JPH07183078A - Self-temperature controlling, current-carrying heating element - Google Patents

Self-temperature controlling, current-carrying heating element

Info

Publication number
JPH07183078A
JPH07183078A JP5326555A JP32655593A JPH07183078A JP H07183078 A JPH07183078 A JP H07183078A JP 5326555 A JP5326555 A JP 5326555A JP 32655593 A JP32655593 A JP 32655593A JP H07183078 A JPH07183078 A JP H07183078A
Authority
JP
Japan
Prior art keywords
heating element
temperature
self
resin
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5326555A
Other languages
Japanese (ja)
Inventor
Naoya Mitsuara
直也 三荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP5326555A priority Critical patent/JPH07183078A/en
Publication of JPH07183078A publication Critical patent/JPH07183078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a self-temperature controlling, current-carrying heating element having a good temperature distribution with a heating temperature of 150 deg.C or higher and therefore a long load life by composing a resistor chiefly of a composition wherein an electrically conducting material is dispersed in an organic high polymer of a specific characteristic. CONSTITUTION:In a current-carrying heating element which is heated by application of voltage to a resistor composed chiefly of a composition wherein an electricaly conducting material is dispersed in an organic high polymer, the organic high polymer is made from polyether ketone (PEEK) and a resin whose melt viscosity is 10<-3>-10<4> poise at a temperature of 380 deg.C and at a shear rate of 10<2>s<-1>. Polyphenylene sulfide(PPS), polyether imide, or polyether sulfone is used as such a resin. The electrically conducting material added to the organic polymer is carbon black, graphite, or preferably MnZn ferrite. The conducting material is kneaded and dispersed by 50vol.% in the organic high polymer (PEEK/PPS=6/4) to form a pressboard, and electrodes are bonded to both sides of the pressboard and voltages are applied to the electrodes for heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、採暖器具及び一般の加
熱装置として有用な発熱体の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element which is useful as a heat collecting device and a general heating device.

【0002】[0002]

【従来の技術】自己温度制御特性をもったヒータとは、
有機高分子中に導電材を混練分散させた抵抗体において
は有機高分子が温度によって熱膨張し導電材間の距離を
押し広げることによって系全体の抵抗を立ち上がらせ発
熱を止めまた冷えると熱収縮し、再び発熱するという特
性を生かし所定温度で常に発熱しているというヒータで
ある。
2. Description of the Related Art A heater having a self-temperature control characteristic is
In a resistor in which a conductive material is kneaded and dispersed in an organic polymer, the organic polymer thermally expands due to temperature and spreads the distance between the conductive materials, raising the resistance of the entire system and stopping heat generation and cooling when it cools. However, it is a heater that constantly generates heat at a predetermined temperature by utilizing the characteristic of generating heat again.

【0003】したがって電圧をかけたままでも制御機能
なしで温度設定できるという極めて有用な特性をもち、
また抵抗が上昇して発熱をとめるのでオーバヒートの危
険がないという有用な特性を持ち合わせている。
Therefore, it has a very useful characteristic that the temperature can be set without applying a control function even when a voltage is applied,
It also has the useful property that there is no danger of overheating because the resistance rises and heat generation is stopped.

【0004】現在有機高分子としては架橋ポリオレフィ
ン、架橋フッ素樹脂が使用されているものが多い。
At present, crosslinked polyolefins and crosslinked fluororesins are often used as organic polymers.

【0005】[0005]

【発明が解決しようとする課題】然るに従来は150℃
以上の発熱に対応する組成が検討されておず、また該発
熱体の特性上樹脂の熱的変化点で自己温度制御機能を発
現させているので発熱体強度の低下を招き支持材が必要
であるという問題点を抱えている。
However, the conventional method is 150 ° C.
The composition corresponding to the above heat generation has not been studied, and since the self-temperature control function is exhibited at the thermal change point of the resin due to the characteristics of the heat generating element, the strength of the heat generating element is lowered and a supporting material is required. There is a problem that there is.

