liter Sodium hydroxyate: 50 g / liter Water: Remainder 50 Polytetrafluoroethylene particles (median diameter 6 μm or less referred to as PTFE particles) in the adjusted plating bath,
It was added at a concentration of 130,200 (g / liter) and was dispersed by using an appropriate amount of a cationic surfactant (fourth feed ammonium salt system) according to the amount of PTFE particles.

【0016】簡易な剥離試験用のテスト金型として、材
質S45C、寸法縦100mm、横100mm、厚さ20mm
の平板を用い、上記調整した3種類のメッキ液で無電解
メッキ処理を施し、比較のため同様の平板に市販のPTFE
含有無電解メッキ液(日本カニゼン社製:カニフロン)
を用いてメッキ処理を施し、比較用金型を作製した。無
電解メッキの処理としては、まず前処理として、テスト
金型に予め溶剤脱脂及びアルカリ脱脂(50℃×5分)
を行い、次いでスケール除去のために10Vol %の塩酸
(常温×2分)を用いて表面の活性化を行った。次にス
テンレスパット中にメッキ液10リットルを入れ、攪拌
機でメッキ液を攪拌させながら浴温90°で1時間浸漬
して無電解メッキ処理した。
As a test die for a simple peeling test, material S45C, dimensions 100 mm long, 100 mm wide, 20 mm thick
Electroless plating treatment was performed using the above-prepared three types of plating solutions.
Containing electroless plating solution (Kaniflon made by Kanigen Japan)
Was used to perform a plating treatment to produce a comparative mold. As the electroless plating treatment, first, as a pretreatment, the test mold is preliminarily subjected to solvent degreasing and alkali degreasing (50 ° C. × 5 minutes).
Then, the surface was activated with 10 vol% hydrochloric acid (normal temperature × 2 minutes) for scale removal. Next, 10 liters of the plating solution was placed in a stainless steel pad, and the plating solution was immersed in a stirrer for 1 hour at a bath temperature of 90 ° to perform electroless plating.

【0017】剥離試験の方法としては、まず上記3種の
テスト金型と比較用金型の間に、寸法縦50mm、横50
mm、厚さ2mmの加硫したシリコンゴムを鋏、150℃〜
180℃に加熱し、プレスを行い、冷却後金型を開き、
シリコンゴムがどちら側に付着したかを確認した。上記
剥離試験を、上記3種の金型について繰り返し各200
回繰り返し各200回試行し、その結果を表1に示す。
As a method of the peeling test, first, a dimension of 50 mm in width and 50 in width is provided between the above-mentioned three kinds of test dies and the comparative dies.
mm, 2 mm thick vulcanized silicone rubber scissors, 150 ℃ ~
Heat to 180 ℃, press, open the mold after cooling,
It was confirmed which side the silicone rubber adhered to. The above peeling test was repeated for each of the three types of molds described above, and each 200 times.
The test was repeated 200 times, and the results are shown in Table 1.

【0018】実験例(4〜20) 次に分散濃度を決定する試験として、上記実験例1〜3
と同様に、メッキ浴中にPTFE粒子をO,20,40,5
0,60,90,100,110,130,150,1
70,190,200,250,300,400及び5
00 (g/リットル)の濃度で添加し、分散させた。ま
た、被メッキ用のテスト金型としては、材質S45C、
寸法縦250mm、横250mm、厚さ30mmの同一形状の
ものを用い、上記実験例1〜3と同様に無電解メッキ処
理した。
Experimental Examples (4 to 20) Next, as a test for determining the dispersion concentration, the above Experimental Examples 1 to 3 were conducted.
In the same manner as above, the PTFE particles were added to the plating bath as O, 20, 40, 5
0, 60, 90, 100, 110, 130, 150, 1
70, 190, 200, 250, 300, 400 and 5
It was added at a concentration of 00 (g / liter) and dispersed. Further, as the test die for plating, the material S45C,
Using the same shape having dimensions of 250 mm in length, 250 mm in width, and 30 mm in thickness, electroless plating was performed in the same manner as in Experimental Examples 1 to 3 above.

【0019】こうして得られたテスト金型表面につい
て、離型性、水との接触角(以下接触角という)測定し
た結果をメッキ条件と併せて表2に示す。なお、離型性
はシリコンゴムの成型において離型不良を起こすまでの
回数を計測した。又接触角は接触角測定装置を用いて室
温にて測定した。 比較例1 比較例として上記市販のPTFE含有無電解メッキ液を用い
てメッキ処理を施し、比較用金型を作製し、同様の試験
を行った。なお、その結果を表1に併記する。
The test mold surface thus obtained is measured for releasability and contact angle with water (hereinafter referred to as contact angle), and the results are shown in Table 2 together with the plating conditions. The mold releasability was measured by the number of times until a mold release defect occurred in the molding of silicon rubber. The contact angle was measured at room temperature using a contact angle measuring device. Comparative Example 1 As a comparative example, a plating process was performed using the above-mentioned commercially available PTFE-containing electroless plating solution to prepare a comparative mold, and the same test was conducted. The results are also shown in Table 1.

