JPH07180738A - Ceramics elastic member - Google Patents

Ceramics elastic member

Info

Publication number
JPH07180738A
JPH07180738A JP5327520A JP32752093A JPH07180738A JP H07180738 A JPH07180738 A JP H07180738A JP 5327520 A JP5327520 A JP 5327520A JP 32752093 A JP32752093 A JP 32752093A JP H07180738 A JPH07180738 A JP H07180738A
Authority
JP
Japan
Prior art keywords
elastic member
ceramic
average value
sintered body
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5327520A
Other languages
Japanese (ja)
Inventor
Masahiko Azuma
昌彦 東
Takeaki Santo
健明 山藤
Yosuke Sugita
陽介 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5327520A priority Critical patent/JPH07180738A/en
Publication of JPH07180738A publication Critical patent/JPH07180738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Springs (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the ceramics elastic member which is extremely small in the damping amount of a spring reaction, will never be ruptured and permanently set in fatigue even if it is subjected to high load at temperature in excess of 1000 deg.C and in a corrosive environment, enables its deflection to be set large as a large scale elastic member when the member is used as a shock absorbing member for various type equipment and a locking member for fastening sections, and can maintain a stable spring action for a long time. CONSTITUTION:This is a ring shaped-elastic member 2 bent in a wave shape, composed of a ceramic sintered body of a non-oxide whese corelation of (t) and D/N is in a range enclosed by the respective points of A, B, C and D as indicated in the figure where (t) represents thickness, D represents the average value of an inner diameter 3 and an outer diameter 4 and N represents the number of wave crests.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非酸化物系セラミック
焼結体から成る高温用の波型に屈曲したリング状を成す
セラミック弾性部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature corrugated ring-shaped ceramic elastic member made of a non-oxide ceramic sintered body.

【0002】[0002]

【従来の技術】従来より各種機器の緩衝用あるいはそれ
らの締結部の緩み止め用として、ばね作用を利用した各
種金属材料や合成樹脂等より成る弾性部材が、広く用い
られてきた。
2. Description of the Related Art Heretofore, elastic members made of various metal materials or synthetic resins utilizing a spring action have been widely used for buffering various devices or preventing loosening of their fastening parts.

【0003】近年、石油化学プラントや各種高温加熱
炉、ガスタービン部品等の各種産業機械の分野では、1
000℃を越える高温下、更には気体や媒質の腐食環境
下に耐える弾性部材が要求されるようになり、従来の弾
性部材では数100℃で使用中にばね反力の減衰率が極
めて大きくなり、いわゆるへたりを生じたり、あるいは
腐食したりしてばね作用を維持できないことから、それ
らに代わるものとして、ばね定数の温度依存性が小さ
く、耐食性に優れた素材として、弾性や可撓性を有しな
い剛性材料としてのみ使用されてきたセラミック焼結体
が注目されるようになってきた。
In recent years, in the field of various industrial machines such as petrochemical plants, various high temperature heating furnaces, gas turbine parts, etc.
An elastic member that can withstand a high temperature of over 000 ° C and a corrosive environment of a gas or a medium is required, and a conventional elastic member has an extremely large attenuation rate of a spring reaction force during use at several 100 ° C. Since the spring action cannot be maintained due to so-called fatigue or corrosion, as an alternative to these, elasticity and flexibility are used as a material with low temperature dependence of spring constant and excellent corrosion resistance. Ceramic sintered bodies, which have been used only as rigid materials that do not have, have come to the forefront.

【0004】前記セラミック焼結体としては、セラミッ
クスの中でも比較的靱性の高い、酸化ジルコニウム焼結
体を用いたコイルスプリングや板ばね等が実用化されて
きたが、1000℃を越えるような高温では強度劣化が
激しく、その上、接触する配管やナット等の金属と反応
し易く、長期にわたってばね作用を安定して維持するこ
とが困難であるという問題があった。
As the ceramic sintered body, a coil spring, a leaf spring or the like using a zirconium oxide sintered body, which has relatively high toughness among ceramics, has been put into practical use, but at a high temperature exceeding 1000 ° C. There has been a problem that the strength is severely deteriorated and, in addition, it easily reacts with metal such as pipes and nuts that come into contact with it, and it is difficult to stably maintain the spring action for a long period of time.