【0006】また従来の通電発熱体は繰返し使用する場
合に空気が発熱体露出部に接することにより発熱体中の
有機高分子を酸化劣化させるという問題もあった。
Further, the conventional energization heating element has a problem that when it is repeatedly used, the air comes into contact with the exposed portion of the heating element to cause oxidative deterioration of the organic polymer in the heating element.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、その要旨は有機高分子中に導電材を
分散させた組成物を主成分とする抵抗体に電圧を印加し
発熱せしめる通電発熱体において、該通電発熱体の有機
高分子がポリエーテルエーテルケトンと温度380℃、
剪断速度102 sec-1における溶融粘度が103 〜1
4 ポイズである樹脂とから形成されていることを特徴
とする自己温度制御通電発熱体にある。
Means for Solving the Problems The present invention is to solve the above problems, and its gist is to apply a voltage to a resistor whose main component is a composition in which a conductive material is dispersed in an organic polymer. In an electric heating element for generating heat, the organic polymer of the electric heating element is polyetheretherketone and a temperature of 380 ° C.,
Melt viscosity at a shear rate of 10 2 sec -1 is 10 3 to 1
0 in the self temperature control energization heater, characterized in that it is formed from a resin which is a 4 poise.

【0008】以下本発明を詳細に説明する。The present invention will be described in detail below.

【0009】本発明の自己温度制御通電発熱体は有機高
分子中に導電材を分散させた組成物を主成分とするもの
で、有機高分子が高溶融温度の樹脂で結晶性の樹脂であ
るポリエーテルエーテルケトン(以下PEEKとい
う。)と温度380℃、剪断速度102 sec-1におけ
る溶融粘度が103 〜104 ポイズである樹脂とからな
る。
The self-temperature controlling electric heating element of the present invention is mainly composed of a composition in which a conductive material is dispersed in an organic polymer, and the organic polymer is a resin having a high melting temperature and a crystalline resin. It comprises polyether ether ketone (hereinafter referred to as PEEK) and a resin having a melt viscosity of 10 3 to 10 4 poise at a temperature of 380 ° C. and a shear rate of 10 2 sec -1 .

【0010】PEEKの加工温度は約380〜400℃
の範囲にあるが、他の樹脂が上記特性を有していれば、
均一にPEEKと混合して溶融成形することができる。
また得られる通電発熱体は、他の樹脂がPEEKよりも
低温で軟化ないし結晶融解して、発熱温度が低くなるの
で、上記溶融粘度範囲であることが必要である。
The processing temperature of PEEK is about 380 to 400 ° C.
However, if the other resin has the above characteristics,
It can be uniformly mixed with PEEK and melt-molded.
Further, in the obtained electric heating element, the other resin is softened or crystal-melted at a temperature lower than that of PEEK, and the exothermic temperature becomes low, so that it is necessary to be within the above melt viscosity range.

【0011】このような樹脂としてポリフェニレンサル
ファイド(以下PPSという。)、ポリエーテルイミド
(以下PEIという。)またはポリエーテルサルフォン
(以下PESという。)が挙げられ、特に非晶性樹脂で
あるPES,PEIが熱により特性が変化することなく
ヒータ自体の形態保持強度を付与し得るのでより好まし
い。
Examples of such a resin include polyphenylene sulfide (hereinafter referred to as PPS), polyetherimide (hereinafter referred to as PEI) or polyether sulfone (hereinafter referred to as PES), and particularly, amorphous resin PES, PEI is more preferable because it can impart the shape retention strength of the heater itself without changing the characteristics due to heat.

【0012】PEEK中の他の樹脂の比率は30〜80
容量%が好ましい。
The ratio of other resin in PEEK is 30-80.
Volume% is preferred.

【0013】前記溶融粘度の樹脂が30容量%以下では
該樹脂の熱膨張が導電材距離を押し広げる力がなく、結
局、高融点樹脂の熱膨張で温度を自己制御してしまうの
で、好ましくなく、また80容量%以上であれば実用上
形態保持が難しくなるので上記範囲が好ましい。
If the resin having the melt viscosity is 30% by volume or less, the thermal expansion of the resin does not have a force to spread the distance of the conductive material, and eventually the thermal expansion of the high melting point resin controls the temperature, which is not preferable. If it is 80% by volume or more, it becomes difficult to maintain the shape in practical use, so the above range is preferable.

