JPH07183027A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH07183027A
JPH07183027A JP5346725A JP34672593A JPH07183027A JP H07183027 A JPH07183027 A JP H07183027A JP 5346725 A JP5346725 A JP 5346725A JP 34672593 A JP34672593 A JP 34672593A JP H07183027 A JPH07183027 A JP H07183027A
Authority
JP
Japan
Prior art keywords
carbonaceous material
secondary battery
electrolyte secondary
negative electrode
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5346725A
Other languages
Japanese (ja)
Inventor
Kenichi Kitamura
健一 北村
Kaoru Nakajima
薫 中島
Hideto Azuma
秀人 東
Yasunobu Iwakoshi
康申 岩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5346725A priority Critical patent/JPH07183027A/en
Publication of JPH07183027A publication Critical patent/JPH07183027A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To keep a discharge capacity from deteriorating when charge and discharge are repeated at temperatures below 0 deg.C. CONSTITUTION:In a method for manufacturing a nonaqueous electrolyte secondary battery which uses lithium composite oxides as its positive active material and a carbonaceous material as its negative electrode which forms a carbon layer with a spacing of 3.4 angstrom or less, the carbonaceous material is subjected to a corona discharge process. The corona discharge process may be performed prior to or after formation of the carbonaceous material into the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、正極活物質にリチウ
ム複合酸化物を使用し、負極に炭素質材料を使用する非
水電解液二次電池の製造方法に関する。さらに詳しく
は、この発明は、正極活物質にリチウム複合酸化物を使
用し、負極に炭素質材料を使用する非水電解液二次電池
を製造するにあたり、負極の電解液への濡れ性を高め、
電池の充放電特性を改善する非水電解液二次電池の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode active material and a carbonaceous material as a negative electrode. More specifically, the present invention uses a lithium composite oxide as a positive electrode active material and enhances wettability of a negative electrode with an electrolytic solution in manufacturing a non-aqueous electrolytic solution secondary battery using a carbonaceous material as a negative electrode. ,
The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery that improves the charge / discharge characteristics of the battery.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化に対応し
て、そこに使用する二次電池の開発が進められている。
特に、リチウムイオンの充放電を非水系電解液を使用し
て行う非水電解液二次電池が、水溶液系電解液二次電池
である鉛電池やニッケルカドミウム電池に対し、軽量
で、エネルギー密度が高く、高電圧を発生でき、非メモ
リー効果を有し、無公害の二次電池を実現できるため活
発に開発が進められており、種々の提案がなされてい
る。
2. Description of the Related Art In recent years, in response to the reduction in size and weight of electronic devices, the development of secondary batteries used therein has been advanced.
In particular, a non-aqueous electrolyte secondary battery that charges and discharges lithium ions using a non-aqueous electrolyte solution is lighter in weight and energy density than a lead battery or a nickel-cadmium battery that is an aqueous electrolyte secondary battery. Since high-voltage, high-voltage generation, non-memory effect, and pollution-free secondary batteries can be realized, active development is underway and various proposals have been made.

【0003】例えば、このような非水電解液二次電池に
おいて、電池のサイクル寿命特性を改善するために、負
極に、リチウムをドープ、脱ドープできる炭素質材料を
使用することが提案されている(特開昭62−9086
3号公報)。このような炭素質材料としては、より具体
的には、難黒鉛や易黒鉛が使用されている。
For example, in such a non-aqueous electrolyte secondary battery, in order to improve the cycle life characteristics of the battery, it has been proposed to use a carbonaceous material capable of being doped with lithium and dedoped with lithium for the negative electrode. (JP-A-62-9086
3 gazette). More specifically, as such carbonaceous material, difficult graphite or easy graphite is used.

【0004】一方、非水電解液二次電池の正極活物質と
しては、リチウム複合酸化物が、電池容量を向上させ、
エネルギー密度を高くする活物質として提案されてい
る。
On the other hand, as a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium composite oxide improves battery capacity,
It has been proposed as an active material for increasing the energy density.

【0005】[0005]

【発明が解決しようとする課題】ところで、炭素質材料
を負極に使用してリチウム二次電池を構成する場合、そ
の炭素質材料としては、よりLiを高密度にドープし
て、電池のエネルギー密度を高くするため、炭素層の面
間隔が狭いものが好ましい。
By the way, when a carbonaceous material is used for a negative electrode to construct a lithium secondary battery, the carbonaceous material should be more highly doped with Li to obtain an energy density of the battery. In order to increase the height, it is preferable that the carbon layers have a narrow interplanar spacing.

【0006】しかしながら、従来、一般に使用されてい
る難黒鉛や易黒鉛よりも面間隔が狭い炭素質材料、即
ち、面間隔が3.4オングストローム以下の炭素質材料
を使用すると、0℃以下で充放電を繰り返した場合の容
量劣化が、室温で充放電を繰り返した場合の容量劣化に
比べて著しいという問題があった。
However, if a carbonaceous material having a face spacing smaller than that of the generally used difficult graphite or easy graphite, that is, a carbonaceous material having a face spacing of 3.4 angstroms or less is used, it is charged at 0 ° C. or less. There is a problem that the capacity deterioration when the discharge is repeated is more remarkable than the capacity deterioration when the charge and discharge are repeated at room temperature.

【0007】この発明は以上のような従来技術の課題を
解決しようとするものであり、負極に炭素層の面間隔が
3.4オングストローム以下の炭素質材料を使用して非
水電解液二次電池を構成した場合において、温度0℃以
下で充放電を繰り返したときの容量劣化を抑制すること
を目的とする。
The present invention is intended to solve the problems of the prior art as described above, and uses a carbonaceous material having a carbon layer surface spacing of 3.4 angstroms or less for the negative electrode. It is an object of the present invention to suppress capacity deterioration when charging and discharging are repeated at a temperature of 0 ° C. or less when a battery is constructed.