【0020】実験例(21〜31) 上記実験例8で使用したPTFE粒子の配合濃度130g/
リットルのメッキ浴について、メッキ浴温度を90℃、
85℃、80℃及び75℃に変化させてメッキを施し
た。また、メッキ時間は0.5、1及び2時間であっ
た。得られたテスト金型表面について、上記実験例4〜
20と同様に離型製及び接触角を測定した。測定結果を
表3に示す。
Experimental Example (21 to 31) The compounding concentration of the PTFE particles used in Experimental Example 8 was 130 g /
For a liter plating bath, the plating bath temperature is 90 ° C,
The plating was performed by changing the temperature to 85 ° C, 80 ° C and 75 ° C. The plating time was 0.5, 1 and 2 hours. Regarding the surface of the obtained test mold, the above Experimental Example 4 to
In the same manner as in Example 20, mold release and contact angle were measured. The measurement results are shown in Table 3.

【0021】また,上記実験例8,12,15及び19
の条件で作製したテスト金型について熱処理を行い、硬
度、離型性及び接触角を測定した。なお、熱処理温度は
320℃及び350℃であった。それらの実験結果をメ
ッキ条件と併せて表3に示しており、又、硬度はマイク
ロピッカース硬度計により荷重20gで計測した。表1
より本手法による表面の離型性の優位を明らかであっ
た。
Further, the above-mentioned Experimental Examples 8, 12, 15 and 19
Heat treatment was performed on the test mold manufactured under the conditions of, and hardness, releasability and contact angle were measured. The heat treatment temperatures were 320 ° C and 350 ° C. The results of these experiments are shown in Table 3 together with the plating conditions, and the hardness was measured with a micropickers hardness meter at a load of 20 g. Table 1
Therefore, the superiority of the surface releasability by this method was clarified.

【0022】又、表2より明らかなようにPTFE添加量が
50g/リットルを越すとショット数の改善がみられ、
100g/リットルを越えると撥水性が飛躍的に増大
し、離型性も従来の無電解メッキ表面の600ショット
程度を遙に凌ぐ結果が得られた。又、表3から明らかな
ように浴温度は被膜の成長速度には影響するが、被膜の
特性には大きな影響がないという結果が得られた。
Further, as is clear from Table 2, when the PTFE addition amount exceeds 50 g / liter, the shot number is improved,
When the amount exceeds 100 g / liter, the water repellency is remarkably increased, and the releasability far exceeds the conventional 600 shots of the electroless plating surface. Further, as is clear from Table 3, the bath temperature affects the growth rate of the coating, but the characteristics of the coating are not significantly affected.

【0023】又、熱処理については表4から明らかなよ
うに、硬度、ショット数は320℃より350℃での熱
処理の法がより改善されるが、撥水性については320
℃での熱処理がよく、350℃の熱処理では著しく劣化
するという結果が得られた。
As to heat treatment, as is clear from Table 4, the hardness and the number of shots are improved from those of 320 ° C. by the method of heat treatment at 350 ° C.
It was found that the heat treatment at ℃ was good, and the heat treatment at 350 ℃ markedly deteriorated.

【0024】[0024]

【発明の効果】本発明によれば、下記のごとき顕著な効
果が達成される。 (1) 無電解メッキ被膜上の突起上に存在するフッ素
樹脂粒子は、その一部をメッキ金属によって十分強固に
固定されているため、従来の樹脂コーティングに比べて
はるかに密着性の良好な被膜が得られ、長期間にわたり
離型性、撥水・撥油性等の効果が持続する。従って、従
来の合成樹脂成形用金型に比較して著しく多数回の成形
が可能であった。
According to the present invention, the following remarkable effects are achieved. (1) Since the fluororesin particles present on the protrusions on the electroless plating film are sufficiently firmly fixed by the plating metal, the film has much better adhesion than the conventional resin coating. The effect of releasability, water repellency, oil repellency, etc. is maintained over a long period of time. Therefore, it was possible to perform molding a large number of times as compared with the conventional synthetic resin molding die.

