JPH0718539B2 - Combustion method in radiant gas burner - Google Patents

Combustion method in radiant gas burner

Info

Publication number
JPH0718539B2
JPH0718539B2 JP8007388A JP8007388A JPH0718539B2 JP H0718539 B2 JPH0718539 B2 JP H0718539B2 JP 8007388 A JP8007388 A JP 8007388A JP 8007388 A JP8007388 A JP 8007388A JP H0718539 B2 JPH0718539 B2 JP H0718539B2
Authority
JP
Japan
Prior art keywords
gas
air
gas injection
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8007388A
Other languages
Japanese (ja)
Other versions
JPH01252807A (en
Inventor
拓仙 伊藤
勝彦 山崎
行男 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Tosoh Corp
Original Assignee
Hitachi Zosen Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Tosoh Corp filed Critical Hitachi Zosen Corp
Priority to JP8007388A priority Critical patent/JPH0718539B2/en
Publication of JPH01252807A publication Critical patent/JPH01252807A/en
Publication of JPH0718539B2 publication Critical patent/JPH0718539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエチレン分解炉、二塩化エチレン分解炉等に使
用し、低空気比で安定燃焼させることができる、拡散型
のラジアントガスバーナにおける燃焼方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a combustion method in a diffusion type radiant gas burner which can be used in an ethylene cracking furnace, an ethylene dichloride cracking furnace, etc., and can perform stable combustion at a low air ratio. Is.

従来の技術 従来、エチレン分解炉や二塩化エチレン分解炉等に使用
するガスバーナは、均一加熱の目的から平火炎を形成す
るために、バーナの先端周囲に混合気をスリット状噴射
口から噴射するものが使用されていた。ところが、この
ガスバーナはサーマルNoxが発生しやすく、また逆火す
るおそれがあったため、本発明者は実願昭61−98593号
で第4図に示すガスバーナを提案した。
2. Description of the Related Art Conventionally, gas burners used in ethylene cracking furnaces and ethylene dichloride cracking furnaces inject air-fuel mixture from the slit-shaped nozzle around the tip of the burner to form a flat flame for the purpose of uniform heating. Was used. However, since this gas burner is apt to generate thermal Nox and there is a risk of flashback, the present inventor proposed the gas burner shown in FIG. 4 in Japanese Utility Model Application No. 61-98593.

このガスバーナ11は、外管13とこの外管13に所定間隔を
あけて同心状に内嵌する内管12からなり、その先端部11
aは、内管12、外管13ともに閉塞12a,13aされている。内
管12内は燃料ガス導入流路で、内管12と外管13との間の
環状部14は空気導入流路である。このラジアントガスバ
ーナ11の先端部11a側は炉壁15を垂直状に貫通して炉内1
6へ突出される。そして、前記内管12の閉塞端12a付近の
管壁12bの全周に等間隔に複数個のガス噴射用チップ17
を、複数列立設し、このガス噴射用チップ17は、中心部
に細径のガス噴射孔17aを有し、外管13の内壁へ接触し
ない程度の高さに形成している。前記外管13の閉塞端13
a付近の管壁13bには、内管12に立設した前記ガス噴射用
チップ17に対応する箇所に、同心状にそのガス噴射用チ
ップ17の外径より直径の大きい空気−ガス噴出口18を穿
設している。前記ガス噴射用チップ17および空気−ガス
噴出口18は、ガスおよび空気が、炉壁15の壁面に平行あ
るいは10〜20℃の角度α(本実施例では約15゜)で壁面
に向って噴出するよう設けている。
The gas burner 11 is composed of an outer tube 13 and an inner tube 12 which is fitted into the outer tube 13 concentrically at a predetermined interval.
In a, both the inner pipe 12 and the outer pipe 13 are closed 12a, 13a. The inside of the inner pipe 12 is a fuel gas introducing passage, and the annular portion 14 between the inner pipe 12 and the outer pipe 13 is an air introducing passage. The tip portion 11a side of this radiant gas burner 11 vertically penetrates the furnace wall 15 and
Protruded to 6. Then, a plurality of gas injection chips 17 are equally spaced around the entire circumference of the tube wall 12b near the closed end 12a of the inner tube 12.
The gas injection tip 17 has a small-diameter gas injection hole 17a at the center and is formed at a height that does not contact the inner wall of the outer tube 13. The closed end 13 of the outer tube 13
On the pipe wall 13b near a, at a location corresponding to the gas injection tip 17 provided upright on the inner pipe 12, an air-gas ejection port 18 having a diameter larger than the outer diameter of the gas injection tip 17 concentrically. Has been drilled. The gas injection tip 17 and the air-gas ejection port 18 eject gas and air parallel to the wall surface of the furnace wall 15 or toward the wall surface at an angle α of 10 to 20 ° C. (about 15 ° in this embodiment). It is provided to do so.

