JPH071799B2 - Semiconductor yellow light emitting diode device - Google Patents

Semiconductor yellow light emitting diode device

Info

Publication number
JPH071799B2
JPH071799B2 JP12582988A JP12582988A JPH071799B2 JP H071799 B2 JPH071799 B2 JP H071799B2 JP 12582988 A JP12582988 A JP 12582988A JP 12582988 A JP12582988 A JP 12582988A JP H071799 B2 JPH071799 B2 JP H071799B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting diode
thickness
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12582988A
Other languages
Japanese (ja)
Other versions
JPH01296677A (en
Inventor
純一 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP12582988A priority Critical patent/JPH071799B2/en
Publication of JPH01296677A publication Critical patent/JPH01296677A/en
Publication of JPH071799B2 publication Critical patent/JPH071799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は発光ダイオードに関し、特に可視領域の発光を
高輝度で行う半導体発光ダイオードに関する。
The present invention relates to a light emitting diode, and more particularly to a semiconductor light emitting diode that emits light in the visible region with high brightness.

可視発光ダイオードは近年屋外用のディスプレイ、光通
信用光源として応用されている。
Visible light emitting diodes have recently been applied as displays for outdoor use and light sources for optical communication.

[従来の技術] 赤色発光ダイオードはGa1-xAlxAs発光ダイオードなど非
常に明るい高効率のものが実現されている。
[Prior Art] Red light emitting diodes, such as Ga 1-x Al x As light emitting diodes, are very bright and highly efficient.

表示用等のカラー光源としてはさらに短波長のものが望
まれている。特に3原色の実現が望まれている。黄色の
光源としては,570-600nmにピーク波長を有する半導体発
光ダイオードが望まれる。
As a color light source for display or the like, one having a shorter wavelength is desired. In particular, realization of three primary colors is desired. As a yellow light source, a semiconductor light emitting diode having a peak wavelength at 570-600 nm is desired.

InGaP系混晶半導体やInGaAlP系混晶半導体はこの可能性
を持つ材料である。
InGaP mixed crystal semiconductors and InGaAlP mixed crystal semiconductors are materials with this possibility.

黄色光の光源ではないが,InGaP系混晶半導体材料を用い
た発光素子の代表例として赤色可視光(660nm)半導体
レーザがある。このようなInGaPを発光層とした半導体
レーザの断面構造の例を第6図に示す。
Although it is not a light source for yellow light, a red visible light (660 nm) semiconductor laser is a typical example of a light emitting device using an InGaP-based mixed crystal semiconductor material. FIG. 6 shows an example of a sectional structure of a semiconductor laser using such InGaP as a light emitting layer.

GaAs基板1上にIn1-x-yGaxAlyP中間クラッド層2、InxG
a1-xP活性層3、In1-x-yGaxAlyP表面クラッド層4を順
次有機金属気相成長(MOCVD)法や分子線エピタキシ(M
BE)法等の気相成長法によって成長している。基板1上
に全面電極5、表面クラッド層4上にストライプ電極6
を形成している。
In 1-xy Ga x Al y P intermediate clad layer 2, In x G on GaAs substrate 1
a 1-x P active layer 3, In 1-xy Ga x Al y P surface cladding layer 4 are sequentially metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (M
BE) method and other vapor phase growth methods. Full surface electrode 5 on substrate 1, stripe electrode 6 on surface clad layer 4
Is formed.

両電極間に電流を流すことにより、活性層のストライプ
電極6の下の部分でレーザ発振が誘起される。
By passing a current between both electrodes, laser oscillation is induced in the portion of the active layer below the stripe electrode 6.

この半導体レーザの構造は,ダイオードである点では発
光ダイオード(LED)と同様であるが、発光機構や光の
出射方向等の点ではLEDと大きく異なる。高効率LEDを得
るには半導体レーザとは異なる技術が必要である。
The structure of this semiconductor laser is the same as that of a light emitting diode (LED) in that it is a diode, but it is significantly different from the LED in terms of a light emitting mechanism and a light emitting direction. To obtain high-efficiency LEDs, technology different from semiconductor lasers is required.