【0025】(2) 被膜形成に無電解メッキを利用し
ており、無電解メッキの持つ特徴をそのまま生かしてい
るため、金型基材の形状に影響されることなく膜厚の均
一な被膜を形成することが出来、離型性の優れた金型を
得ることができる。 (3) 熱処理を行うことによって被膜表面はより高密
度にフッ素樹脂に覆われ、離型剤、撥水・撥油性等の効
果はさらに持続することになる上に、無電解ニッケルメ
ッキ浴を使用して熱処理によりマトリックス金属の硬度
がHv600程度に上昇する。この被膜は、たとえば成
型加工機械部品及び金型に好適に使用できることにな
る。
(2) Since the electroless plating is used for forming the coating and the characteristics of the electroless plating are used as they are, a coating having a uniform thickness can be formed without being affected by the shape of the die base material. A mold that can be formed and has excellent releasability can be obtained. (3) By heat treatment, the surface of the coating is covered with fluororesin with higher density, and the effects of release agent, water repellency, oil repellency, etc. are further maintained, and an electroless nickel plating bath is used. Then, the heat treatment increases the hardness of the matrix metal to about Hv600. This coating can be suitably used, for example, in molding machine parts and molds.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月22日[Submission date] July 22, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 合成樹脂材等の成型用金型[Title of Invention] Mold for molding synthetic resin material, etc.

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂材等の成型用金
型、より詳しくはシリコンゴム,ウレタン,エポキシ,
ABS等の合成樹脂材等の成型に用いられる成型用金型
に関するものである。
FIELD OF THE INVENTION The present invention relates to a mold for molding a synthetic resin material, more specifically, silicone rubber, urethane, epoxy,
The present invention relates to a molding die used for molding a synthetic resin material such as ABS.

【0002】[0002]

【従来の技術】従来、シリコンゴム,ウレタン,エポキ
シ,ABS等の合成樹脂材を成型する場合に使用される
金型の表面には一般的に硬質クロムメッキが施されてい
る。この硬質クロムメッキは、膜硬度が高く、耐磨耗
性に優れている反面、コストが高くなるばかりでなく形
状によっては均一電着性に劣り、成型製品の精度が低い
という問題がある。また、離型性に乏しく、そのため
ぼ毎回離型剤を塗布する必要があり、作業効率の低下や
製品への悪影響がある上に、離型剤スプレー中に含まれ
るフロンによるオゾン層の破壊など題もあった。
Conventionally, silicone rubber, urethane, epoxy, generally hard Shitsuku Romumekki can be applied to a surface of a mold used when molding the synthetic resin material such as ABS. The hard chrome plating, high target film hardness, while having excellent abrasion resistance, poor throwing power depending on the shape not only the cost is high, there is a problem of low accuracy of the formed products . In addition, poor releasing property, ho for the
Pot must be applied each time the releasing agent, onto a negative impact on the reduction and product efficiency, was also problems such as destruction of the ozone layer by CFCs contained in the release agent spray.

【0003】このような背景から離型性を向上させ、か
つ作業効率を向上させる方法としてフッ素樹脂系離型剤
を用いて金型表面に被膜を形成することが考えられ、そ
の被膜形成方法としてフッ素樹脂系の離型剤を均一に塗
装し焼き付ける方法、あるいは平均粒径1μm以下のフ
ッ素樹脂系の微粒子を分散させたメッキ浴を用いた分散
メッキ法等が知られている。
From such a background, as a method of improving the mold releasability and improving the working efficiency, it is considered to form a film on the surface of the mold by using a fluororesin releasing agent. Known methods include a method of uniformly coating and baking a fluororesin-based release agent, and a dispersion plating method using a plating bath in which fine particles of a fluororesin having an average particle diameter of 1 μm or less are dispersed.

【0004】[0004]

【発明が解決しようとする課題】ところで前記フッ素樹
脂系の離型剤の塗装、焼き付ける方法においては離型性
は改善するものの耐久性に問題がある。即ち、数十ショ
ット程度の成型で離型不良となり生産性が低下すること
となっている。一方、後者の分散メッキ法による場合に
おいても前者に比し多少耐久性は向上するものの数百シ
ョット程度で離型性不良となり実用に供することができ
ないという問題があった。
By the way, in the method of coating and baking the above-mentioned fluororesin-based mold release agent, the mold releasability is improved, but there is a problem in durability. In other words, the molding of several tens of shots results in a poor mold release, resulting in a decrease in productivity. On the other hand, even when the latter dispersion plating method is used, the durability is slightly improved as compared with the former method, but there is a problem in that the mold releasability becomes poor after about several hundred shots and it cannot be put to practical use.

【0005】[0005]

【課題を解決するための手段】本発明は前記従来技術の
問題点を解決するためになされたものであって、特徴的
な形状、寸法を持つフッ素樹脂粒子を分散させたメッキ
浴に基材を浸漬し、無電解メッキすることにより前記基
材の表面に前記フッ素樹脂粒子を共析させた合成樹脂材
等の成型用金型を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and is characterized by
For molding synthetic resin materials, etc. in which the fluororesin particles are co-deposited on the surface of the base material by immersing the base material in a plating bath in which fluororesin particles having various shapes and dimensions are dispersed and electroless plating It is intended to provide a mold.

【0006】そしてフッ素樹脂粒子としては分子量80
00〜20万で、かつメジアン径1〜30μmの非球
形、好ましくは短繊維形状が用いられその分散量は50
g/リットル〜500g/リットルとなるよう調整され
る。
The fluororesin particles have a molecular weight of 80.
00- 200,000, and non-spherical median size 1 to 30 [mu] m, preferably the dispersion amount short fibrous form is used 50
It is adjusted to be g / liter to 500 g / liter.