【0008】[0008]

【課題を解決するための手段】この発明者は、上記の目
的が、炭素質材料に対してコロナ放電処理を行うことに
より達成できることを見出し、この発明を完成させるに
至った。
The present inventor has found that the above object can be achieved by subjecting a carbonaceous material to corona discharge treatment, and has completed the present invention.

【0009】即ち、この発明は、正極活物質にリチウム
複合酸化物を使用し、負極に炭素層の面間隔が3.4オ
ングストローム以下の炭素質材料を使用する非水電解液
二次電池の製造方法において、炭素質材料にコロナ放電
処理を行うことを特徴とする非水電解液二次電池の製造
方法を提供する。
That is, according to the present invention, the lithium composite oxide is used for the positive electrode active material, and the carbonaceous material having the carbon layer surface spacing of 3.4 angstroms or less is used for the negative electrode. In the method, there is provided a method for producing a non-aqueous electrolyte secondary battery, which comprises subjecting a carbonaceous material to corona discharge treatment.

【0010】以下、この発明を詳細に説明する。The present invention will be described in detail below.

【0011】この発明の製造方法は、非水電解液二次電
池の製造方法において、その負極に使用する炭素質材料
にコロナ放電処理をすることを特徴としている。この場
合、製造する非水電解液二次電池が、正極にリチウム複
合酸化物を使用し、負極に炭素層の面間隔が3.4オン
グストローム以下の炭素質材料を使用するものであるか
ぎり、筒型電池、コイン型電池、角型電池、ボタン型電
池等の電池形態に制限はない。種々の形態の電池の製造
にこの発明の方法を適用することができる。また、炭素
質材料を使用して負極を形成するにあたり、炭素質材料
にコロナ放電処理をする時期についても特に制限はな
い。
The manufacturing method of the present invention is characterized in that, in the manufacturing method of the non-aqueous electrolyte secondary battery, the carbonaceous material used for the negative electrode is subjected to corona discharge treatment. In this case, as long as the non-aqueous electrolyte secondary battery to be manufactured uses a lithium composite oxide for the positive electrode and a carbonaceous material with a carbon layer surface spacing of 3.4 angstroms or less for the negative electrode, There is no limitation on the battery form such as a die battery, a coin battery, a square battery, and a button battery. The method of the present invention can be applied to the manufacture of various types of batteries. In addition, when forming the negative electrode using the carbonaceous material, there is no particular limitation on the time when the carbonaceous material is subjected to corona discharge treatment.

【0012】例えば、非水電解液二次電池を筒型電池と
して製造する場合には、一般に、負極の形成工程は、炭
素質材料にバインダと溶剤を混合して炭素質材料を塗料
化する塗料化工程、塗料化した炭素質材料を集電体に塗
布し、乾燥して集電体上に炭素質材料層を形成する炭素
質材料層形成工程を含むが、この発明は、このような負
極の形成工程を含む電池の製造方法に適用することがで
きる。この場合、炭素質材料へのコロナ放電処理は塗料
化工程に先立って行ってもよく、また、炭素質材料層形
成工程の後に、集電体上に形成した炭素質材料層に対し
て行ってもよい。
[0012] For example, when a non-aqueous electrolyte secondary battery is manufactured as a cylindrical battery, generally, in the step of forming the negative electrode, a coating material for converting the carbonaceous material into a paint by mixing a binder and a solvent with the carbonaceous material. The present invention includes a carbonizing material layer forming step of applying a carbonaceous material made into a coating material to a current collector and drying it to form a carbonaceous material layer on the current collector. It can be applied to a method for manufacturing a battery including the step of forming. In this case, the corona discharge treatment on the carbonaceous material may be performed before the coating step, or after the carbonaceous material layer forming step is performed on the carbonaceous material layer formed on the current collector. Good.

【0013】また、非水電解液二次電池をコイン型電池
として製造する場合には、一般に、負極の形成工程は、
炭素質材料を加圧成形してペレットを形成するペレット
形成工程を含むが、この発明は、このようなペレット形
成工程を含む電池の製造方法にも提供することができ
る。この場合も、炭素質材料へのコロナ放電処理は、ペ
レット形成工程に先立って行ってもよく、ペレット形成
工程の後に行ってもよい。
When a non-aqueous electrolyte secondary battery is manufactured as a coin-type battery, generally, the step of forming the negative electrode is
Although the method includes a pellet forming step of pressure-forming a carbonaceous material to form pellets, the present invention can also be provided in a battery manufacturing method including such a pellet forming step. Also in this case, the corona discharge treatment on the carbonaceous material may be performed before the pellet forming step or after the pellet forming step.

【0014】この発明において、コロナ放電処理に使用
するコロナ放電処理装置は、従来、磁気テープのベース
フィルム(ポリエチレン、PET等)の表面処理や、印
刷しにくいプラスチック表面に印刷する際に前処理とし
て行われているコロナ放電処理に使用されているものと
同様のものを使用することができる。
In the present invention, the corona discharge treatment device used for the corona discharge treatment is conventionally used as a pretreatment for the surface treatment of the base film (polyethylene, PET, etc.) of the magnetic tape or for printing on the hard-to-print plastic surface. It is possible to use the same as that used in the corona discharge treatment that is being performed.