発明が解決しようとする課題 上記のガスバーナは、たとえば二塩化エチレン分解炉に
おいて、ナフサクラッカーから副生されて従来では大気
中に燃焼放出されていたB−Bガス(ブタン−ブチレン
系ガス)を燃焼として使用すると、燃料費を大幅に低減
できる。しかし、このB−Bガスは重質不飽和炭化水素
を多量に含んでおり、ガス噴射用のガスチップ17のガス
噴射口17aから噴射されたB−Bガスはガス噴射口17aに
おいて不飽和炭化水素が一部分解あるいは重合してその
内周面にカーボンが析出し、ガス噴射口17aを閉塞させ
るおそれがあった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The gas burner described above burns BB gas (butane-butylene-based gas) that is by-produced from a naphtha cracker and is conventionally burned and released into the atmosphere in an ethylene dichloride cracking furnace. When used as, the fuel cost can be significantly reduced. However, this BB gas contains a large amount of heavy unsaturated hydrocarbons, and the BB gas injected from the gas injection port 17a of the gas chip 17 for gas injection is unsaturated carbonized at the gas injection port 17a. There is a risk that hydrogen will be partially decomposed or polymerized to deposit carbon on the inner peripheral surface thereof, thereby closing the gas injection port 17a.

本発明は上記問題点を解決して重質不飽和炭化水素を多
く含む燃料を使用してもガスバーナのガス噴射口を閉塞
することがないラジアントガスバーナにおける燃料方法
を提供することを目的とする。
It is an object of the present invention to solve the above problems and provide a fuel method for a radiant gas burner that does not block the gas injection port of the gas burner even when a fuel containing a large amount of heavy unsaturated hydrocarbons is used.

課題を解決するための手段 上記問題点を解決するための本発明は、先端部が炉内に
突出しかつ閉塞された外管に所定間隔をあけて内管を内
嵌し、この内管の基端部に設けられたエゼクタに燃料供
給ノズルから燃料ガスを噴射して内管内に理論燃焼空気
量の8〜10%の燃料ガス過濃混合気を供給し、前記外管
と内管との間に燃焼用空気を供給し、前記燃料ガス過濃
混合気を、内管先端部周囲に突設された複数のガス噴射
用チップのガス噴射口から外管のガス噴射用チップ対応
位置に形成された空気−ガス噴射口を介して燃焼用空気
と混合し炉内に噴射する方法としたものである。
Means for Solving the Problems The present invention for solving the above-mentioned problems is such that the inner tube is fitted into the outer tube with a tip protruding into the furnace and closed at a predetermined interval, and the base of the inner tube is Fuel gas is injected from the fuel supply nozzle to the ejector provided at the end to supply a fuel gas rich mixture of 8 to 10% of the theoretical combustion air amount into the inner pipe, and the space between the outer pipe and the inner pipe is supplied. Combustion air is supplied to the fuel gas rich mixture, and the fuel gas rich air-fuel mixture is formed at a position corresponding to the gas injection tip of the outer tube from the gas injection ports of the plurality of gas injection tips projecting around the tip of the inner tube. In addition, it is a method of mixing with combustion air through the air-gas injection port and injecting it into the furnace.