【0007】[0007]

【作 用】前記構成の合成樹脂材等の成型用金型によれ
ば、被膜上に突起するフッ素樹脂粒子はメッキ金属によ
って十分強固に固定されるため長期間にわたり離型性が
保持される。
[Operation] According to the molding die of the synthetic resin material or the like having the above structure, the fluororesin particles protruding on the coating film are sufficiently firmly fixed by the plating metal, so that the mold releasability is maintained for a long period of time.

【0008】本発明で用いられる無電解メッキ液として
は、好ましくは無電解ニッケルメッキ浴が使用できる
が、その他無電解銅メッキ液、無電解錫メッキ液等、無
電解複合メッキ可能なものであれば特に限定されないこ
とは言うまでもない。又、金型基材としては特に限定さ
れず、鉄鋼、銅、ステンレス鋼、アルミニウム、マグネ
シウム、鋳鉄、亜鉛及びこれら金属の合金、及び触媒付
与された樹脂、セラミックス等が使用できる。
As the electroless plating solution used in the present invention, an electroless nickel plating bath can be preferably used, but other electroless copper plating solutions, electroless tin plating solutions and the like can be used as well. It goes without saying that there is no particular limitation. Further, the mold base material is not particularly limited, and steel, copper, stainless steel, aluminum, magnesium, cast iron, zinc and alloys of these metals, and catalyst-added resins, ceramics and the like can be used.

【0009】本発明において用いられるフッ素樹脂粒子
にはポリテトラフルオロエチレン粒子が好適に使用され
るが、フッ素原子を表面に持つ樹脂の粒子であれば特に
限定されないことは言うまでもない。又、高密度に共析
させるための条件として、フッ素樹脂粒子の分子量は高
分子としての8000〜20万の範囲がよく、特に1万
〜5万のものが好適に使用される。
Polytetrafluoroethylene particles are preferably used as the fluororesin particles used in the present invention, but it goes without saying that they are not particularly limited as long as they are particles of a resin having fluorine atoms on the surface. As conditions for high-density co-deposition, the molecular weight of the fluororesin particles is preferably in the range of 8,000 to 200,000 as a polymer, and particularly preferably 10,000 to 50,000.

【0010】又、フッ素樹脂粒子のメジアン径は1μm
〜30μmである必要があり、特に1μm〜10μmの
ものが好適に使用される。又、フッ素樹脂粒子の形状は
非球形の不定形状であるか、円柱状である必要はないに
しても短繊維状のやや細長い形状であることが好まし
く、共析時の各粒子はメッキ浴の粒子濃度と各粒子を覆
う界面活性剤の極性の作用で相互に反発しながら表面へ
引きつけられることになり、その結果、粒子の多くは表
面に対して植毛されたように立った状態で被膜に取り込
まれていくことになる。
The median diameter of the fluororesin particles is 1 μm.
It is necessary to be 30 μm, and those having a thickness of 1 μm to 10 μm are preferably used. Further, the shape of the fluororesin particles is a non-spherical indefinite shape, or preferably a short fiber-like slightly elongated shape even if it is not required to be cylindrical, and each particle at the time of eutectoid is in the plating bath. will be attracted to the surface while repelling each other by the action of the polarity of a surfactant for covering the particle concentration and the particle, as a result, the film in a state standing as flocked to the surface many particles It will be taken in.

【0011】その結果、粒子は高密度に共析させられる
ことになり、マトリックス金属への密着性が向上する
上、後述の熱処理による流動性を持つ部分が表面に多く
なり、表面の樹脂層が厚くなるため耐久性が向上する等
の効果を持つことになるので、非球形、特に短繊維状の
粒子形状であることは重要である。本発明において無電
解メッキ浴へのフッ素樹脂粒子の添加量は、液1リット
ル当たり50g以上の量で分散させる必要があり、特
に、100g/リットル以上の条件で著しくその離型
性、撥水・撥油性等の効果が大きくなる。ただし、添加
量はあまり多過ぎてもそれほど効果は増大せず、コスト
やメッキ浴作製時の作業を考慮すれば、多くても500
g/リットル迄が実用上限界であり、添加量は100g
/リットル〜200g/リットルの条件が好ましく使用
される。
As a result, the particles can be co-deposited at a high density, the adhesion to the matrix metal is improved, and more fluid parts are formed on the surface by the heat treatment described later, and the resin layer on the surface is formed. Since the thickness increases, the durability and other effects are improved. Therefore, it is important that the particles have an aspherical shape, particularly a short fiber shape. In the present invention, the addition amount of the fluororesin particles to the electroless plating bath needs to be dispersed in an amount of 50 g or more per liter of the liquid, and particularly under the condition of 100 g / liter or more, releasability and water repellency The effects such as oil repellency are increased. However, if the addition amount is too much, the effect does not increase so much, and if the cost and the work at the time of making the plating bath are taken into consideration, it is at most 500.
The practical limit is up to g / liter, and the addition amount is 100 g.
The condition of / liter to 200 g / liter is preferably used.