【0015】例えば、図1に示したような電気系統図を
有する装置を使用することができる。同図の装置は、高
周波電源1、高圧トランス2及び電極3からなってい
る。この電極3の間には、その片側または両側に誘電体
被膜4が設けられている。誘電体被膜4は、電極間のギ
ャップによって生じる静電容量と併せて、放電時に適切
な電流が流れるように静電容量を確保するためのもので
ある。この静電容量に応じて、インピーダンスや誘電率
が定まる。誘電体被膜4としては、通常、シリコンやセ
ラミックが使用される。電極間のギャップは、通常、1
〜5mmに設定される。図中、アース部分は、連続処理
のためにロール型に設計されることもある。
For example, a device having an electrical system diagram as shown in FIG. 1 can be used. The apparatus shown in the figure comprises a high frequency power supply 1, a high voltage transformer 2 and an electrode 3. Between the electrodes 3, a dielectric film 4 is provided on one side or both sides thereof. The dielectric film 4 serves to secure the electrostatic capacitance so that an appropriate current flows at the time of discharging, together with the electrostatic capacitance generated by the gap between the electrodes. Impedance and permittivity are determined according to this capacitance. Silicon or ceramic is usually used as the dielectric coating 4. The gap between the electrodes is usually 1
It is set to ~ 5 mm. In the figure, the earth part may be designed in a roll type for continuous processing.

【0016】また、この発明においては、このようなコ
ロナ放電処理を施す炭素質材料を、炭素層の面間隔が
3.4オングストローム以下のものとするが、このよう
に難黒鉛や易黒鉛に比べて面間隔が狭い材料を使用する
ことにより炭素層間に取り込まれるリチウムイオンの濃
度が高まるので、電池のエネルギー密度を向上させるこ
とが可能となる。
Further, in the present invention, the carbonaceous material to be subjected to such a corona discharge treatment has a carbon layer surface spacing of 3.4 angstroms or less. By using a material having a narrow interplanar spacing, the concentration of lithium ions taken in between the carbon layers increases, so that the energy density of the battery can be improved.

【0017】この発明において、正極活物質としては、
リチウム複合酸化物を使用する。例えば、LiMO
(式中、Mは1種以上の遷移金属を表し、xは電池の充
放電状態によって異なり、通常、0.05≦x≦1.1
0である)を主体とするものを好ましく使用することが
できる。この場合、特に遷移金属Mとして、Co、N
i、Mnの少なくとも1種を使用することが好ましい。
これにより、エネルギー密度を高くすることが可能とな
る。
In the present invention, as the positive electrode active material,
A lithium composite oxide is used. For example, Li x MO 2
(In the formula, M represents one or more kinds of transition metals, x varies depending on the charging / discharging state of the battery, and usually 0.05 ≦ x ≦ 1.1.
Those mainly composed of 0) can be preferably used. In this case, especially as the transition metal M, Co, N
It is preferable to use at least one of i and Mn.
This makes it possible to increase the energy density.

【0018】また、非水電解液に使用する非水溶媒自体
としては特に限定はなく、例えばプロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ビ
ニレンカーボネート、γ−ブチロラクトン、スルホラ
ン、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、2−メチルテトラヒドロフラン、3−メチル−
1,3−ジオキソラン、プロピオン酸メチル、酪酸メチ
ル、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等を使用することができ、特に、
電圧に安定な点からプロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネート等の環状カーボネート類、又はジメチルカーボネ
ート、ジエチルカーボネート、ジプロピルカーボネート
等の鎖状カーボネート類を使用することが好ましい。ま
た、このような非水溶媒は、1種または2種以上を組み
合わせて使用することができる。
The non-aqueous solvent itself used in the non-aqueous electrolytic solution is not particularly limited, and for example, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1 , 2-diethoxyethane, 2-methyltetrahydrofuran, 3-methyl-
1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used, and in particular,
From the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate and vinylene carbonate, or chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. Further, such non-aqueous solvent may be used alone or in combination of two or more kinds.

【0019】非水溶媒に溶解させる電解質としても特に
限定はなく、従来のリチウム電池と同様にすることがで
きる。例えば、LiClO、LiAsF、LiPF
、LiBF、LiCFSO、LiN(CF
等を使用でき、このうち特にLiPFやLi
BFを使用することが好ましい。
The electrolyte to be dissolved in the non-aqueous solvent is not particularly limited and may be the same as the conventional lithium battery. For example, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 S
O 2 ) 2 and the like can be used. Of these, LiPF 6 and Li
Preference is given to using BF 4 .

【0020】[0020]

【作用】正極にリチウム複合酸化物を使用し、負極に炭
素質材料を使用した非水電解液二次電池において、負極
では、充電時に炭素質材料の炭素層間にリチウムイオン
がイオン状態のままで取り込まれ、放電時にリチウムイ
オンが出ていく。したがって、このような電池において
は、負極を構成する炭素質材料の電解液に対する濡れ性
が大きくなると、リチウムイオンが電極面に容易に到達
し、充放電特性が向上すると考えられる。また、炭素層
間が狭くなると電解液の濡れ性が低下するので、充放電
特性が低下すると考えられる。
[Function] In a non-aqueous electrolyte secondary battery in which a lithium composite oxide is used for the positive electrode and a carbonaceous material is used for the negative electrode, lithium ions remain in the ionic state between the carbon layers of the carbonaceous material during charging at the negative electrode. It is taken in and lithium ions are emitted during discharge. Therefore, in such a battery, when the wettability of the carbonaceous material forming the negative electrode with respect to the electrolytic solution becomes large, it is considered that lithium ions easily reach the electrode surface and the charge / discharge characteristics are improved. Further, it is considered that the charge / discharge characteristics are deteriorated because the wettability of the electrolytic solution is deteriorated when the carbon layers are narrowed.