また,黄色光源を得るには混晶組成を570-600nmの発光
波長に合わせねばならない。これに伴って,種々の調整
も必要となる。
In order to obtain a yellow light source, the mixed crystal composition must be adjusted to the emission wavelength of 570-600nm. Along with this, various adjustments are necessary.

[発明が解決しようとする課題] 本発明の目的は、ピーク発光波長が570-600nmの範囲に
あるIn1-xGaxPまたはIn1-x-yGaxAlyPを発光層とした高
効率の黄色光発光ダイオードを提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to achieve high efficiency with In 1-x Ga x P or In 1-xy Ga x Al y P having a peak emission wavelength in the range of 570 to 600 nm as a light emitting layer. Is to provide a yellow light emitting diode.

[課題を解決するために行った検討] LEDは自然放出による発光を利用しているので結晶性が
非常に重要となる。MOCVD法やMBE法ではその成長機構か
らあまり良質な結晶は得にくい。
[Study carried out to solve the problem] Since LEDs use light emission by spontaneous emission, crystallinity is extremely important. The MOCVD method and MBE method make it difficult to obtain a very high-quality crystal because of its growth mechanism.

さらに、LEDはレーザと違い活性層と垂直方向へ光を取
り出すいわゆる面発光である。発光光度を向上するため
には、面発光での発光効率、発光の取り出し効率等を良
くしなけれならない。活性層で垂直方向に向う光を効率
良く発光させ、取り出すためには活性層の下の中間クラ
ッド層が十分な厚さ必要であることが判った。しかし、
In1-xGaxP系の成長に主に用いられているMOCVD法で通常
得られたのはたかだか数μm程度の薄膜である。このた
めMOCVD法ではダブルヘテロ構造を形成したとしても高
効率のLEDは得にくい。
Furthermore, unlike a laser, an LED is so-called surface emission that extracts light in a direction perpendicular to the active layer. In order to improve the luminous intensity, it is necessary to improve the luminous efficiency of surface emission, the extraction efficiency of emitted light, and the like. It has been found that the intermediate clad layer under the active layer needs to have a sufficient thickness in order to efficiently emit light emitted in the vertical direction in the active layer and take it out. But,
The MOCVD method mainly used for the growth of the In 1-x Ga x P system usually yields a thin film of about several μm. Therefore, it is difficult to obtain a highly efficient LED by MOCVD even if a double hetero structure is formed.

[課題を解決するための手段] ピーク発光波長が570-600nmであるIn1-xGaxPまたはIn
1-x-yGaxAlyPからなる発光層とGaP基板との間に十分な
厚さのIn1-x-yGaxAlyPからなる中間クラッド層を設ける
とともに、ダブルヘテロ構造の発光ダイオードとし効率
を向上させる。
[Means for Solving the Problems] In 1-x Ga x P or In having a peak emission wavelength of 570-600 nm
In addition to providing an intermediate cladding layer made of In 1-xy Ga x Al y P with a sufficient thickness between the light emitting layer made of 1-xy Ga x Al y P and the GaP substrate, a light emitting diode having a double-hetero structure is formed and the efficiency is improved. Improve.

十分な厚さのクラッド層は温度差法液相成長を用いて成
長させることができる。
A clad layer of sufficient thickness can be grown using temperature difference liquid phase epitaxy.

[作用] LEDの発光層はより禁制帯幅の広いクラッド層に挟まれ
ており、有効に570-600nmの光を発光する。
[Function] The light emitting layer of the LED is sandwiched between the clad layers having a wider forbidden band and effectively emits light of 570-600 nm.

さらに発光層とGaP基板との間のクラッド層は十分な厚
みを持っているため基板や組成勾配層からの格子欠陥を
十分に緩和し,結晶性を向上できる。またダブルヘテロ
構造の特徴である閉じ込め効果が顕著にあらわれ高効率
のLEDとなる。
Furthermore, since the clad layer between the light emitting layer and the GaP substrate has a sufficient thickness, lattice defects from the substrate and the composition gradient layer can be sufficiently relaxed and the crystallinity can be improved. In addition, the confinement effect, which is a feature of the double hetero structure, appears remarkably, resulting in a highly efficient LED.