【0012】又、フッ素樹脂粒子は撥水性が高いので、
その粒子をメッキ浴に均一に分散させるためには、常法
に従ってカチオン系の界面活性剤を使用する。この様な
公知の界面活性剤として特に限定されるものではない
が、第4級アンモニウム塩、第2・第3アミン類、イ
ダゾリン類、ポリオキシエチレン系、ポリエチレンイミ
ン系、エステル系、カルボン酸系、スルホン酸系等が例
示される。
Also, since the fluororesin particles have high water repellency,
In order to uniformly disperse the particles in the plating bath, a cationic surfactant is used according to a conventional method. Although not particularly limited as such known surface active agents, quaternary ammonium salts, second and third amines, Lee Mi <br/> Dazorin, polyoxyethylene-based, polyethyleneimine-based, Examples thereof include ester type, carboxylic acid type and sulfonic acid type.

【0013】本発明における熱処理は、無電解メッキに
よって得られた被膜の離型性、撥水撥油性等の効果を
より向上させるために好ましい工程である。300℃以
上の熱処理によって表面のフッ素樹脂粒子が流動性を持
ち、粒子自身が広がり、お互いに重なり合うことによ
り、表面はより高密度にフッ素樹脂によって覆われるこ
とになる。
The heat treatment in the present invention is a preferable step in order to further improve the effects such as releasability and water / oil repellency of the coating film obtained by electroless plating. By the heat treatment at 300 ° C. or higher, the fluororesin particles on the surface have fluidity, and the particles themselves spread and overlap each other, so that the surface is covered with the fluororesin with a higher density.

【0014】この現象のためには、300℃以上400
℃以下の熱処理が必要であるが、処理温度が高くなると
表面のフッ素樹脂の蒸発による消失量が多くなるので、
好ましくはフッ素樹脂のガラス転移点である320℃以
上、350℃以下の範囲においての不活性雰囲気での熱
処理が好適に使用される。又、被膜製造に無電解ニッケ
ルメッキ浴を使用した場合、その被膜は熱処理によって
ビッカース硬度がHv600程度に上昇するので、成型
加工機械部品及び金型への適用にはより効果的である。
For this phenomenon, 300 ° C. or higher and 400
Heat treatment at or below ℃ is required, but the higher the treatment temperature, the greater the amount of loss due to evaporation of the fluororesin on the surface.
Heat treatment in an inert atmosphere is preferably used in the range of 320 ° C. or higher and 350 ° C. or lower, which is the glass transition point of the fluororesin. Further, when an electroless nickel plating bath is used for manufacturing the coating, the coating increases its Vickers hardness to about Hv600 by heat treatment, and is more effective for application to molding machine parts and dies.

【0015】 [0015]

【実施例】 次に本発明者が行った実施例を示す。 実験例(1〜3) 下記組成のニッケルメッキ浴をベース組成とした。 塩化ニッケル : 30g/リットル 次亜リン酸ナトリウム : 10g/リットル ヒドロキシ酸ナトリウム: 50g/リットル 水 : 残部 上記調整したメッキ浴中にポリテトラフルオロエチレン
粒子(メジアン径6μm以下PTFE粒子という)を5
0,130,200(g/リットル)の濃度で添加し、
カチオン系界面活性剤(第4級アンモニウム塩系)をP
TFE粒子の量に応じて適量使用して分散させた。
Example shows an embodiment of the present invention will now have conducted. Experimental Examples (1 to 3) A nickel plating bath having the following composition was used as a base composition. Nickel chloride: 30 g / liter Sodium hypophosphite: 10 g / liter Sodium hydroxyate: 50 g / liter Water: Remainder Polytetrafluoroethylene particles (referred to as PTFE particles having a median diameter of 6 μm or less) in the adjusted plating bath are 5
Add at a concentration of 0,130,200 (g / l),
Cationic surface active agent (quaternary ammonium salt type)
An appropriate amount was used according to the amount of TFE particles and dispersed.