【0021】ここで、この発明にしたがって炭素質材料
にコロナ放電処理をすると、炭素質材料の電解液に対す
る濡れ性が著しく高まる。したがって、この発明によれ
ば、電池のエネルギー密度を向上させるために、炭素質
材料として面間隔が3.4オングストローム以下の材料
を使用しても、充放電特性を改善することが可能とな
る。
Here, when the carbonaceous material is subjected to corona discharge treatment according to the present invention, the wettability of the carbonaceous material with respect to the electrolytic solution is remarkably enhanced. Therefore, according to the present invention, in order to improve the energy density of the battery, it is possible to improve the charge / discharge characteristics even if a material having a surface spacing of 3.4 angstroms or less is used as the carbonaceous material.

【0022】なお、コロナ放電処理により炭素質材料の
電解液に対する濡れ性が高まる理由としては、空気中で
放電させることにより発生した活性イオン種が、炭素質
材料の表面に残存している汚染物を除去したり、表面に
−COOH、>C=O、−OH等の極性基を生成させ、
炭素質材料の表面を改質することが考えられる。
The reason why the corona discharge treatment enhances the wettability of the carbonaceous material with the electrolytic solution is that the active ion species generated by the discharge in the air are contaminants remaining on the surface of the carbonaceous material. Is removed or a polar group such as -COOH,> C = O, -OH is generated on the surface,
It is conceivable to modify the surface of the carbonaceous material.

【0023】[0023]

【実施例】以下、この発明を実施例に基づいて具体的に
説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0024】実施例1 市販の天然黒鉛の粉末(炭素層の面間隔3.35オング
ストローム)にコロナ放電処理を行い、その後その粉末
をコイン型電池用の活物質量30mgのペレットに成形
した。
Example 1 Commercially available powder of natural graphite (carbon layer spacing 3.35 angstroms) was subjected to corona discharge treatment, and then the powder was molded into pellets having an active material amount of 30 mg for coin type batteries.

【0025】この場合、コロナ放電処理装置としては、
春日電気社製、HFSS−103を使用した(高周波電
源電圧200V、出力周波数30kHz、電極間の電位
差40kV)。そして、コロナ放電処理時には、天然黒
鉛の粉末を紙のシートに敷き詰め、幅35cmのスリッ
トを通しながら、1次側高周波電源の投入電力として1
600kW/mの処理を行った。なお、このコロナ放
電時の照射量として、電極間ギャップの電流を実測する
ことはできないので、1次側高周波電源の投入電力を照
射量の指標とした。
In this case, as the corona discharge treatment device,
HFSS-103 manufactured by Kasuga Electric Co., Ltd. was used (high frequency power supply voltage 200 V, output frequency 30 kHz, potential difference between electrodes 40 kV). Then, during corona discharge treatment, natural graphite powder is spread on a paper sheet and passed through a slit having a width of 35 cm to supply 1
A treatment of 600 kW / m 2 was performed. As the irradiation amount at the time of this corona discharge, the current in the gap between the electrodes cannot be measured, so the input power of the primary side high frequency power supply was used as the irradiation amount index.

【0026】成形したペレットの臨界表面張力をZis
mannの方法により求めた。また、接触角を、純水
(表面張力72)の液滴により測定した。この結果を表
1に表す。
The critical surface tension of the molded pellet is determined by Zis
It was determined by the Mann method. Further, the contact angle was measured with a droplet of pure water (surface tension 72). The results are shown in Table 1.

【0027】また、このペレットを負極とし、正極活物
質にLiCoOを使用し、電解液としてプロピレンカ
ーボネートとジメチルカーボネートの混合溶媒(1:1
(Vol))にLiPF(1mol/l)を溶解した
ものを使用してコイン型電池を作製した。そして、この
コイン型電池の充放電特性を次のように測定した。即
ち、25℃及び0℃のそれぞれにおいて、20mAの定
電流、電圧2〜0Vの範囲で繰り返し充放電し、放電容
量を測定した。そして充放電後の放電容量の測定値を、
初期値を100として表した。この結果を表2(25
℃)及び表3(0℃)に示す。
The pellet is used as a negative electrode, LiCoO 2 is used as a positive electrode active material, and a mixed solvent of propylene carbonate and dimethyl carbonate (1: 1) is used as an electrolytic solution.
A coin-type battery was manufactured by using LiPF 6 (1 mol / l) dissolved in (Vol)). Then, the charge / discharge characteristics of this coin-type battery were measured as follows. That is, at 25 ° C. and 0 ° C., charging / discharging was repeated at a constant current of 20 mA and a voltage of 2 to 0 V to measure the discharge capacity. And the measured value of the discharge capacity after charging and discharging,
The initial value was expressed as 100. The results are shown in Table 2 (25
C) and Table 3 (0 C).

【0028】実施例2 ペレット成形前の天然黒鉛の粉末にコロナ放電処理を行
うのではなく、天然黒鉛の粉末をペレットに成形した
後、そのペレットの表裏にそれぞれ1600kW/m
のコロナ放電処理を行う以外は実施例1と同様にして負
極を作製し、その接触角と臨界表面張力を求めた。この
結果を表1に併せて示す。
Example 2 Rather than subjecting the natural graphite powder before pellet molding to corona discharge treatment, the natural graphite powder was molded into pellets, and 1600 kW / m 2 was applied to the front and back of each pellet.
A negative electrode was prepared in the same manner as in Example 1 except that the corona discharge treatment was performed, and the contact angle and the critical surface tension were determined. The results are also shown in Table 1.