作用 燃料供給ノズルからエゼクタを介して内管内に供給され
た理論燃焼空気量8〜10%の燃料ガス過濃混合気をガス
噴射用チップのガス噴射口から外管の空気−ガス噴射口
を介して燃焼用空気を吸引しあるいは燃焼用空気と共に
炉内に噴射されるので、重質不飽和炭化水素を多く含む
燃料を使用しても、ガス噴射口内で析出するカーボンは
酸化反応によりCO,CO2となって飛散され、ガス噴射口を
閉塞することもない。また、理論燃焼空気量の10%以下
の過濃混合気であるため、従来の理論燃焼空気量の約80
%を含む予混合気に比べて燃焼が緩やかであり、NOxの
発生も抑制されるとともに、ガス噴射口の口径も小さく
てよくガス流速を高速化して逆火を防止することができ
る。
Action A fuel-gas rich mixture having a theoretical combustion air amount of 8 to 10% supplied from the fuel supply nozzle through the ejector into the inner pipe is passed from the gas injection port of the gas injection tip through the air-gas injection port of the outer pipe. The combustion air is sucked in or is injected into the furnace together with the combustion air.Therefore, even if a fuel containing a large amount of heavy unsaturated hydrocarbons is used, the carbon that precipitates in the gas injection port is CO, CO due to the oxidation reaction. It is scattered as 2 and does not block the gas injection port. Also, since it is a rich air-fuel mixture that is 10% or less of the theoretical combustion air amount, it is about 80% of the conventional theoretical combustion air amount.
The combustion is slower than that of the premixed air containing 50%, the generation of NOx is suppressed, the diameter of the gas injection port is small, and the gas flow rate can be increased to prevent flashback.

実施例 以下本発明の一実施例を第1図〜第3図に基づいて説明
する。従来例と同一部分には同一部号を付し、その説明
は省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. The same parts as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

第1図に示すように、外管13の基端部13cには空気導入
路14に連通する空気室21が配設され、燃焼用空気Aが供
給される。内管12の基端部12cには空気室21に臨んで開
口するエゼクタ22が取付けられ、前記空気室21の後壁21
aには内管12と同心状にエゼクタ22内に向く燃料供給ノ
ズル23が貫設される。そして、燃料供給ノズル23はノズ
ル口23aがエゼクタ22の開口部近傍の所定位置に開口す
るように配置され、燃料供給ノズル23から燃料ガスBが
噴射されると、エゼクタ効果により空気室21内に空気を
理論燃焼空気量の8〜10%範囲で内管12内に吸引して内
管12内に燃料ガス過濃混合気Cを供給する。この燃料ガ
ス過濃混合気Cを理論燃料空気量の8〜10%としたの
は、8%未満であればガス噴射口17a内にカーボンが析
出するおそれがあるためであり、また10%を越えると燃
焼反応が急激になってNOx発生量が増加するためであ
る。
As shown in FIG. 1, an air chamber 21 communicating with the air introduction passage 14 is provided at the base end portion 13c of the outer tube 13 and the combustion air A is supplied. An ejector 22 that opens toward the air chamber 21 is attached to the base end portion 12c of the inner pipe 12, and the rear wall 21 of the air chamber 21 is attached.
A fuel supply nozzle 23, which is concentric with the inner pipe 12 and faces the inside of the ejector 22, is provided through a. The fuel supply nozzle 23 is arranged such that the nozzle opening 23a opens at a predetermined position near the opening of the ejector 22, and when the fuel gas B is injected from the fuel supply nozzle 23, the ejector effect causes the fuel supply nozzle 23 to enter the air chamber 21. Air is sucked into the inner pipe 12 within the range of 8 to 10% of the theoretical combustion air amount, and the fuel gas rich mixture C is supplied into the inner pipe 12. The reason why the fuel gas rich air-fuel mixture C is set to 8 to 10% of the theoretical fuel air amount is that if it is less than 8%, carbon may be deposited in the gas injection port 17a. This is because if it exceeds, the combustion reaction will be rapid and the NOx generation amount will increase.

なお、前記外管13の先端閉塞部は、内側リング体13dが
内管12の閉塞部12a外周に外嵌固定され、空気導入流路1
4が閉塞される。25はエゼクタ22周部に突設された内管
支持材である。
In addition, at the tip closed portion of the outer pipe 13, the inner ring body 13d is externally fitted and fixed to the outer periphery of the closed portion 12a of the inner pipe 12, and the air introduction flow path 1
4 is closed. Reference numeral 25 denotes an inner pipe support member projectingly provided around the ejector 22.

次に上記ラジアントガスバーナにおける燃焼方法を説明
する。
Next, a combustion method in the radiant gas burner will be described.