【0016】簡易な剥離試験用のテスト金型として、材
質S45C、寸法縦100mm、横100mm、厚さ2
0mmの平板を用い、上記調整した3種類のメッキ液で
無電解メッキ処理を施し、比較のため同様の平板に市販
のPTFE含有無電解メッキ液(日本カニゼン社製:カ
ニフロン)を用いてメッキ処理を施し、比較用金型を作
製した。無電解メッキの処理としては、まず前処理とし
て、テスト金型に予め溶剤脱脂及びアルカリ脱脂(50
℃×5分)を行い、次いでスケール除去のために10V
ol%の塩酸(常温×2分)を用いて表面の活性化を行
った。次にステンレスット中にメッキ液10リットル
を入れ、攪拌機でメッキ液を攪拌させながら浴温90
で1時間浸漬して無電解メッキ処理した。
As a test die for a simple peeling test, material S45C, dimensions 100 mm long, 100 mm wide, thickness 2
Using a 0 mm flat plate, electroless plating treatment was performed with the above-prepared three kinds of plating liquids, and a similar flat plate was plated with a commercially available PTFE-containing electroless plating liquid (Kaniflon made by Japan Kanigen Co., Ltd.) for comparison. Then, a comparative mold was produced. As the electroless plating treatment, first, as a pretreatment, solvent degreasing and alkali degreasing (50
℃ × 5 minutes), then 10V for scale removal
The surface was activated using ol% hydrochloric acid (normal temperature × 2 minutes). Then placed plating liquid 10 liters of a stainless bar Tsu DOO, while stirring the plating liquid by a stirrer bath temperature 90 ° C.
It was soaked for 1 hour for electroless plating.

【0017】剥離試験の方法としては、まず上記3種の
テスト金型と比較用金型の間に、寸法縦50mm、横5
0mm、厚さ2mmの加硫したシリコンゴムを挟み、1
50℃〜180℃に加熱し、プレスを行い、冷却後金型
を開き、シリコンゴムがどちら側に付着したかを確認し
た。上記剥離試験を、上記3種の金型について繰り返し
各200回試行し、その結果を表1に示す。
As the method of the peeling test, first, between the above-mentioned three kinds of test dies and the comparative dies, the dimension is 50 mm in length and 5 in width.
Insert 0 mm, 2 mm thick vulcanized silicone rubber between 1
It was heated to 50 ° C. to 180 ° C., pressed, cooled, and the mold was opened to confirm which side the silicon rubber adhered to. The peeling test, tries each 200 times repeatedly with the three mold above. The results are shown in Table 1.

【0018】実験例(4〜20) 次に分解濃度を決定する試験として、上記実験例1〜3
と同様に、メッキ浴中にPTFE粒子を,20,4
0,50,60,90,100,110,130,15
0,170,190,200,250,300,400
及び500(g/リットル)の濃度で添加し、分散させ
た。また、被メッキ用のテスト金型としては、材質S4
5C、寸法縦250mm、横250mm、厚さ30mm
の同一形状のものを用い、上記実験例1〜3と同様に無
電解メッキ処理した。
Experimental Examples (4 to 20) Next, as a test for determining the decomposition concentration, the above Experimental Examples 1 to 3 were conducted.
In the same manner as above, the PTFE particles were added to the plating bath at 0 , 20, 4
0, 50, 60, 90, 100, 110, 130, 15
0,170,190,200,250,300,400
And 500 (g / liter) to add and disperse. Further, as the test die for plating, the material S4 is used.
5C, dimensions length 250mm, width 250mm, thickness 30mm
The same shape was used for electroless plating in the same manner as in Experimental Examples 1 to 3.

【0019】こうして得られたテスト金型表面につい
て、離型性、水との接触角(以下接触という)測定し
た結果をメッキ条件と併せて表2に示す。なお、離型性
はシリコンゴムの成型において離型不良を起こすまでの
回数を計測した。又接触角は接触角測定装置を用いて室
温にて測定した。 比較例1 比較例として上記市販のPTFE含有無電解メッキ液を
用いてメッキ処理を施し、比較用金型を作製し、同様の
試験を行った。なお、その結果を表に併記する。
The test mold surface thus obtained was measured for releasability and contact angle with water (hereinafter referred to as contact) , and the results are shown in Table 2 together with the plating conditions. The mold releasability was measured by the number of times until a mold release defect occurred in the molding of silicon rubber. The contact angle was measured at room temperature using a contact angle measuring device. Comparative Example 1 As a comparative example, a plating process was performed using the above-mentioned commercially available PTFE-containing electroless plating solution to prepare a comparative mold, and the same test was performed. The results are also shown in Table 2 .

【0020】実験例(21〜31) 上記実験例12で使用したPTFE粒子の配合濃度13
0g/リットルのメッキ浴について、メッキ浴温度を9
0℃、85℃、80℃及び75℃に変化させてメッキを
施した。また、メッキ時間は0.5、1及び2時間であ
った。得られたテスト金型表面について、上記実験例4
〜20と同様に離型及び接触角を測定した。測定結果
を表3に示す。
Experimental Example (21-31) Compounding concentration 13 of the PTFE particles used in Experimental Example 12 above
For 0 g / l plating bath, set the plating bath temperature to 9
The plating was performed by changing the temperature to 0 ° C, 85 ° C, 80 ° C and 75 ° C. The plating time was 0.5, 1 and 2 hours. Regarding the surface of the obtained test mold, the above-mentioned Experimental Example 4 was used.
It was measured release property and contact angle in the same manner as 20. The measurement results are shown in Table 3.