【0014】また有機高分子中に添加される導電材はカ
ーボンブラックグラファイト等でもよいが、特にMnZ
nフェライトが耐熱性や抵抗の均一性の点から好まし
い。有機高分子中のMnZnフェライトの比率は有機高
分子とMnZnフェライトの合計量に対し30〜70容
量%特に40〜60容量%の範囲が採用される。このよ
うにして樹脂組成物は公知の手段で混練分散され、押出
成形、プレス成形等公知の成形技術により成形され、両
面に銅箔を張って得られる。このようにして得られる自
己温度制御通電発熱体は空気中に露出している端面を該
通電発熱体中の有機高分子材料と同一の材料を熱融着し
て露出部を封止すれば熱劣化を防止し、負荷寿命を向上
し得るので好ましい。また外面に遠赤外線塗料を塗布す
ればエネルギー効率が高まり特に輻射加熱用として好ま
しい。
The conductive material added to the organic polymer may be carbon black graphite or the like, but especially MnZ.
n-ferrite is preferable in terms of heat resistance and resistance uniformity. The ratio of MnZn ferrite in the organic polymer is in the range of 30 to 70% by volume, particularly 40 to 60% by volume based on the total amount of the organic polymer and MnZn ferrite. In this way, the resin composition is kneaded and dispersed by a known means, molded by a known molding technique such as extrusion molding and press molding, and a copper foil is stretched on both sides to obtain the resin composition. The self-temperature-controlled energization heating element thus obtained is heated by heat-sealing the end face exposed in the air with the same material as the organic polymer material in the energization heating element and sealing the exposed part. It is preferable because deterioration can be prevented and load life can be improved. Further, it is preferable to apply a far-infrared paint on the outer surface because the energy efficiency is improved, and especially for radiant heating.

【0015】図1はPEEKに前記の特定溶融粘度の樹
脂を添加した際のDSC曲線を示す図である。
FIG. 1 is a diagram showing a DSC curve when PEEK is added with the resin having the specific melt viscosity.

【0016】PEEKのみからなる発熱体は約250℃
で温度を自己制御するが、PEEKと特定の溶融粘度を
有する樹脂例えばPPSに導電材を混練分散した抵抗体
は約210℃にてPPSの結晶の溶融が始まりこのこと
によって熱膨張が発生し導電材の距離をおしひろげ正の
温度特性を発現させる(図1、参照)。この特性を利用
した抵抗体を発熱させると約210〜230℃で温度を
自己制御する発熱体を作成することができる。
A heating element consisting only of PEEK is about 250 ° C.
Although the temperature is self-controlled by, the resistance of PEEK and a resin having a specific melt viscosity, such as PPS, kneaded and dispersed with a conductive material, causes melting of PPS crystals at about 210 ° C, which causes thermal expansion and conductivity. The distance between the materials is expanded and a positive temperature characteristic is expressed (see FIG. 1). When a resistor utilizing this characteristic is heated, a heating element capable of self-controlling the temperature at about 210 to 230 ° C. can be produced.

【0017】PPSのみでも210℃近辺の発熱温度は
得られるが抵抗体の210℃での強度が小さく実用上支
障をきたす。このためPEEKで強度を持たせることが
できる。
Although the heat generation temperature near 210 ° C. can be obtained only with PPS, the strength of the resistor at 210 ° C. is small and it causes a practical problem. Therefore, PEEK can provide strength.

【0018】結晶性樹脂の自己温度制御発現ポイントは
結晶の初期溶融温度に対応していることがわかってお
り、しかもこの結晶の初期溶融温度はその熱履歴によっ
て変化することがわかった。すなわち結晶状態が熱履歴
によって変化することを示している。
It has been found that the self-temperature control expression point of the crystalline resin corresponds to the initial melting temperature of the crystal, and that the initial melting temperature of this crystal changes depending on its thermal history. That is, it indicates that the crystalline state changes depending on the thermal history.

【0019】したがって実際に安定した自己温度制御を
行おうとするとその発現をPPSのような結晶性樹脂で
行うと前記発熱体温度の経時変化という現象を伴い実用
性にかけるため熱履歴によって変化しないPES,PE
Iのような非晶質樹脂で自己温度制御を発現させるほう
が好ましいことがわかった。
Therefore, in order to actually perform stable self-temperature control, if the expression is performed with a crystalline resin such as PPS, the PES that does not change due to the heat history is accompanied by the phenomenon of the above-mentioned change in the temperature of the heating element over time, which is not practical. , PE
It has been found that it is preferable to express self-temperature control with an amorphous resin such as I.

【0020】[0020]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。 実施例1 導電材(MnZnフェライト)を有機高分子(PEEK
/PPS=6/4)へ50容量%混練分散させたものを
30mm×40mm×1mm(厚み)のプレス板にして
その両面に銅箔を貼ってテストピースを作成した。
EXAMPLES The present invention will be described in more detail based on the following examples. Example 1 A conductive material (MnZn ferrite) was used as an organic polymer (PEEK).
/ PPS = 6/4), which was kneaded and dispersed in 50% by volume, was used as a press plate having a size of 30 mm × 40 mm × 1 mm (thickness), and copper foil was attached to both surfaces thereof to prepare a test piece.