【0029】また、このペレットを負極として実施例1
と同様にコイン型電池を作製し、その充放電特性を求め
た。この結果を表2及び表3に併せて示す。
Further, this pellet was used as a negative electrode in Example 1.
A coin-type battery was prepared in the same manner as above, and its charge / discharge characteristics were determined. The results are also shown in Tables 2 and 3.

【0030】比較例1 天然黒鉛の粉末にコロナ放電処理を行なわない以外は実
施例1と同様にしてペレットに成形し、接触角と臨界表
面張力を求めた。この結果を表1に併せて示す。
Comparative Example 1 A pellet was formed in the same manner as in Example 1 except that the natural graphite powder was not subjected to corona discharge treatment, and the contact angle and the critical surface tension were determined. The results are also shown in Table 1.

【0031】また、このペレットを負極として実施例1
と同様にコイン型電池を作製し、その充放電特性を求め
た。この結果を表2及び表3に併せて示す。
Further, this pellet was used as a negative electrode in Example 1.
A coin-type battery was prepared in the same manner as above, and its charge / discharge characteristics were determined. The results are also shown in Tables 2 and 3.

【0032】[0032]

【表1】 接触角(degree) 臨界表面張力(dyne/cm) 実施例1 25.6 54.7 実施例2 30.8 41.2 比較例1 73.4 24.0 [Table 1] Contact angle (degree) Critical surface tension (dyne / cm) Example 1 25.6 54.7 Example 2 30.8 41.2 Comparative Example 1 73.4 24.0

【0033】[0033]

【表2】 (25℃) 50cycle 100cycle 200cycle 実施例1 96.9% 92.6% 91.3% 実施例2 97.1% 92.8% 92.1% 比較例1 96.3% 92.5% 91.4%(Table 2) (25 ° C) 50cycle 100cycle 200cycle Example 1 96.9% 92.6% 91.3% Example 2 97.1% 92.8% 92.1% Comparative Example 1 96.3% 92. 5% 91.4%

【0034】[0034]

【表3】 (0℃) 50cycle 100cycle 200cycle 実施例1 95.3% 91.1% 90.2% 実施例2 95.8% 91.6% 90.4% 比較例1 92.1% 86.3% 81.0% 表1から、実施例1及び実施例2の負極は、比較例1の
負極に対して濡れ性がよいことがわかる。また、表2及
び表3から、実施例1及び実施例2の負極と比較例1の
負極の充放電特性は、25℃ではほとんど差がないが、
0℃では実施例1及び実施例2の充放電特性が著しく優
れていること、即ち、比較例1では0℃の特性が25℃
の特性に比して大きく低下しているのに対し、実施例1
及び実施例2では0℃の特性が25℃の特性に対して僅
かに劣っているにすぎないことがわかる。
(Table 3) (0 ° C) 50cycle 100cycle 200cycle Example 1 95.3% 91.1% 90.2% Example 2 95.8% 91.6% 90.4% Comparative Example 1 92.1% 86. 3% 81.0% From Table 1, it can be seen that the negative electrodes of Examples 1 and 2 have good wettability with respect to the negative electrode of Comparative Example 1. Also, from Tables 2 and 3, the charge / discharge characteristics of the negative electrodes of Examples 1 and 2 and the negative electrode of Comparative Example 1 are almost the same at 25 ° C.,
At 0 ° C., the charge / discharge characteristics of Example 1 and Example 2 are remarkably excellent, that is, in Comparative Example 1, the characteristics at 0 ° C. are 25 ° C.
In comparison with the characteristics of Example 1, the characteristics of Example 1 are significantly decreased.
And in Example 2, it turns out that the characteristic of 0 degreeC is slightly inferior to the characteristic of 25 degreeC.

【0035】実施例3 市販の人造黒鉛の粉末(炭素層の面間隔3.37オング
ストローム)に対して実施例1と同様にコロナ放電処理
を行い、実施例1と同様に天然黒鉛の粉末にコロナ放電
処理を行った。そして、このコロナ放電処理を施した人
造黒鉛の粉末46重量部、バインダ(SBR)7重量
部、溶剤(シクロヘキサノン)47重量部を混合して塗
料(負極合剤)を調製し、この塗料を、図2に示したよ
うに、コーター5を使用し、厚さ20μmの銅箔からな
る負極集電体6に均一に塗布し、乾燥機7を通して乾燥
させ、負極電極8を作製した。
Example 3 Commercially available artificial graphite powder (carbon layer spacing 3.37 angstroms) was subjected to corona discharge treatment in the same manner as in Example 1, and natural graphite powder was subjected to corona treatment in the same manner as in Example 1. Discharge treatment was performed. Then, 46 parts by weight of the artificial graphite powder subjected to the corona discharge treatment, 7 parts by weight of the binder (SBR), and 47 parts by weight of the solvent (cyclohexanone) are mixed to prepare a paint (negative electrode mixture), and this paint is As shown in FIG. 2, using a coater 5, a negative electrode current collector 6 made of a copper foil having a thickness of 20 μm was uniformly applied and dried through a drier 7 to produce a negative electrode 8.

【0036】この負極の接触角と臨界表面張力を実施例
1と同様にして測定した。この結果を表4に示す。
The contact angle and critical surface tension of this negative electrode were measured in the same manner as in Example 1. The results are shown in Table 4.