【0021】また,上記実験例8,12,16及び19
の条件で作製したテスト金型について熱処理を行い、硬
度、離型性及び接触角を測定した。なお、熱処理温度は
320℃及び350℃であった。それらの実験結果をメ
ッキ条件と併せて表に示しており、又、硬度はマイク
ッカース硬度計により荷重20gで計測した。表1
より本手法による表面の離型性の優位明らかであっ
た。
Further, the above-mentioned Experimental Examples 8, 12, 16 and 19
Heat treatment was performed on the test mold manufactured under the conditions of, and hardness, releasability and contact angle were measured. The heat treatment temperatures were 320 ° C and 350 ° C. The results these experiments are shown together with the plating conditions shown in Table 4, and the hardness was measured under a load 20g by microbeads Vickers hardness tester. Table 1
The superiority of the surface releasability by this method was clear.

【0022】又、表2より明らかなようにPTFE添加
量が50g/リットルを越すとショット数の改善がみら
れ、100g/リットルを越えると撥水性が飛躍的に増
大し、離型性も従来の無電解メッキ表面の600ショッ
ト程度を遥に凌ぐ結果が得られた。又、表3から明らか
なように浴温度は被膜の成長速度には影響するが、被膜
の特性には大きな影響がないという結果が得られた。
Further, as is clear from Table 2, when the amount of PTFE added exceeds 50 g / liter, the shot number is improved, and when it exceeds 100 g / liter, the water repellency is remarkably increased and the releasability is also conventional. The result was far more than about 600 shots of the surface of electroless plating. Further, as is clear from Table 3, the bath temperature affects the growth rate of the coating, but the characteristics of the coating are not significantly affected.

【0023】又、熱処理については表4から明らかなよ
うに、硬度、ショット数は320℃より350℃での熱
処理のがより改善されるが、撥水性については320
℃での熱処理がよく、350℃の熱処理では著しく劣化
するという結果が得られた。
[0023] Also, as is clear from Table 4 for the heat treatment, hardness, number of shots is better in heat treatment at 350 ° C. than 320 ° C. is more improved, the water repellent 320
It was found that the heat treatment at ℃ was good, and the heat treatment at 350 ℃ markedly deteriorated.

【0024】[0024]

【発明の効果】本発明によれば、下記のごとき顕著な効
果が達成される。 (1) 無電解メッキ被膜上の突起に存在るフッ素樹
脂粒子は、その一部をメッキ金属によって十分強固に固
定されているため、従来の樹脂コーティングに比べては
るかに密着性の良好な被膜が得られ、長時間にわたり離
型性、撥水・撥油性等の効果が持続する。従って、従来
の合成樹脂成型用金型に比較して著しく多数回の成型
可能であった。
According to the present invention, the following remarkable effects are achieved. (1) Since the fluororesin particles present in the projection shape on the electroless plating film are sufficiently firmly fixed by the plating metal, the film has much better adhesion than the conventional resin coating. The effect of releasability, water repellency, oil repellency, etc. is maintained over a long period of time. Therefore, it was possible to perform molding a great number of times as compared with the conventional synthetic resin molding die.

【0025】(2) 被膜形成に無電解メッキを利用し
ており、無電解メッキの持つ特徴をそのまま生かしてい
るため、金型基材の形状に影響されることなく膜厚の均
一な被膜を形成することが出来、離型性の優れた金型を
得ることができる。 (3) 熱処理を行うことによって被膜表面はより高密
度にフッ素樹脂に覆われ、離型剤、撥水・撥油性等の効
果はさらに持続することになる上に、無電解ニッケルメ
ッキ浴を使用する場合には熱処理によりマトリックス金
属の硬度がHv600程度に上昇する。この被膜は、た
とえば成型加工機械部品及び金型に好適に使用できるこ
とになる。
(2) Since the electroless plating is used for forming the coating and the characteristics of the electroless plating are used as they are, a coating having a uniform thickness can be formed without being affected by the shape of the die base material. A mold that can be formed and has excellent releasability can be obtained. (3) By heat treatment, the surface of the coating is covered with fluororesin with higher density, and the effects of release agent, water repellency, oil repellency, etc. are further maintained, and an electroless nickel plating bath is used. In that case, the heat treatment raises the hardness of the matrix metal to about Hv600. This coating can be suitably used, for example, in molding machine parts and molds.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂粒子を分散させたメッキ浴に
金型基材を浸漬し、無電解メッキすることにより前記金
型基材の表面に前記フッ素樹脂粒子を共析させたことを
特徴とする合成樹脂材等の成型用金型。
1. The fluororesin particles are co-deposited on the surface of the die substrate by immersing the die substrate in a plating bath in which the fluororesin particles are dispersed and performing electroless plating. Mold for molding synthetic resin materials.
【請求項2】 分子量8,000〜20万でかつメジア
ン径1〜30μmの非球形である請求項1記載のフッ素
樹脂粒子。
2. The fluororesin particles according to claim 1, which are non-spherical having a molecular weight of 8,000 to 200,000 and a median diameter of 1 to 30 μm.
【請求項3】 1リットル当り50グラム〜500グラ
ムをフッ素樹脂を分散させてなる請求項1記載のメッキ
浴。
3. The plating bath according to claim 1, wherein the fluororesin is dispersed in an amount of 50 to 500 grams per liter.
【請求項4】 フッ素樹脂粒子を分散させたメッキ浴に
金型基材を浸漬し、無電解メッキすることにより前記基
材の表面に前記フッ素樹脂粒子を共析させた後、該金型
基材表面を300℃〜400℃に加熱して熱処理するこ
とを特徴とする合成樹脂材等の形成用金型の製造方法。
4. A mold base is immersed in a plating bath in which fluororesin particles are dispersed, and electroless plating is performed to co-deposit the fluororesin particles on the surface of the base, and then the mold base is formed. A method for manufacturing a metal mold for forming a synthetic resin material or the like, which comprises heating the material surface to 300 ° C to 400 ° C to perform heat treatment.
JP33340593A 1993-12-27 1993-12-27 Mold for synthetic resin material and others Withdrawn JPH07186156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33340593A JPH07186156A (en) 1993-12-27 1993-12-27 Mold for synthetic resin material and others