【0021】このテストピースと図3のような装置によ
り厚み方向へ電圧を100V印加し、連続通電テストを
行った際の発熱温度の経時変化を図2に示す。 実施例2 導電材(MnZnフェライト)を有機高分子(PEEK
/PEI=6/4)へ50容量%混練分散させたものを
実施例1と同様のサイズのプレス板にしてその両面に銅
箔を貼ってテストピースを作成した。
FIG. 2 shows a time-dependent change in heat generation temperature when a continuous energization test was performed by applying a voltage of 100 V in the thickness direction by using this test piece and the apparatus shown in FIG. Example 2 A conductive material (MnZn ferrite) was used as an organic polymer (PEEK).
/ PEI = 6/4), which was kneaded and dispersed in 50% by volume, was used as a press plate having the same size as in Example 1, and a copper foil was attached to both surfaces thereof to prepare a test piece.

【0022】このテストピースを実施例1と同様に連続
通電テストを行った際の発熱温度の経時変化を図2に示
す。 実施例3 導電材(MnZnフェライト)を有機高分子(PEEK
/PES=6/4)へ50容量%混練分散させたものを
実施例1と同様のサイズのプレス板にしてその両面に銅
箔を貼ってテストピースを作成した。
FIG. 2 shows the change over time in the heat generation temperature when this test piece was subjected to the continuous energization test in the same manner as in Example 1. Example 3 A conductive material (MnZn ferrite) was used as an organic polymer (PEEK).
/ PES = 6/4) was kneaded and dispersed in a volume of 50% by volume to make a press plate having the same size as in Example 1, and a copper foil was attached to both surfaces thereof to prepare a test piece.

【0023】このテストピースを実施例1と同様に連続
通電テストを行った際の発熱温度の経時変化を図2に示
す。
FIG. 2 shows the changes over time in the heat generation temperature when this test piece was subjected to the continuous energization test in the same manner as in Example 1.

【0024】実際に自己温度制御を発現させている低融
点樹脂が結晶性樹脂である実施例1のPPSは、図2に
示すように徐々に発熱温度が上昇してしまう。これに対
し低融点樹脂が非晶性樹脂である実施例2のPEI、実
施例3のPESはこの発熱温度の経時的上昇が見られな
い。
In the PPS of Example 1 in which the low melting point resin which actually exhibits self-temperature control is a crystalline resin, the heat generation temperature gradually rises as shown in FIG. On the other hand, the PEI of Example 2 and the PES of Example 3 in which the low melting point resin is an amorphous resin does not show the increase in the exothermic temperature with time.

【0025】従ってPES及びPEIがPPSより良好
な結果を示すことがわかる。 実施例4 有機高分子材料(PEEK/PEI=6/4)へ導電性
材料としてMnZnフェライトを用い体積固有抵抗が1
3 〜105 Ωcmとなるように50容量%充填した組
成物で1mm厚パイプを作成し、図4のように電極2と
してニッケルメッキを施した物にPEEK/PEIのキ
ャップ(封止材3)をはめ超音波溶着によって発熱体露
出部を封止した。露出部を封止しないものと比較して負
荷寿命が著しく向上した。 実施例5 有機高分子材料(PEEK/PES=6/4)へ導電性
材料としてMnZnフェライトを用い体積固有抵抗が1
3 〜105 Ωcmとなるように50容量%充填した組
成物で1mm板を作成、電極としてニッケル箔(18μ
m)を貼合わせた物に表面を遠赤外線塗料(ショウエク
セル 昭和電線社製)を塗布した。このものは発熱体温
度が約50℃高いものと同等の輻射加熱が可能で、エネ
ルギー効率が優れていた。
Therefore, it can be seen that PES and PEI show better results than PPS. Example 4 An organic polymer material (PEEK / PEI = 6/4) using MnZn ferrite as a conductive material has a volume resistivity of 1
A pipe having a thickness of 1 mm was made of a composition filled with 50% by volume so as to be 0 3 to 10 5 Ωcm, and a nickel-plated product was used as the electrode 2 as shown in FIG. 4, and a PEEK / PEI cap (sealing material 3 ), And the exposed portion of the heating element was sealed by ultrasonic welding. The load life was significantly improved compared to the case where the exposed part was not sealed. Example 5 An organic polymer material (PEEK / PES = 6/4) using MnZn ferrite as a conductive material has a volume resistivity of 1
A 1 mm plate was made of a composition filled with 50% by volume so as to be 0 3 to 10 5 Ωcm, and a nickel foil (18 μm was used as an electrode.
The surface to which the m) had been pasted was coated with a far-infrared paint (SHOWEXCEL manufactured by Showa Densen). This one was capable of radiant heating equivalent to the one with a heating element temperature higher by about 50 ° C., and had excellent energy efficiency.