[実施例] 第1図は本発明の実施例による発光ダイオードの断面構
造を示す。基板結晶としてはn型GaP基板11を用い、そ
の上にMOCVD法でn型In1-x-yGaxAlyp(x=1−0.7、y
=0−0.2)組成勾配層10を形成する。その上に液相成
長によって、n型In0.11Ga0.7Al0.2P中間クラッド層1
2、p型In0.3Ga0.7P発光層(ないし活性層)13およびp
型In0.3Ga0.7Al0.2p表面クラッド層14をエピタキシャル
に積層し、上下面上にAu-Zn電極16、Au-Ge-Ni電極15を
形成している。組成勾配層10はGaP基板11と発光層13と
の間の格子定数の差を吸収するための緩衝層として形成
されている。
[Embodiment] FIG. 1 shows a sectional structure of a light emitting diode according to an embodiment of the present invention. An n-type GaP substrate 11 is used as the substrate crystal, and n-type In 1-xy Ga x Al y p (x = 1-0.7, y
= 0-0.2) The composition gradient layer 10 is formed. N-type In 0.1 1Ga 0.7 Al 0.2 P intermediate clad layer 1
2, p-type In 0.3 Ga 0.7 P light emitting layer (or active layer) 13 and p
A type In 0.3 Ga 0.7 Al 0.2 p surface clad layer 14 is epitaxially laminated, and Au-Zn electrodes 16 and Au-Ge-Ni electrodes 15 are formed on the upper and lower surfaces. The composition gradient layer 10 is formed as a buffer layer for absorbing a difference in lattice constant between the GaP substrate 11 and the light emitting layer 13.

第2図に各層の禁制帯幅(エネルギギャップ)の分布を
示す。GaP基板11、組成勾配層10の禁制帯幅は第2図に
示すように活性層13の禁制帯幅より大きいように選ばれ
ている。このため発光部で発光した光の内、基板方向へ
向う光も、吸収されることなく、外部に取り出すことが
できる。
FIG. 2 shows the distribution of the forbidden band width (energy gap) of each layer. The forbidden band widths of the GaP substrate 11 and the composition gradient layer 10 are selected to be larger than the forbidden band width of the active layer 13 as shown in FIG. Therefore, of the light emitted from the light emitting portion, the light traveling toward the substrate can be extracted to the outside without being absorbed.

In1-x-yGaxAlyP組成勾配層10を形成した後、温度差液相
成長法によりIn1-x-yGaxAlyP中間クラッド層12、In1-xG
axP発光層13、In1-x-yGaxAlyP表面クラッド層14をエピ
タキシャル成長する。ここでクラッド層12は良好な結晶
性と十分な厚さとを有することが発光層13で効率良い発
光を得るため必要である。表面クラッド層14も実効的な
ダブルヘテロ構造を形成できる結晶性と厚さを持つ。良
好な結晶性と必要なだけの厚さは温度差液相成長法によ
り得ることができる。
After the In 1-xy Ga x Al y P composition gradient layer 10 is formed, the In 1-xy Ga x Al y P intermediate cladding layer 12 and In 1-x G are formed by the temperature difference liquid phase epitaxy method.
The a x P light emitting layer 13 and the In 1-xy Ga x Al y P surface cladding layer 14 are epitaxially grown. Here, the clad layer 12 is required to have good crystallinity and a sufficient thickness in order to obtain efficient light emission from the light emitting layer 13. The surface clad layer 14 also has a crystallinity and a thickness capable of forming an effective double hetero structure. Good crystallinity and the required thickness can be obtained by the temperature difference liquid phase epitaxy method.

InGaPとInAlGaPとの禁制帯巾と格子定数の関係は第4図
に示すようにInGaPと同一格子定数でかつ禁制帯巾の大
きなInGaAlPが形成できるので欠陥のない(defect fre
e)ヘテロ接合を形成できる。
As shown in Fig. 4, the relationship between the forbidden band width and the lattice constant of InGaP and InAlGaP is InGaAlP having the same lattice constant as InGaP and a large forbidden band.
e) A heterojunction can be formed.