【0005】そこで、そのような従来の欠点を解消し、
1000℃を越える高温での強度が高く、腐食環境下で
も十分に耐えるものとしてコイルスプリング等に適する
窒化珪素系のセラミック弾性部材が提案されている(特
開昭62−278168号公報参照)。
Therefore, by eliminating such a conventional defect,
There has been proposed a silicon nitride ceramic elastic member suitable for coil springs and the like, which has high strength at high temperatures exceeding 1000 ° C. and is sufficiently resistant to corrosive environments (see Japanese Patent Laid-Open No. 62-278168).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
ような高温強度や耐食性に優れた窒化珪素系のセラミッ
クスを、例えば、コイル状に巻回した一巻きから成る弾
性部材として、1000℃を越える高温用のばね座金等
に適用した場合、セラミックスは一般に弾性係数が金属
に比べて高く、かつ脆性材料であるため、撓みを大きく
設定すると、使用中に破断する恐れが高く、その上、ば
ね反力の減衰率がバラツキ易いことから信頼性に乏し
く、そのために撓みを小さくせざるを得ず、ごく限られ
た用途にしか使用できないという課題があった。
However, the above-mentioned silicon nitride-based ceramics excellent in high-temperature strength and corrosion resistance are used as an elastic member composed of, for example, one coil wound at a high temperature exceeding 1000 ° C. When applied to spring washers, etc., ceramics generally have a higher elastic modulus than metals and are brittle materials, so if a large deflection is set, there is a high risk of breakage during use. There is a problem that since the damping ratio of the above is apt to vary, the reliability is poor, and therefore the bending must be reduced, and it can be used only for a very limited purpose.

【0007】[0007]

【発明の目的】本発明は係る課題を解決せんとしてなさ
れたもので、その目的は1000℃を越える高温下、更
に腐食環境下で高荷重が加わる条件であっても、各種機
器の緩衝用あるいはそれらの締結部の緩み止め用とし
て、小型は勿論、大型の弾性部材として撓みを大きく設
定することができ、長期にわたり安定したばね作用を維
持したセラミック弾性部材を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made as a solution to the above problems, and its purpose is to buffer various equipment even under conditions of high load exceeding 1000 ° C. and high corrosive environment. It is an object of the present invention to provide a ceramic elastic member which can set a large flexure as a large elastic member as well as a small elastic member for preventing the fastening portions from loosening, and which maintains a stable spring action for a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明のセラミック弾性
部材は、非酸化物系セラミック焼結体で構成した複数の
波型に屈曲したリング状の弾性部材の厚さをt(mm)
とし、前記弾性部材の内径と外径の平均値をD(m
m)、波の山数をNとした時、tとD/Nの相関が図1
における下記ABCD、 の各点で囲まれた範囲内であることを特徴とするもので
ある。
In the ceramic elastic member of the present invention, the thickness of a plurality of corrugated ring-shaped elastic members made of a non-oxide ceramic sintered body is t (mm).
And the average value of the inner diameter and the outer diameter of the elastic member is D (m
m) and the number of wave peaks is N, the correlation between t and D / N is shown in FIG.
ABCD below, It is characterized by being within the range surrounded by each point of.

【0009】[0009]

【作用】本発明のセラミック弾性部材によれば、素材を
非酸化物系セラミック焼結体とし、tとD/Nの相関を
図1に示すABCDの各点で囲まれた範囲内とすること
から、ばね作用、特に反力の減衰率が極めて小さく、1
000℃を越える高温、腐食環境下でも破断したり、短
期間でへたりを発生したりすることがない。
According to the ceramic elastic member of the present invention, the material is a non-oxide ceramic sintered body, and the correlation between t and D / N is within the range surrounded by each point of ABCD shown in FIG. Therefore, the damping effect of the spring action, especially the reaction force is extremely small.
It does not break or settle in a short period of time even under a corrosive environment of high temperature exceeding 000 ° C.

【0010】[0010]

【実施例】以下、本発明のセラミック弾性部材を図面に
基づき詳細に説明する。図2は本発明に係るセラミック
弾性部材の波の山数Nが3の一実施例を示す斜視図であ
り、図3は本発明に係るセラミック弾性部材の波の山数
Nが3の他の実施例を示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ceramic elastic member of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a perspective view showing an embodiment in which the wave number N of waves of the ceramic elastic member according to the present invention is 3, and FIG. 3 shows another example of wave number N of waves of the ceramic elastic member according to the present invention being 3. It is a perspective view showing an example.