【0037】一方、正極活物質としてLiCoOを使
用し、このリチウム複合酸化物91重量部、PVdF3
重量部、及び導電剤としてグラファイト3重量部を混合
して塗料(正極合剤)を調製し、この塗料もコーターを
使用して、厚さ20μmのアルミニウム箔からなる正極
集電体に均一に塗布し、乾燥し、正極電極を作製した。
On the other hand, LiCoO 2 was used as the positive electrode active material, and 91 parts by weight of this lithium composite oxide, PVdF 3
Parts by weight and 3 parts by weight of graphite as a conductive agent are mixed to prepare a coating material (positive electrode mixture), and this coating material is also uniformly applied to a positive electrode current collector made of aluminum foil having a thickness of 20 μm using a coater. And dried to prepare a positive electrode.

【0038】そして上述の負極と正極とを、それら間に
厚さ25μmのポリプロピレンからなるセパレータを挟
んで多数回巻き回し、これを電池缶に入れ、さらにこの
電池缶内に電解液として、実施例1のコイン型電池に使
用したものと同様の電解液を注入し、図3に示したよう
な筒型電池(直径18mm、高さ65mm)を作製し
た。なお、図3において、8は負極、9は負極リード、
10は正極、11は正極リード、12はセパレータ、1
3は安全弁、14はガスケット、15は正極蓋、16は
インシュレータ、17はセンターピン、18は負極缶を
表している。
Then, the negative electrode and the positive electrode described above were wound many times with a separator made of polypropylene having a thickness of 25 μm sandwiched between them, placed in a battery can, and further used as an electrolytic solution in the battery can. The same electrolytic solution as that used for the coin type battery 1 was injected to prepare a cylindrical battery (diameter 18 mm, height 65 mm) as shown in FIG. In FIG. 3, 8 is a negative electrode, 9 is a negative electrode lead,
10 is a positive electrode, 11 is a positive electrode lead, 12 is a separator, 1
3 is a safety valve, 14 is a gasket, 15 is a positive electrode lid, 16 is an insulator, 17 is a center pin, and 18 is a negative electrode can.

【0039】得られた筒型電池の充放電特性を、0℃に
おいて、250mAの定電流、電圧4.2〜2.75V
の範囲で充放電を繰り返し、放電容量を測定することに
より求めた。この結果を表5に示す。
The charging / discharging characteristics of the obtained cylindrical battery were as follows: a constant current of 250 mA at 0 ° C., a voltage of 4.2-2.75 V.
It was determined by repeating charge and discharge in the range and measuring the discharge capacity. The results are shown in Table 5.

【0040】実施例4 人造黒鉛の粉末に予めコロナ放電処理を行ってからその
人造黒鉛の粉末を使用して塗料を調製するのではなく、
コロナ放電処理を行わない人造黒鉛の粉末を使用して塗
料を調製し、その塗料を集電体に塗布、乾燥し、その
後、その表裏にそれぞれ1600kW/mのコロナ放
電処理を行う以外は実施例3と同様にして負極を作製
し、その接触角と臨界表面張力を求めた。この結果を表
4に併せて示す。
Example 4 Rather than subjecting the artificial graphite powder to corona discharge treatment in advance and then using the artificial graphite powder to prepare a coating,
Prepared by using artificial graphite powder without corona discharge treatment, coating the coating material on the current collector, drying it, and then performing corona discharge treatment of 1600 kW / m 2 on each side. A negative electrode was prepared in the same manner as in Example 3, and its contact angle and critical surface tension were determined. The results are also shown in Table 4.

【0041】また、この負極を使用して実施例3と同様
に筒型電池を作製し、その充放電特性を求めた。この結
果を表5に併せて示す。
Using this negative electrode, a cylindrical battery was prepared in the same manner as in Example 3 and its charge / discharge characteristics were determined. The results are also shown in Table 5.

【0042】比較例2 人造黒鉛の粉末にコロナ放電処理を行なわない以外は実
施例3と同様にして負極を作製し、負極の接触角と臨界
表面張力を求めた。この結果を表4に併せて示す。
Comparative Example 2 A negative electrode was prepared in the same manner as in Example 3 except that artificial graphite powder was not subjected to corona discharge treatment, and the contact angle and critical surface tension of the negative electrode were determined. The results are also shown in Table 4.

【0043】また、この負極を使用して実施例3と同様
に筒型電池を作製し、その充放電特性を求めた。この結
果を表5に併せて示す。
Using this negative electrode, a cylindrical battery was prepared in the same manner as in Example 3 and its charge / discharge characteristics were determined. The results are also shown in Table 5.

【0044】[0044]

【表4】 接触角(degree) 臨界表面張力(dyne/cm) 実施例3 21.1 55.0 実施例4 21.1 55.0 比較例2 65.3 27.3 [Table 4] Contact angle (degree) Critical surface tension (dyne / cm) Example 3 21.1 55.0 Example 4 21.1 55.0 Comparative Example 2 65.3 27.3

【0045】[0045]

【表5】 (0℃) 50cycle 100cycle 200cycle 実施例3 94.8% 92.0% 89.9% 実施例4 94.8% 92.4% 90.3% 比較例2 91.5% 85.0% 82.6% 表4から、この実施例3及び実施例4の負極も比較例2
の負極に対して濡れ性がよいことがわかる。また表5か
ら、これら実施例の電池は0℃においても充放電特性が
良好であることがわかる。
[Table 5] (0 ° C) 50cycle 100cycle 200cycle Example 3 94.8% 92.0% 89.9% Example 4 94.8% 92.4% 90.3% Comparative Example 2 91.5% 85. 0% 82.6% From Table 4, the negative electrodes of Examples 3 and 4 are also Comparative Example 2
It can be seen that the wettability with respect to the negative electrode is good. In addition, it can be seen from Table 5 that the batteries of these examples have good charge and discharge characteristics even at 0 ° C.