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33340593A JPH07186156A (en) 1993-12-27 1993-12-27 Mold for synthetic resin material and others

Publications (1)

Publication Number Publication Date
JPH07186156A true JPH07186156A (en) 1995-07-25

Family

ID=18265750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33340593A Withdrawn JPH07186156A (en) 1993-12-27 1993-12-27 Mold for synthetic resin material and others

Country Status (1)

Country Link
JP (1) JPH07186156A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044544A1 (en) * 1999-01-29 2000-08-03 Daikin Industries, Ltd. Fluorine-containing elastomer moldings and method for preparing the same
WO2001060591A1 (en) * 2000-02-15 2001-08-23 Dow Global Technologies Inc. Mold for reaction injection molding and reaction injection molding process
JP2014188746A (en) * 2013-03-26 2014-10-06 Tokai Rubber Ind Ltd Manufacturing method of molding die, and molding die
JP6210471B1 (en) * 2017-05-09 2017-10-11 パナソニックIpマネジメント株式会社

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044544A1 (en) * 1999-01-29 2000-08-03 Daikin Industries, Ltd. Fluorine-containing elastomer moldings and method for preparing the same
WO2001060591A1 (en) * 2000-02-15 2001-08-23 Dow Global Technologies Inc. Mold for reaction injection molding and reaction injection molding process
US6610239B2 (en) 2000-02-15 2003-08-26 Dow Global Technologies Inc. Injection molding process using a coated mold
JP2014188746A (en) * 2013-03-26 2014-10-06 Tokai Rubber Ind Ltd Manufacturing method of molding die, and molding die
JP6210471B1 (en) * 2017-05-09 2017-10-11 パナソニックIpマネジメント株式会社

Similar Documents

Publication Publication Date Title
Kerr et al. The electrodeposition of composite coatings based on metal matrix-included particle deposits
CA2558466C (en) Iron-phosphorus electroplating bath and method
US3787294A (en) Process for producing a solid lubricant self-supplying-type co-deposited metal film
KR100540102B1 (en) Electroless composite plating solution and electroless composite plating method
US4716059A (en) Composites of metal with carbon fluoride and method of preparation
JPH07186156A (en) Mold for synthetic resin material and others
US9096924B2 (en) Composite PTFE plating
EP2182089A1 (en) Metallic coating and method to obtain the coating
JPH05245848A (en) Release film of mold and method for forming the same
EP3167097A1 (en) Composite electroless nickel plating
Yilmaz et al. Combined effects of ALS and SLS on Al2O3 reinforced composite nickel coatings
JPS6048599B2 (en) Composite plating film
US2327676A (en) Plating process
Malfatti et al. Heat treated NiP–SiC composite coatings: elaboration and tribocorrosion behaviour in NaCl solution
JPH07207496A (en) Production of composite plating metal material excelling in sliding property and anticorrosion
JP6343514B2 (en) Manufacturing method of molding die and molding die
JP4719646B2 (en) Manufacturing method of composite plating products
JP3175458B2 (en) Method of forming composite plating film for coil spring
JP7338849B2 (en) Black plating film
JP4579706B2 (en) Articles with improved zinc erosion resistance
JPS635176B2 (en)
JPH09183129A (en) Die for molding resin and manufacture of die for molding polyurethane
JP2013237895A (en) Film, method for producing the same and mold
JPH09131735A (en) Mold for molding resin
JPS5844738B2 (en) Composite plating method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306