【0011】図2及び図3において、1は厚さt、内径
3と外径4の平均値がD、波の山数Nが3の非酸化物系
セラミック焼結体で構成した波型に屈曲したリング状の
弾性部材2であるセラミック弾性部材であり、図3では
合い口5を有し、他は図2と同様のセラミック弾性部材
1である。
2 and 3, reference numeral 1 denotes a corrugated shape made of a non-oxide ceramic sintered body having a thickness t, an average value of the inner diameter 3 and the outer diameter 4 of D, and a wave crest number N of 3. It is a ceramic elastic member that is a bent ring-shaped elastic member 2, and has a mating port 5 in FIG. 3, and is the same ceramic elastic member 1 as in FIG.

【0012】前記セラミック弾性部材1の厚さtは、
0.34mm未満では極めて低い応力で破断してしま
い、8.75mmを越えるとばね反力の減衰率が大きく
なるため、その値は0.34mmを越え、8.75mm
以下、望ましくは0.5〜6.5mm、より望ましくは
1.0〜5.0mmの範囲となる。
The thickness t of the ceramic elastic member 1 is
If it is less than 0.34 mm, it breaks with extremely low stress, and if it exceeds 8.75 mm, the damping rate of the spring reaction force increases, so the value exceeds 0.34 mm and 8.75 mm.
The range is preferably 0.5 to 6.5 mm, more preferably 1.0 to 5.0 mm.

【0013】また、内径3と外径4の平均値Dに対する
波の数、即ち山の頂点から隣の山の頂点を一波として数
えた波の山数Nの比は、緩衝用あるいは締結部の緩み止
め用は勿論、シール性を考慮すると、配管やナット等と
の当接面を平行に保持する必要があり、均一に保持でき
なければセラミック弾性部材が破断する恐れがあること
から、前記Nの値は3以上が望ましい。
Further, the number of waves with respect to the average value D of the inner diameter 3 and the outer diameter 4, that is, the ratio of the number N of peaks of the peak counted from the peak of the adjacent peak as one wave is used for buffering or fastening. Not only to prevent loosening, but also considering the sealing property, it is necessary to hold the contact surfaces with the pipes and nuts in parallel, and if it cannot be held uniformly, the ceramic elastic member may break. The value of N is preferably 3 or more.

【0014】一方、内径3と外径4の平均値Dは、30
mm未満になると撓みが大きく設定できないため、用途
が限定される上、低い荷重で破損し易く、また、450
mmを越えると山と山との間隔が大きくなり、取付時の
傾きやシール性が悪くなるため、内径3と外径4の平均
値Dの値は30〜450mmの範囲となり、望ましくは
50〜360mm、より望ましくは60〜300mmと
なり、その結果、D/Nの値は10以上、150以下に
特定され、望ましくは20〜120、更には30〜10
0が最も好ましい。
On the other hand, the average value D of the inner diameter 3 and the outer diameter 4 is 30
If it is less than mm, the flexure cannot be set to a large extent, so the application is limited and it is easily damaged by a low load.
If it exceeds mm, the distance between the peaks becomes large, and the inclination and sealability at the time of mounting become poor. Therefore, the average value D of the inner diameter 3 and the outer diameter 4 is in the range of 30 to 450 mm, preferably 50 to 50 mm. 360 mm, more preferably 60 to 300 mm, and as a result, the D / N value is specified to be 10 or more and 150 or less, preferably 20 to 120, further 30 to 10
0 is most preferred.

【0015】前記セラミック弾性部材の素材としての非
酸化物系セラミック焼結体は、望ましくはサイアロン、
窒化珪素、炭化珪素等が挙げられるが、その他の窒化物
や炭化物、例えば、窒化チタン(TiN)や炭化チタン
(TiC)等も使用可能である。
The non-oxide ceramic sintered body as a material of the ceramic elastic member is preferably sialon,
Although silicon nitride, silicon carbide and the like can be mentioned, other nitrides and carbides such as titanium nitride (TiN) and titanium carbide (TiC) can also be used.