【0046】実施例5 実施例3と同様にして、人造黒鉛の粉末にコロナ放電処
理を行い、負極を作製した。その際、コロナ放電処理時
の照射量を表6のように変え、コロナ放電処理後の電極
表面をESCAにより解析し、C1s軌道とO1s軌道
とのピークの比(C/O)を求めた。この結果を表6に
示す。
Example 5 In the same manner as in Example 3, artificial graphite powder was subjected to corona discharge treatment to produce a negative electrode. At that time, the irradiation amount at the time of corona discharge treatment was changed as shown in Table 6, the electrode surface after corona discharge treatment was analyzed by ESCA, and the peak ratio (C / O) between the C1s orbit and the O1s orbit was obtained. The results are shown in Table 6.

【0047】[0047]

【表6】 照射量 0 180 200 300 500 1000 1600 3000 4000 7500 (kW/m2 ) C/O 78.6 78.0 30.3 25.6 16.9 14.0 9.9 10.2 9.5 8.9 この結果から、この系では照射量は範囲は200〜80
00kW/mが適当であることがわかる。200kW
/mより少ないと電極表面が十分に変化しないので好
ましくない。一方、照射量を8000kW/mより多
くすることは現実的に大電流を得ることが困難となる。
[Table 6] Irradiation 0 180 200 300 500 1000 1600 3000 4000 7500 (kW / m 2 ) C / O 78.6 78.0 30.3 25.6 16.9 14.0 9.9 10.2 9.5 8.9 From this result, the dose range of this system is 200-80.
It turns out that 00 kW / m 2 is suitable. 200 kW
If it is less than / m 2, it is not preferable because the electrode surface does not change sufficiently. On the other hand, if the irradiation amount is set to more than 8000 kW / m 2, it becomes difficult to obtain a large current in reality.

【0048】[0048]

【発明の効果】この発明によれば、非水電解液二次電池
を製造するにあたり、負極に炭素層の面間隔が3.4オ
ングストローム以下の炭素質材料を使用しても、温度0
℃以下で充放電を繰り返したときの放電容量の劣化を抑
制することが可能となる。
According to the present invention, in producing a non-aqueous electrolyte secondary battery, even if a carbonaceous material having a carbon layer surface spacing of 3.4 angstroms or less is used for the negative electrode, the temperature is kept at 0.
It becomes possible to suppress the deterioration of the discharge capacity when the charge and discharge are repeated at a temperature of not higher than ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に使用できるコロナ放電処理装置の電
気系統図である。
FIG. 1 is an electrical system diagram of a corona discharge treatment device that can be used in the present invention.

【図2】コ−ターを使用して集電体に塗料(負極合剤)
を塗布する方法の説明図である。
[Fig. 2] Paint (negative electrode mixture) on the current collector using a coater
It is explanatory drawing of the method of apply | coating.

【図3】筒型電池の説明図である。FIG. 3 is an explanatory diagram of a cylindrical battery.

【符号の説明】[Explanation of symbols]