空気室21に燃焼用空気Aを供給するとともに、燃焼ガス
ノズル23から燃焼ガスBを供給すると、エゼクタ効果に
より内管12内には理論燃焼空気量の8〜10%の空気が混
合された燃料ガス過濃混合気Cが供給される。この燃料
ガス過濃混合気Cは、ガス噴射用チップ17のガス噴射口
17aから噴出し、内管12と外管13との間の環状部14の空
気導入流路から供給した空気Aを同伴し、一部両者混合
して外管13に穿設した空気−ガス噴出口18から炉内16へ
噴出Eし、平火炎を形成して燃焼する。
When the combustion air A is supplied to the air chamber 21 and the combustion gas B is supplied from the combustion gas nozzle 23, a fuel gas in which 8 to 10% of the theoretical combustion air amount is mixed in the inner pipe 12 due to the ejector effect. A rich mixture C is supplied. This fuel gas rich mixture C is a gas injection port of the gas injection tip 17.
An air-gas jet which is ejected from 17a and entrains the air A supplied from the air introduction flow path of the annular portion 14 between the inner pipe 12 and the outer pipe 13 and partially mixes both with the outer pipe 13. The gas is ejected E from the outlet 18 into the furnace 16 to form a flat flame and burn.

ガス噴射用チップ17から噴出する過濃混合気Cは、ガス
噴射孔17aが細径であるため、噴出流速が高速であり、
バーナ負荷が変動しても逆火することがない。またガス
噴射用チップ17が、内管12の閉塞端12a付近から過濃混
合気C供給の上流側へ複数列(4列)設けられ、しかも
ガス噴射孔17aの孔径が等しく、したがって矢印Eで示
すように噴射ガス量は閉塞端12aに近いほど多く、上流
側ほど少量となり、閉塞端12aに最も近いガス噴射用チ
ップ17からの噴射ガスEでは火炎がリフトして着火せ
ず、上流側になるに従って保炎され、全体としてしバイ
アス燃焼となってサーマルNOxの発生が抑制される。さ
らに過濃混合気Cと空気20との、空気−ガス噴出口18付
近で行なわれる混合が、従来の予混合方式のガスバーナ
のように急激な燃焼反応が起きるまでには至らず、また
従来の燃料ガスを直接噴射する方式より燃焼反応が促進
されているため、サーマルNOxの発生を抑制できかつ重
質不飽和炭化水素を多く含む燃料たとえばブタン−ブチ
レン系ガスを使用しても、ガス噴射口17a内で析出しよ
うとするカーボンは酸化反応によりCO,CO2となって飛散
され、ガス噴射口17aが閉塞されることはない。
The rich air-fuel mixture C ejected from the gas injection tip 17 has a high ejection velocity because the gas injection hole 17a has a small diameter.
Even if the burner load fluctuates, there is no flashback. Further, gas injection tips 17 are provided in a plurality of rows (four rows) from the vicinity of the closed end 12a of the inner pipe 12 to the upstream side of the supply of the rich mixture C, and the gas injection holes 17a have the same diameter, and therefore the arrow E indicates As shown, the amount of injected gas increases as it approaches the closed end 12a, and decreases toward the upstream side, and the flame is not lifted and ignited by the injected gas E from the gas injection tip 17 closest to the closed end 12a, and the upstream side does not ignite. As it becomes, the flame is maintained, and as a whole, it becomes a bias combustion and the generation of thermal NOx is suppressed. Furthermore, the mixing of the rich mixture C and the air 20 performed in the vicinity of the air-gas ejection port 18 does not lead to a rapid combustion reaction as in the case of the conventional premixing type gas burner. Since the combustion reaction is promoted compared to the method of directly injecting the fuel gas, it is possible to suppress the generation of thermal NOx and use a fuel containing a large amount of heavy unsaturated hydrocarbons, such as butane-butylene gas, even if the gas injection port is used. The carbon that is about to be deposited in 17a becomes CO, CO 2 by the oxidation reaction and is scattered, so that the gas injection port 17a is not blocked.

結果として、全体として従来の予混合方式のガスバーナ
と比べて、NOxが約40%低減できた。そして燃焼が緩慢
であるため、低風圧かつ低空気比燃焼が行なえた。
As a result, NOx was reduced by about 40% as compared with the conventional premixed gas burner. Since the combustion is slow, low air pressure and low air ratio combustion were possible.