【0016】次に、本発明のセラミック弾性部材を評価
するにあたり、先ず、窒化珪素(Si3 4 )原料粉末
に焼結助剤としてアルミナ(Al2 3 )とイットリア
(Y2 3 )やイッテリビア(Yb2 3 )等の希土類
元素酸化物を添加し、メタノール等の有機溶媒と界面活
性剤等の公知の分散剤を含むバインダーを窒化珪素質焼
結体製のボールとともにポットに収容し、回転ミルで1
2時間混合攪拌して泥漿を作製した。
Next, in evaluating the ceramic elastic member of the present invention, first, silicon nitride (Si 3 N 4 ) raw material powder is used as a sintering aid with alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ). And rare earth element oxides such as ytteribia (Yb 2 O 3 ) are added, and a binder containing an organic solvent such as methanol and a known dispersant such as a surfactant is stored in a pot together with balls made of a silicon nitride sintered material. And then 1 on a rotating mill
A slurry was prepared by mixing and stirring for 2 hours.

【0017】得られて泥漿をスプレードライ法により所
定の粒径を有する顆粒に造粒し、該顆粒を用いて1.5
tの成形圧でプレス成形法により種々の波の山数を有す
るリング状のセラミック成形体を成形し、該成形体を5
00〜700℃の温度で脱バインダーした。
The obtained slurry is granulated by a spray dry method into granules having a predetermined particle size, and the granules are granulated with 1.5.
A ring-shaped ceramic molded body having various wave crest numbers was molded by a press molding method at a molding pressure of t, and the molded body was molded into 5
The binder was removed at a temperature of 00 to 700 ° C.

【0018】その後、非酸化性雰囲気で1600〜18
00℃の温度で焼結し、得られた焼結体を仕上げ加工し
て、評価用の波型に屈曲したリング状の弾性部材である
セラミック弾性部材を作製した。
Then, in a non-oxidizing atmosphere, 1600 to 18
Sintering was performed at a temperature of 00 ° C., and the obtained sintered body was subjected to finish processing to produce a ceramic elastic member which was a ring-shaped elastic member bent in a corrugated shape for evaluation.

【0019】尚、波型に成形する方法としては、成形体
を鋳込み成形法や射出成形法で成形する方法や、あるい
は成形体や仮焼体、更には焼結体を機械加工する方法、
加熱成形する方法等、各種の方法が採用し得る。
As a method for forming a corrugated shape, a method of forming a molded body by a casting method or an injection molding method, or a method of machining a molded body, a calcined body, or a sintered body,
Various methods such as a method of heat molding can be adopted.

【0020】かくして得られた評価用のセラミック弾性
部材の厚さと内径及び外径を数カ所づつ、マイクロメー
ターで測定し、その平均値より厚さtと内外径の平均値
Dを算出し、D/Nを求めた。
The thickness, the inner diameter and the outer diameter of the ceramic elastic member for evaluation thus obtained were measured at several points with a micrometer, and the average value D of the thickness t and the inner and outer diameter was calculated from the average value, and D / I asked for N.

【0021】次に、通常の使用状態では極めて長時間で
微小な変化が認められるだけであるため、前記評価用の
セラミック弾性部材にその厚さ方向に荷重を加えた時、
波の引っ張り面に相当する表面部に歪みゲージを貼付
し、該評価用のセラミック弾性部材をクリープ試験機内
で各セラミック弾性部材に100、200、300MP
aの応力が発生するまで厚さ方向に荷重Wを加えて保持
した後、クリープ試験機内の温度を1200℃まで上昇
させ、その状態で80時間保持した後の荷重wを測定す
る加速試験を実施し、荷重Wに対する荷重の変化量(W
−w)の比を1から減じた変化率を、ばね反力の減衰率
として評価した。
Next, since only a minute change is recognized in an extremely long time in a normal use condition, when a load is applied to the ceramic elastic member for evaluation in the thickness direction thereof,
A strain gauge is attached to the surface portion corresponding to the wave pulling surface, and the ceramic elastic member for evaluation is attached to each ceramic elastic member in the creep tester at 100, 200, 300MP.
After applying and holding a load W in the thickness direction until the stress of a occurs, raise the temperature inside the creep tester to 1200 ° C, and carry out an acceleration test to measure the load w after holding for 80 hours in that state The change amount of the load with respect to the load W (W
The rate of change obtained by subtracting the ratio of -w) from 1 was evaluated as the damping rate of the spring reaction force.