1 高周波電源 2 高圧トランス 3 電極 4 誘電体被膜 5 コーター 6 負極集電体 7 乾燥機 8 負極 10 正極 1 High Frequency Power Supply 2 High Voltage Transformer 3 Electrode 4 Dielectric Coating 5 Coater 6 Negative Electrode Current Collector 7 Dryer 8 Negative Electrode 10 Positive Electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月11日[Submission date] June 11, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】また、このペレットを負極とし、正極活物
質にLiCoOを使用し、電解液としてプロピレンカ
ーボネートとジメチルカーボネートの混合溶媒(1:1
(Vol))にLiPF(1mol/l)を溶解した
ものを使用してコイン型電池を作製した。そして、この
コイン型電池の充放電特性を次のように測定した。即
ち、25℃及び0℃のそれぞれにおいて、mAの定電
流、電圧2〜0Vの範囲で繰り返し充放電し、放電容量
を測定した。そして充放電後の放電容量の測定値を、初
期値を100として表した。この結果を表2(25℃)
及び表3(0℃)に示す。
The pellet is used as a negative electrode, LiCoO 2 is used as a positive electrode active material, and a mixed solvent of propylene carbonate and dimethyl carbonate (1: 1) is used as an electrolytic solution.
A coin-type battery was manufactured by using LiPF 6 (1 mol / l) dissolved in (Vol)). Then, the charge / discharge characteristics of this coin-type battery were measured as follows. That is, at 25 ° C. and 0 ° C., charging / discharging was repeated at a constant current of 1 mA and a voltage of 2 to 0 V, and the discharge capacity was measured. Then, the measured value of the discharge capacity after charging / discharging was expressed with the initial value being 100. The results are shown in Table 2 (25 ° C)
And Table 3 (0 ° C.).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩越 康申 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Iwakoshi 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質にリチウム複合酸化物を使用
し、負極に炭素層の面間隔が3.4オングストローム以
下の炭素質材料を使用する非水電解液二次電池の製造方
法において、炭素質材料にコロナ放電処理を行うことを
特徴とする非水電解液二次電池の製造方法。
1. A method for producing a non-aqueous electrolyte secondary battery, wherein a lithium composite oxide is used as a positive electrode active material, and a carbonaceous material having a carbon layer surface spacing of 3.4 angstroms or less is used as a negative electrode. A method of manufacturing a non-aqueous electrolyte secondary battery, which comprises subjecting a high quality material to a corona discharge treatment.
【請求項2】 負極の形成工程が、炭素質材料にバイン
ダと溶剤を混合して炭素質材料を塗料化する塗料化工
程、及び塗料化した炭素質材料を集電体に塗布し、乾燥
して集電体上に炭素質材料層を形成する炭素質材料層形
成工程を含む請求項1記載の非水電解液二次電池の製造
方法。
2. The step of forming a negative electrode includes a step of forming a coating material for a carbonaceous material by mixing a binder and a solvent with the carbonaceous material, and applying the coated carbonaceous material to a current collector, followed by drying. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, further comprising a carbonaceous material layer forming step of forming a carbonaceous material layer on the current collector.
【請求項3】 塗料化工程に先立って炭素質材料にコロ
ナ放電処理を行う請求項2記載の非水電解液二次電池の
製造方法。
3. The method for producing a non-aqueous electrolyte secondary battery according to claim 2, wherein the carbonaceous material is subjected to corona discharge treatment prior to the coating step.
【請求項4】 炭素質材料層形成工程後に、集電体上に
形成した炭素質材料層にコロナ放電処理を行う請求項2
記載の非水電解液二次電池の製造方法。
4. The corona discharge treatment is performed on the carbonaceous material layer formed on the current collector after the carbonaceous material layer forming step.
A method for producing the non-aqueous electrolyte secondary battery described.
【請求項5】 負極の形成工程が、炭素質材料を加圧成
形してペレットを形成するペレット形成工程を含む請求
項1記載の非水電解液二次電池の製造方法。
5. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1, wherein the step of forming the negative electrode includes a pellet forming step of forming a pellet by pressure-forming a carbonaceous material.
【請求項6】 ペレット形成工程に先立って炭素質材料
にコロナ放電処理を行う請求項5記載の非水電解液二次
電池の製造方法。
6. The method for producing a non-aqueous electrolyte secondary battery according to claim 5, wherein the carbonaceous material is subjected to corona discharge treatment prior to the pellet forming step.
【請求項7】 ペレット形成工程後に炭素質材料にコロ
ナ放電処理を行う請求項5記載の非水電解液二次電池の
製造方法。
7. The method for producing a non-aqueous electrolyte secondary battery according to claim 5, wherein the carbonaceous material is subjected to corona discharge treatment after the pellet forming step.
JP5346725A 1993-12-22 1993-12-22 Manufacture of nonaqueous electrolyte secondary battery Pending JPH07183027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346725A JPH07183027A (en) 1993-12-22 1993-12-22 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346725A JPH07183027A (en) 1993-12-22 1993-12-22 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07183027A true JPH07183027A (en) 1995-07-21

Family

ID=18385399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346725A Pending JPH07183027A (en) 1993-12-22 1993-12-22 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07183027A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062358A1 (en) * 1999-04-08 2000-10-19 Matsushita Electric Industrial Co., Ltd. Rechargeable battery using nonaqueous electrolyte
KR100477737B1 (en) * 1998-10-12 2005-06-08 삼성에스디아이 주식회사 Manufacturing Method of Electrode for Lithium Secondary Battery_
KR100496279B1 (en) * 1998-10-22 2005-09-09 삼성에스디아이 주식회사 Method of making plate for lithum secondary battery
JP2011150866A (en) * 2010-01-21 2011-08-04 Hitachi Maxell Energy Ltd Lithium ion secondary battery
JP2016201338A (en) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477737B1 (en) * 1998-10-12 2005-06-08 삼성에스디아이 주식회사 Manufacturing Method of Electrode for Lithium Secondary Battery_
KR100496279B1 (en) * 1998-10-22 2005-09-09 삼성에스디아이 주식회사 Method of making plate for lithum secondary battery
WO2000062358A1 (en) * 1999-04-08 2000-10-19 Matsushita Electric Industrial Co., Ltd. Rechargeable battery using nonaqueous electrolyte
JP2011150866A (en) * 2010-01-21 2011-08-04 Hitachi Maxell Energy Ltd Lithium ion secondary battery
JP2016201338A (en) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US10305109B2 (en) 2015-04-14 2019-05-28 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5688047B2 (en) Anode protector for lithium ion battery and method for manufacturing the same
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
EP3104440A1 (en) Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017047280A1 (en) Lithium secondary battery and method for producing same
US20080113265A1 (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3456181B2 (en) Lithium manganese composite oxide and non-aqueous electrolyte secondary battery using the same
JP3692547B2 (en) Charging method
EP3404751A1 (en) Positive electrode
JPH06251764A (en) Lithium secondary battery
JP2019160782A (en) Negative electrode and lithium ion secondary battery
KR20140132791A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JPH10255792A (en) Manufacture for carbonaceous negative electrode material for nonaqueous electrolyte secondary battery
KR20200033421A (en) Sulfur-carbon composite, method for preparing the same and lithium secondary battery comprising the same
JPH07183027A (en) Manufacture of nonaqueous electrolyte secondary battery
KR101931143B1 (en) Negative electrode active material and secondary battery comprising the same
JP3693827B2 (en) Electrode plate fabrication method
US10971726B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2022011788A (en) Lithium ion secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
US20170222213A1 (en) Method for producing negative electrode for lithium ion battery and method for producing lithium ion battery
EP1067613A1 (en) Method of manufacturing electrode of nonaqueous electrolytic battery
JP2006107750A (en) Active material layer coating composition, electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11133525B2 (en) Lithium-ion secondary battery and method of producing the same
JP2001250535A (en) Lithium ion secondary battery and its production
JP2001080914A (en) Carbon material and its production as well as nonaqueous electrolytic battery and its production