発明の効果 以上に述べたごとく本発明によれば、燃料ガスノズルか
ら内管内に供給する燃料ガスを内管基端部のエゼクタを
介して理論燃焼空気量の8〜10%の燃料ガス過濃混合気
とし、ガスチップのガス噴射口から外筒の空気−ガス噴
射口を介して炉内に噴射させるので、重質不飽和炭化水
素を多く含む燃料を使用した時に、ガスチップのガス噴
射口内に析出するカーボンを酸化反応によりCOやCO2
して飛散させることができ、ガス噴射口の閉塞を防止で
きる。したがって、このラジアントバーナを使用する分
解炉でナフサクラッカーから副生され、従来大気中に燃
焼放出されていたブタン−ブチレン系ガス等を燃料とし
て使用することができ、燃料費の低減をはかることがで
きる。また、燃料ガス過濃混合気であるため、予混合気
を使用する従来のガスバーナに比べて燃焼反応が緩やか
でNOxの発生を低減でき、さらにガス噴射口を小径にで
き噴射ガスを高速にして逆火を防止することができる。
As described above, according to the present invention, the fuel gas supplied from the fuel gas nozzle into the inner pipe is mixed at a concentration of 8 to 10% of the theoretical combustion air amount through the ejector at the base end of the inner pipe. Since the gas is injected into the furnace from the gas injection port of the gas chip through the air-gas injection port of the outer cylinder, when fuel containing a large amount of heavy unsaturated hydrocarbons is used, the gas injection port of the gas chip The precipitated carbon can be converted into CO or CO 2 by an oxidation reaction and scattered, and the gas injection port can be prevented from being blocked. Therefore, in a decomposition furnace using this radiant burner, butane-butylene-based gas or the like, which was by-produced from naphtha cracker and was conventionally burned and released into the atmosphere, can be used as a fuel, and the fuel cost can be reduced. it can. Also, because it is a rich mixture of fuel gas, the combustion reaction is slower and NOx generation can be reduced compared to the conventional gas burner that uses a premixed mixture, and the gas injection port can be made smaller to make the injection gas faster. Flashback can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の一実施例を示し、第1図はラ
ジアントガスバーナの縦断面図、第2図は同先端部の横
断面図、第3図はガスチップの一部拡大縦断面図、第4
図は従来の燃焼ガスを噴射するラジアントガスバーナの
縦断面図である。 12……内管、13……外管、16……炉内、17……ガス噴射
用チップ、17a……ガス噴射孔、18……空気−ガス噴射
口、20……ガスバーナ、22……エゼクタ、23……燃料供
給ノズル、A……燃焼用空気、B……燃料ガス、C……
燃料ガス過濃混合気、E……噴射ガス。
1 to 3 show one embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a radiant gas burner, FIG. 2 is a lateral sectional view of the same tip portion, and FIG. 3 is a partially enlarged gas chip. Longitudinal section, 4th
The figure is a longitudinal sectional view of a conventional radiant gas burner for injecting combustion gas. 12 …… Inner tube, 13 …… Outer tube, 16 …… Inside furnace, 17 …… Gas injection tip, 17a …… Gas injection hole, 18 …… Air-gas injection port, 20 …… Gas burner, 22 …… Ejector, 23 ... Fuel supply nozzle, A ... Combustion air, B ... Fuel gas, C ...
Fuel gas rich mixture, E ... Injection gas.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 平4−49466(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Publication 4-49466 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】先端部が炉内に突出しかつ閉塞された外管
に所定間隔をあけて内管を内嵌し、この内管の基端部に
設けられたエゼクタに燃料供給ノズルから燃料ガスを噴
射して内管内に理論燃焼空気量の8〜10%の燃料ガス過
濃混合気を供給し、前記外管と内管との間に燃焼用空気
を供給し、前記燃料ガス過濃混合気を、内管先端部周囲
に突設された複数のガス噴射用チップのガス噴射口から
外管のガス噴射用チップ対応位置に形成された空気−ガ
ス噴射口を介して燃焼用空気と混合し炉内に噴射するこ
とを特徴とするラジアントガスバーナにおける燃焼方
法。
Claim: What is claimed is: 1. An inner tube is fitted into an outer tube, the tip of which projects into the furnace and is closed, at a predetermined interval, and a fuel gas is supplied from a fuel supply nozzle to an ejector provided at the base end of the inner tube. Is injected to supply the fuel gas rich mixture of 8 to 10% of the theoretical combustion air amount into the inner pipe, and the combustion air is supplied between the outer pipe and the inner pipe to mix the fuel gas rich mixture. Mixing air with combustion air from gas injection ports of a plurality of gas injection chips provided around the tip of the inner pipe through an air-gas injection port formed at a position corresponding to the gas injection chips of the outer pipe. A method for combustion in a radiant gas burner, characterized by injecting into a furnace.
JP8007388A 1988-03-31 1988-03-31 Combustion method in radiant gas burner Expired - Lifetime JPH0718539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8007388A JPH0718539B2 (en) 1988-03-31 1988-03-31 Combustion method in radiant gas burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8007388A JPH0718539B2 (en) 1988-03-31 1988-03-31 Combustion method in radiant gas burner