【0022】更に、前記評価用のセラミック弾性部材に
ついて、1000℃におけるビッカース硬度を測定し
た。
Further, the Vickers hardness at 1000 ° C. of the ceramic elastic member for evaluation was measured.

【0023】また、前記評価用のセラミック弾性部材と
同一仕様で作製した縦20mm、横20mm、長さ10
0mmの試験片を使用し、曲げ共振法により縦弾性率を
求め、ポアソン比より横弾性係数=E/2(1+ν)、
但し、Eはヤング率、νはポアソン比の式を用いて横弾
性率を算出した。
Further, a length of 20 mm, a width of 20 mm, and a length of 10 which were manufactured with the same specifications as the ceramic elastic member for evaluation were used.
Using a 0 mm test piece, the longitudinal elastic modulus was determined by the bending resonance method, and the lateral elastic modulus was E / 2 (1 + ν) from the Poisson's ratio,
However, E was Young's modulus and ν was the lateral elastic modulus calculated using the Poisson's ratio formula.

【0024】以上の結果を、表1乃至表4に示し、厚さ
tと内外径の平均値Dに対する波の山数Nの相関を図1
に示す。
The above results are shown in Tables 1 to 4, and the correlation between the number t of waves and the average value D of the thickness t and the inner and outer diameters is shown in FIG.
Shown in.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表1乃至表4の結果より明らかなように、
加速試験によるばね反力の減衰率の評価では、図1に示
すEFGHの各点で囲まれた範囲内がより望ましく、更
にIJKLの各点で囲まれた範囲内が最も望ましいこと
が分かる。
As is clear from the results of Tables 1 to 4,
In the evaluation of the damping rate of the spring reaction force by the acceleration test, it is understood that the range surrounded by each point of EFGH shown in FIG. 1 is more preferable, and the range surrounded by each point of IJKL is the most desirable.

【0030】[0030]

【発明の効果】本発明のセラミック弾性部材は、非酸化
物系セラミック焼結体を素材とする波型に屈曲したリン
グ状の弾性部材の厚さをt、該弾性部材の内外径の平均
値をD、波の数をNとし、tとD/Nの相関を図1に示
すABCDの各点で囲まれた範囲内とすることから、ば
ね作用、特にばね反力の減衰率が極めて小さく、100
0℃を越える高温下、更には腐食環境下で高荷重が加わ
っても破断したり、短期間でへたりを発生したりするこ
とがなく、各種機器の緩衝用あるいはそれらの締結部の
緩み止め用として、小型は勿論、大型の弾性部材として
も撓みを大きく設定することができ、長期にわたり安定
したばね作用を維持したセラミック弾性部材が得られ
る。
According to the ceramic elastic member of the present invention, the thickness of a corrugated ring-shaped elastic member made of a non-oxide ceramic sintered body is t, and the average value of the inner and outer diameters of the elastic member. Is D, the number of waves is N, and the correlation between t and D / N is within the range surrounded by each point of ABCD shown in FIG. 1. Therefore, the damping rate of the spring action, especially the spring reaction force is extremely small. , 100
It does not break or settle in a short period of time under high temperature exceeding 0 ° C, or even in a corrosive environment, and it does not break, and it is used for buffering various equipment or preventing loosening of their fastening parts. For use, not only small size but also large size elastic member can be set to a large degree of bending, and a ceramic elastic member that maintains a stable spring action for a long period of time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミック弾性部材の厚さtと内
外径の平均値Dに対する波の山数Nの相関を示す図であ
る。
FIG. 1 is a diagram showing a correlation between the thickness t of a ceramic elastic member according to the present invention and the number N of wave peaks with respect to an average value D of inner and outer diameters.

【図2】本発明に係るセラミック弾性部材の波の山数N
が3の一実施例を示す斜視図である。
FIG. 2 is a wave crest number N of the ceramic elastic member according to the present invention.
3 is a perspective view showing an example of FIG.