【0026】[0026]

【発明の効果】本発明によれば特定の組成物とすること
により発熱温度が150℃と以上と温度分布良好な自己
温度制御ヒータが作成できるようになり自己温度制御ヒ
ータの使用範囲が広がった。
EFFECTS OF THE INVENTION According to the present invention, by using a specific composition, it is possible to prepare a self-temperature control heater having a heat generation temperature of 150 ° C. or higher and a good temperature distribution, and the range of use of the self-temperature control heater is expanded. .

【0027】また、自己温度制御発熱体の空気中に露出
している端面を封止することにより封止物が剥離するこ
となく負荷寿命を大幅に向上することができた。
Further, by sealing the end surface of the self-temperature control heating element exposed in the air, the load life can be greatly improved without peeling off the sealing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリエーテルエーテルケトン/特定溶融温度の
樹脂=6/4にMnZnフェライトを50vol%混練
分散させた発熱体のDSC曲線の説明図。
FIG. 1 is an explanatory diagram of a DSC curve of a heating element in which 50 vol% of MnZn ferrite is kneaded and dispersed in polyetheretherketone / resin having a specific melting temperature = 6/4.

【図2】実施例1〜3の発熱体の連続通電テストした際
の発熱温度の経時変化を示す図。
FIG. 2 is a diagram showing a time-dependent change in heat generation temperature when a continuous energization test of the heating elements of Examples 1 to 3 is performed.

【図3】通電テストのテスト方法略図。FIG. 3 is a schematic diagram of a test method of an energization test.

【図4】パイプ状発熱体の超音波融着による発熱体露出
部封止品の形状を示す図。
FIG. 4 is a view showing a shape of a heat-exposed-body-exposed-portion-sealed product formed by ultrasonic fusion of a pipe-shaped heat generating element.

【符号の説明】 1 発熱体 2 電極 3 封止材[Explanation of symbols] 1 heating element 2 electrode 3 sealing material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子中に導電材を分散させた組成
物を主成分とする抵抗体に電圧を印加し発熱せしめる通
電発熱体において、該通電発熱体の有機高分子がポリエ
ーテルエーテルケトンと温度380℃、剪断速度102
sec-1における溶融粘度が103 〜104 ポイズであ
る樹脂とから形成されていることを特徴とする自己温度
制御通電発熱体。
1. A current-carrying heating element for applying a voltage to a resistor having a composition comprising a conductive material dispersed in an organic polymer as a main component to generate heat, wherein the organic polymer of the current-generating heating element is polyetheretherketone. And temperature 380 ° C, shear rate 10 2
A self-temperature-controlled energization heating element, which is formed from a resin having a melt viscosity of 10 3 to 10 4 poise at sec −1 .
【請求項2】 前記請求項1記載の溶融粘度からなる樹
脂がポリフェニレンサルファイドである請求項1記載の
自己温度制御通電発熱体。
2. The self-temperature-controlled electric heating element according to claim 1, wherein the resin having the melt viscosity according to claim 1 is polyphenylene sulfide.
【請求項3】 前記請求項1記載の溶融粘度からなる樹
脂が非晶質樹脂である請求項1記載の自己温度制御通電
発熱体。
3. The self-temperature-controlled energization heating element according to claim 1, wherein the resin having the melt viscosity according to claim 1 is an amorphous resin.
【請求項4】 前記請求項3記載の樹脂がポリエーテル
イミドまたはポリエーテルサルフォンである請求項3記
載の自己温度制御通電発熱体。
4. The self-temperature-controlled energization heating element according to claim 3, wherein the resin according to claim 3 is polyetherimide or polyether sulfone.
【請求項5】 前記請求項1乃至4のいずれか一項に記
載の自己温度制御通電発熱体の空気中に露出している端
面を請求項1記載の有機高分子材料と同一材料からなる
熱融着物で封止したことを特徴とする自己温度制御通電
発熱体。
5. The heat made of the same material as the organic polymer material according to claim 1, the end surface of the self-temperature controlling energization heating element according to claim 1 exposed in the air. A self-temperature-controlled energization heating element characterized by being sealed with a fusion material.
【請求項6】 通電発熱体の外面には遠赤外線塗料を塗
布したことを特徴とする請求項1乃至5のいずれか1項
に記載の自己温度制御通電発熱体。
6. The self-temperature-controlled energization heating element according to claim 1, wherein a far-infrared paint is applied to the outer surface of the energization heating element.
JP5326555A 1993-12-24 1993-12-24 Self-temperature controlling, current-carrying heating element Pending JPH07183078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326555A JPH07183078A (en) 1993-12-24 1993-12-24 Self-temperature controlling, current-carrying heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326555A JPH07183078A (en) 1993-12-24 1993-12-24 Self-temperature controlling, current-carrying heating element