クラッド層12の厚みと発光ダイオードの発光光度の関係
を第3図に示す。これによると発光光度はIn1-x-yGaxAl
yP中間クラッド層12の厚みに依存し、厚さが薄い場合に
は高い発光光度は得られず,厚さが厚くなるとともに光
度が増加している。十分な発光光度を得るには中間クラ
ッド層12の厚さは10μm以上の厚さがあることが必要で
ある。
The relationship between the thickness of the cladding layer 12 and the luminous intensity of the light emitting diode is shown in FIG. According to this, the luminous intensity is In 1-xy Ga x Al
Depending on the thickness of the y P intermediate clad layer 12, when the thickness is thin, high luminous intensity cannot be obtained, and as the thickness increases, the luminous intensity increases. In order to obtain a sufficient luminous intensity, the thickness of the intermediate cladding layer 12 needs to be 10 μm or more.

このような条件を満たす成長層を得るには、実質的には
MOCVD法では不可能であり、温度差液相成長法によって
達成され得る。この方法では条件を厳重に制御すること
によりIn1-xGaxPに限らずAlを含むIn1-x-yGaxAlyPの厚
膜の成長も得られる。この結果として、十分な厚さのIn
1-xGaxPまたはIn1-x-yGaxAlyPの発光層、In1-x-yGaxAly
Pのクラッド層を有する高効率黄色発光LEDが得られた。
To obtain a growth layer that satisfies these conditions,
This is impossible with the MOCVD method and can be achieved by the temperature difference liquid phase epitaxy method. In this method, by strictly controlling the conditions, not only In 1-x Ga x P but also a thick film of In 1-xy Ga x Al y P containing Al can be obtained. This results in a sufficiently thick In
1-x Ga x P or In 1-xy Ga x Al y P emission layer, In 1-xy Ga x Al y
A high-efficiency yellow-emitting LED with a P cladding layer was obtained.

なお、発光層13の厚さも光度に影響する。あまり薄くし
ては十分発光を行えず、また厚すぎてはダブルヘテロ構
造による閉じ込め効果が得られない。ほぼ1μm程度の
厚さとすればよい。
The thickness of the light emitting layer 13 also affects the luminous intensity. If it is too thin, light emission cannot be sufficiently performed, and if it is too thick, the confinement effect due to the double hetero structure cannot be obtained. The thickness may be about 1 μm.

例えばGaAlAsのダブルヘテロ構造発光ダイオードでは第
5図に示すような光度対活性層厚の関係が得られる。ほ
ぼ1μm弱の厚さが最適値である。InGaPまたはInGaAlP
を活性層とする場合もほぼ同様の関係が得られる。
For example, in a GaAlAs double heterostructure light emitting diode, the relationship between luminous intensity and active layer thickness as shown in FIG. 5 is obtained. The optimum thickness is about 1 μm or less. InGaP or InGaAlP
The same relationship can be obtained when the is used as the active layer.