Publications (2)

Publication Number Publication Date
JPH01252807A JPH01252807A (en) 1989-10-09
JPH0718539B2 true JPH0718539B2 (en) 1995-03-06

Family

ID=13708040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8007388A Expired - Lifetime JPH0718539B2 (en) 1988-03-31 1988-03-31 Combustion method in radiant gas burner

Country Status (1)

Country Link
JP (1) JPH0718539B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628353B2 (en) * 2003-04-25 2011-02-09 リージェント テクノロジーズ リミテッド Apparatus and method for thermal deburring of slotted well liners
EP2372240A4 (en) * 2008-12-10 2015-01-21 Ihi Corp Combustor
CN101936540B (en) * 2010-10-08 2012-04-25 中冶南方(武汉)威仕工业炉有限公司 Heat exchanger matched with radiant-tube burner for use
CN102418936A (en) * 2011-12-08 2012-04-18 中冶南方(武汉)威仕工业炉有限公司 Air injecting and backflow flue gas entraining heat exchanger for radiant tube combustion device
JP6208541B2 (en) * 2013-10-30 2017-10-04 東京瓦斯株式会社 Infrared combustion equipment
US11187408B2 (en) 2019-04-25 2021-11-30 Fives North American Combustion, Inc. Apparatus and method for variable mode mixing of combustion reactants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026674U (en) * 1973-07-02 1975-03-27
JPS581103A (en) * 1981-06-25 1983-01-06 Mitsubishi Electric Corp Optical fiber light irradiation device
JPS587603A (en) * 1981-07-07 1983-01-17 Mitsubishi Electric Corp Illuminating device for optical fiber
JPS6341806U (en) * 1986-09-03 1988-03-18

Also Published As

Publication number Publication date
JPH01252807A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US3976420A (en) Method and apparatus for burning fuels
JP3428659B2 (en) Plane flame burner with low nitrogen oxide production
US5201181A (en) Combustor and method of operating same
JP2003527556A (en) Low NOx radiant wall burner
US4669398A (en) Pulverized fuel firing apparatus
JPH0718539B2 (en) Combustion method in radiant gas burner
US5681159A (en) Process and apparatus for low NOx staged-air combustion
JPH0449466Y2 (en)
JPH0771725A (en) Gas burner device for non-oxidizing furnace
CN211119347U (en) Quick-mixing biogas torch combustion structure
JPS5823056Y2 (en) Premix burner for reducing nitrogen oxide generation
US20210063013A1 (en) REGENERATIVE BURNER FOR STRONGLY REDUCED NOx EMISSIONS
JPH0227307Y2 (en)
JPH0443699Y2 (en)
JP3743459B2 (en) Ram combustor
JPS63279010A (en) Burning equipment
JPH02106608A (en) Radiant gas burner
JPS58102006A (en) Low nox pulverized coal burner
JPH02143002A (en) Burner for furnace
JPS6055724B2 (en) gas turbine combustor
JPS5827217Y2 (en) Exhaust gas self-recirculation burner
JPH0424269Y2 (en)
JPH037843B2 (en)
JPS60134114A (en) Liquid fuel combustion device
JPH08189612A (en) Low nox gas burner