Publications (1)

Publication Number Publication Date
JPH07183078A true JPH07183078A (en) 1995-07-21

Family

ID=18189139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326555A Pending JPH07183078A (en) 1993-12-24 1993-12-24 Self-temperature controlling, current-carrying heating element

Country Status (1)

Country Link
JP (1) JPH07183078A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030019999A (en) * 2001-08-28 2003-03-08 (주)포엘텍 The manufacturing process of high molecular heating element using by DC & AC power supply.
WO2004023845A1 (en) * 2002-08-02 2004-03-18 Nanotech Co., Ltd. Seat-like heating units using carbon nanotubes
GB2424892A (en) * 2005-04-06 2006-10-11 Victrex Mfg Ltd Polymeric material
WO2008022240A1 (en) * 2006-08-18 2008-02-21 Polyone Corporation Exothermic polyphenylene sulfide compounds using carbon black
US7906574B2 (en) 2003-09-26 2011-03-15 Victrex Manufacturing Limited Polymeric ketone
WO2013015269A1 (en) * 2011-07-25 2013-01-31 オリンパス株式会社 Polyether ether ketone composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030019999A (en) * 2001-08-28 2003-03-08 (주)포엘텍 The manufacturing process of high molecular heating element using by DC & AC power supply.
WO2004023845A1 (en) * 2002-08-02 2004-03-18 Nanotech Co., Ltd. Seat-like heating units using carbon nanotubes
US7906574B2 (en) 2003-09-26 2011-03-15 Victrex Manufacturing Limited Polymeric ketone
US8536265B2 (en) 2003-09-26 2013-09-17 Victrex Manufacturing Limited Polymeric material
US9243101B2 (en) 2003-09-26 2016-01-26 Victrex Manufacturing Limited Polymeric ketone
GB2424892A (en) * 2005-04-06 2006-10-11 Victrex Mfg Ltd Polymeric material
GB2424892B (en) * 2005-04-06 2010-03-31 Victrex Mfg Ltd Polymeric materials
WO2008022240A1 (en) * 2006-08-18 2008-02-21 Polyone Corporation Exothermic polyphenylene sulfide compounds using carbon black
WO2013015269A1 (en) * 2011-07-25 2013-01-31 オリンパス株式会社 Polyether ether ketone composite material

Similar Documents

Publication Publication Date Title
EP0417097B1 (en) Heating element and method for making such a heating element
US4954696A (en) Self-regulating heating article having electrodes directly connected to a PTC layer
EP0219678B1 (en) Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
JPS6135223B2 (en)
JP2572429B2 (en) Heat-recoverable articles
JPH07183078A (en) Self-temperature controlling, current-carrying heating element
CN113382489A (en) PPTC heater and material with stable power and self-limiting characteristics
KR890702405A (en) Electrical device composed of conductive polymer
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
JP2809432B2 (en) Heating element
JP3085307B2 (en) Tape or plate heating element with self-controlled temperature
JP3428857B2 (en) Self-temperature control surface heating element
JPH0130264B2 (en)
JPH07235370A (en) Heater
JPH0737679A (en) Heater element with positive temperature coefficient of resistance
KR790001972B1 (en) Articles having a positive temperature coefficient of resistance
JPS61198590A (en) Self-temperature controlling heater
US1658787A (en) Compression rheostat
JPS60184836A (en) Laminated conductive polymer device
KR960003830B1 (en) Manufacturing process of electric wire
JPS6193581A (en) Low temperature planar heat generating body
JPH0311581A (en) Temperature self-controlling heat generator
JPH02148681A (en) Positive resistance-temperature coefficient heater
JPH01151191A (en) Temperature self-control type face heater
JPS61285686A (en) Self-temperature controlling heater