[発明の効果] 570-600nmの発光ピークを持つ高効率LEDが得られる。[Advantages of the Invention] A highly efficient LED having an emission peak of 570-600 nm can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例によるLEDの断面構造図、 第2図は第1図のLEDにおける各層の禁制帯巾を示すグ
ラフ、 第3図はLEDの中間クラッド層の厚さと発光光度の関係
を示すグラフ、 第4図はInGaPとInGaAlPの格子定数と禁制帯幅の関係を
示すグラフ、 第5図はGaAlAsダブルヘテロ発光ダイオードの発光光度
対活性層厚の関係を示すグラフ、 第6図はIn1−xGaxPを活性層とした半導体レーザーダイ
オードの構造模式図である。 符号の説明 10……InGaAlP組成勾配層 11……GaP基板 12……InGaAlP中間クラッド層 13……InGaP発光層 14……InGaAlP表面クラッド層 15、16……電極
FIG. 1 is a cross-sectional structural view of an LED according to an embodiment of the present invention, FIG. 2 is a graph showing the forbidden band width of each layer in the LED of FIG. 1, and FIG. 3 is a graph showing the thickness of the intermediate cladding layer of the LED and the luminous intensity. Fig. 4 is a graph showing the relationship, Fig. 4 is a graph showing the relationship between the lattice constant of InGaP and InGaAlP and the forbidden band width, Fig. 5 is a graph showing the relationship between the luminous intensity of the GaAlAs double hetero light emitting diode and the active layer thickness, Fig. 6 FIG. 3 is a structural schematic diagram of a semiconductor laser diode using In1-xGaxP as an active layer. Explanation of symbols 10 …… InGaAlP composition gradient layer 11 …… GaP substrate 12 …… InGaAlP intermediate cladding layer 13 …… InGaP light emitting layer 14 …… InGaAlP surface cladding layer 15, 16 …… Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ピーク発光波長が570-600nmの範囲であるI
nGaPまたはInGaAlPを発光層とし、該発光層の禁制帯幅
より大きな禁制帯幅を有するInGaAlPのクラッド層を発
光層の両側に配置してGaP基板上に形成し、発光層と基
板との間のInGaAlPクラッド層は少なくとも10μm以上
の厚さを有する連続層であることを特徴とする半導体黄
色発光ダイオード装置。
1. A peak emission wavelength in the range of 570-600 nm I
nGaP or InGaAlP is used as a light emitting layer, and InGaAlP clad layers having a forbidden band width larger than the forbidden band width of the light emitting layer are formed on the GaP substrate by arranging on both sides of the light emitting layer, and between the light emitting layer and the substrate. A semiconductor yellow light emitting diode device, wherein the InGaAlP clad layer is a continuous layer having a thickness of at least 10 μm or more.
JP12582988A 1988-05-25 1988-05-25 Semiconductor yellow light emitting diode device Expired - Lifetime JPH071799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12582988A JPH071799B2 (en) 1988-05-25 1988-05-25 Semiconductor yellow light emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12582988A JPH071799B2 (en) 1988-05-25 1988-05-25 Semiconductor yellow light emitting diode device

Publications (2)

Publication Number Publication Date
JPH01296677A JPH01296677A (en) 1989-11-30
JPH071799B2 true JPH071799B2 (en) 1995-01-11

Family

ID=14919972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12582988A Expired - Lifetime JPH071799B2 (en) 1988-05-25 1988-05-25 Semiconductor yellow light emitting diode device

Country Status (1)

Country Link
JP (1) JPH071799B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216277A (en) * 1985-11-08 1987-09-22 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPS62130572A (en) * 1985-12-03 1987-06-12 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2662792B2 (en) * 1988-03-24 1997-10-15 三菱電線工業株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH01296677A (en) 1989-11-30

Similar Documents

Publication Publication Date Title
Koike et al. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications
US6278137B1 (en) Semiconductor light-emitting devices
US6548834B2 (en) Semiconductor light emitting element
KR100432762B1 (en) Semiconductor laser and method of manufacturing the same
US6233265B1 (en) AlGaInN LED and laser diode structures for pure blue or green emission
EP0743727B1 (en) GaN system semiconductor laser device
JP3240097B2 (en) Semiconductor light emitting device
JPH10190052A (en) Semiconductor light emitting element
JPH07183576A (en) Gallium nitride-based compound semiconductor light-emitting element
JPH04212479A (en) Semiconductor light-emitting device
US5255279A (en) Semiconductor laser device, and a method for producing a compound semiconductor device including the semiconductor laser device
JP2001291895A (en) Semiconductor light-emitting element
US20070217459A1 (en) Semiconductor laser
JPH06244506A (en) Semiconductor display and its manufacture
JP2875124B2 (en) Semiconductor light emitting device and method of manufacturing the same
EP0627772A2 (en) An AlGaInP light emitting device
JP4225594B2 (en) Gallium nitride compound semiconductor device
JP2792781B2 (en) Light emitting diode and method of manufacturing the same
JPH071799B2 (en) Semiconductor yellow light emitting diode device
JP2001168382A (en) Semiconductor light emitting element
JP2618677B2 (en) Semiconductor light emitting device
JPH05347432A (en) Semiconductor light-emitting element
JP2004165267A (en) Semiconductor light emitting device, light emission indicator and manufacturing method of them
JP2662792B2 (en) Semiconductor light emitting device
JPH01296678A (en) Manufacture of semiconductor heterojunction