【図3】本発明に係るセラミック弾性部材の波の山数N
が3の他の実施例を示す斜視図である。
FIG. 3 is a wave crest number N of the ceramic elastic member according to the present invention.
FIG. 6 is a perspective view showing another embodiment of No. 3;

【符号の説明】[Explanation of symbols]

1 セラミック弾性部材 2 波型に屈曲したリング状の弾性部材 3 内径 4 外径 1 Ceramic elastic member 2 Ring-shaped elastic member bent in a wave shape 3 Inner diameter 4 Outer diameter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C04B 35/584 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C04B 35/584

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非酸化物系セラミック焼結体から成る波型
に屈曲したリング状の弾性部材の厚さをt、該弾性部材
の内外径の平均値をD、波の数をNとした時、tとD/
Nの相関が図1における下記ABCD、 の各点で囲まれた範囲内であることを特徴とするセラミ
ック弾性部材。
1. A thickness of a corrugated ring-shaped elastic member made of a non-oxide ceramic sintered body is t, an average value of inner and outer diameters of the elastic member is D, and a number of waves is N. Time, t and D /
The correlation of N is the following ABCD in FIG. The ceramic elastic member is characterized by being within a range surrounded by each point.
JP5327520A 1993-12-24 1993-12-24 Ceramics elastic member Pending JPH07180738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327520A JPH07180738A (en) 1993-12-24 1993-12-24 Ceramics elastic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327520A JPH07180738A (en) 1993-12-24 1993-12-24 Ceramics elastic member

Publications (1)

Publication Number Publication Date
JPH07180738A true JPH07180738A (en) 1995-07-18

Family

ID=18200033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327520A Pending JPH07180738A (en) 1993-12-24 1993-12-24 Ceramics elastic member

Country Status (1)

Country Link
JP (1) JPH07180738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
DE102004018999A1 (en) * 2004-04-20 2005-11-24 Forschungszentrum Jülich GmbH Spring element and production and use thereof
WO2016163263A1 (en) * 2015-04-07 2016-10-13 株式会社東芝 Sintered silicon nitride object and high-temperature-durable member comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
DE102004018999A1 (en) * 2004-04-20 2005-11-24 Forschungszentrum Jülich GmbH Spring element and production and use thereof
DE102004018999B4 (en) * 2004-04-20 2006-04-20 Forschungszentrum Jülich GmbH Spring element and production and use thereof
WO2016163263A1 (en) * 2015-04-07 2016-10-13 株式会社東芝 Sintered silicon nitride object and high-temperature-durable member comprising same
JPWO2016163263A1 (en) * 2015-04-07 2018-03-22 株式会社東芝 Silicon nitride sintered body and high temperature durability member using the same
US10787393B2 (en) 2015-04-07 2020-09-29 Kabushiki Kaisha Toshiba Silicon nitride sintered body and high-temperature-resistant member using the same

Similar Documents

Publication Publication Date Title
Munro Evaluated material properties for a sintered alpha‐alumina
US6322889B1 (en) Oxidation-resistant interfacial coating for fiber-reinforced ceramic
CA1264334A (en) Silicon nitride sintered bodies and a method of manufactureing the same
Lankford Comparative study of the temperature dependence of hardness and compressive strength in ceramics
JPS63166763A (en) High hardness silicon nitride sintered body
Liu et al. Fatigue deformation mechanisms of zirconia ceramics
Klemm et al. Fracture Toughness and Time‐Dependent Strength Behavior of Low‐Doped Silicon Nitrides for Applications at 1400° C
JPH07180738A (en) Ceramics elastic member
JP2813132B2 (en) Ceramic spring
Shih et al. Application of hot-pressed silicon carbide to large high-precision optical structures
US5217932A (en) Sintered ceramic composite body and method of manufacturing same
US5196386A (en) Sintered ceramic composite body and method of manufacturing same
Nagano et al. Deformation of alumina/titanium carbide composite at elevated temperatures
Rhanim et al. Experimental characterisation of high temperature creep resistance of mullite
Quinn Twisting and friction errors in flexure testing
Hendricks et al. Residual Stress in Plasma‐Sprayed Ceramic Turbine Tip and Gas‐Path Seal Specimens
Slavin et al. Mechanical property evaluation at elevated temperature of sintered β-silicon carbide
Yavuz et al. Threshold stress intensity for crack growth in silicon carbide ceramics
US5672420A (en) High temperature ceramic articles having corrosion resistant coating
Raju et al. Silicon nitride/SiAlON ceramics—a review
JP2000169216A (en) Reference device
Hoffmann et al. The potential of Si 3 N 4 for thermal shock applications
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2566580B2 (en) Silicon carbide / silicon nitride composite sintered body
JPH0782047A (en) Sintered ceramic composite