JPH07179104A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH07179104A
JPH07179104A JP5346669A JP34666993A JPH07179104A JP H07179104 A JPH07179104 A JP H07179104A JP 5346669 A JP5346669 A JP 5346669A JP 34666993 A JP34666993 A JP 34666993A JP H07179104 A JPH07179104 A JP H07179104A
Authority
JP
Japan
Prior art keywords
tire
tread
groove
ratio
contact area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5346669A
Other languages
Japanese (ja)
Other versions
JP2899200B2 (en
Inventor
Yoshiaki Uemura
嘉明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP5346669A priority Critical patent/JP2899200B2/en
Publication of JPH07179104A publication Critical patent/JPH07179104A/en
Application granted granted Critical
Publication of JP2899200B2 publication Critical patent/JP2899200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

PURPOSE:To provide a pneumatic tire capable of reducing rolling resistance and passing noises, improving snow travelling and being used as one for electric car in all seasons. CONSTITUTION:A ratio K (=S1/S) between the area S of a grounding area 7 and the area S1 of the total tread groove area 9 positioned therein is 20 to 32%, lateral edge density (alpha) in the grounding area 7 is 0.065 to 0.085mm/mm<2> and a pattern repeating unit N is 30 to 60 pieces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転がり抵抗を減じかつ
雪上走行性能を高めることが出来、しかも通過騒音(パ
ターンノイズ)を低減しうる空気入りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire capable of reducing rolling resistance, improving snow running performance, and reducing passing noise (pattern noise).

【0002】[0002]

【従来の技術】近年、高速走行性能を維持しつつ例えば
浅雪路等を走破するオールシーズンタイヤが多量されて
いる。このタイヤは、排水性と雪路走行性能を高めるた
め、通常のタイヤに比べて溝容積を大きく、又サイピン
グも多数設け、トレッド部にトレッド溝の面積比、即ち
海比の高いブロックパターンを採用している。
2. Description of the Related Art In recent years, there have been a large number of all-season tires that run on, for example, a shallow snow road while maintaining high-speed running performance. In order to improve drainage performance and snowy road running performance, this tire has a larger groove volume compared to normal tires and a large number of sipings, and adopts a block pattern with a high tread groove area ratio, that is, a sea ratio is doing.

【0003】他方、近年、環境保護の見地から、電気自
動車の進歩が著しく、このような電気自動車に用いるタ
イヤとしては、1回の充電での走行距離を高めるため、
転がり抵抗の低減が望まれている。
On the other hand, in recent years, electric vehicles have made remarkable progress from the viewpoint of environmental protection. As tires used in such electric vehicles, the traveling distance per charge is increased.
It is desired to reduce rolling resistance.

【0004】[0004]

【発明が解決しようとする課題】発明者は前記要請に対
応すべく研究を重ねた結果、転がり抵抗を低減するに
は、内圧を高めるとともに、パターンでの対応がより効
果的であることを知り得たのである。
As a result of repeated research to meet the above-mentioned demand, the inventor has found that in order to reduce the rolling resistance, it is more effective to increase the internal pressure and to deal with the pattern. I got it.

【0005】転がり抵抗を少なくするには、圧縮剛性の
高いパターンを構成する必要があること、即ちトレッド
溝が少ないパターンが有利であること、又溝の容積比率
を減じることによって通過騒音をも低減しうることを知
り得たのである。殊にタイヤ騒音は、ガソリン車に比し
て静粛な電気自動車にあっては、低騒音化は必須の要件
でもある。
In order to reduce rolling resistance, it is necessary to form a pattern having high compression rigidity, that is, a pattern having a small number of tread grooves is advantageous, and passing volume noise is also reduced by reducing the volume ratio of the grooves. I knew what I could do. In particular, tire noise is an essential requirement for an electric vehicle that is quieter than a gasoline vehicle.

【0006】しかし、溝容積の減少は、その背反性能と
して、湿路面及び雪上での走行性能が低下することとな
る。
[0006] However, the reduction in groove volume, as its antithetic performance, results in deterioration of running performance on wet road surfaces and snow.

【0007】発明者は前記二律背反の要件をともに充足
しうるタイヤを開発すべく、研究を重ねた結果、トレッ
ド面における海比、ラテラルエッジ密度及びトレッドパ
ターンの繰返し個数をともに一定に範囲に規制すること
により、転がり抵抗の低減と雪上走行性能の向上とを両
立でき、しかも通過騒音を低減しうることを見出し本発
明を完成させたのである。
As a result of repeated research to develop a tire that can satisfy the above-mentioned trade-off requirements, the inventor regulates the sea ratio on the tread surface, the lateral edge density, and the number of repeated tread patterns within a fixed range. As a result, they have found that both reduction of rolling resistance and improvement of snow running performance can be achieved, and that passing noise can be reduced, and the present invention has been completed.

【0008】本発明は、転がり抵抗を減じかつ雪上走行
性能を高めることが出来、しかも通過騒音を低減するこ
とにより、電気自動車用のオールシーズンタイヤとして
好適に採用しうる空気入りタイヤの提供を目的としてい
る。
An object of the present invention is to provide a pneumatic tire which can be suitably used as an all-season tire for an electric vehicle by reducing rolling resistance, improving snow running performance, and reducing passing noise. I am trying.

【0009】[0009]

【課題を解決するための手段】本発明は、タイヤ周方向
にのびる主溝、およびこの主溝と交わる向きに配される
横溝と、実質的に無巾のサイピングからなる横方向溝に
よって形成されるトレッド溝とを具えるとともに、正規
リムにリム組みしかつ正規内圧と正規荷重とを付加した
正規状態において、トレッド面が接地する接地面のタイ
ヤ軸方向外縁が周方向に連なる接地外縁間の領域である
接地領域の接地面積Sと、この接地領域内に位置するト
レッド溝の面積の総和S1との比である海比K(=S1
/S)が20%以上かつ32%以下であり、かつ前記接
地領域に含まれる各トレッド溝を挟む両溝壁のうちタイ
ヤ転動に際して遅れて接地する溝壁のタイヤ軸方向に測
定した長さの合計長さAと、前記接地面積Sとの比であ
るラテラルエッジ密度α(=A/S)を0.065mm/
mm2 以上かつ0.085mm/mm2 以下とし、しかもトレ
ッド溝は、周方向に30個以上かつ60個以下のくり返
し単位でくり返すトレッドパターンにより形成されてな
る空気入りタイヤである。
SUMMARY OF THE INVENTION The present invention is formed by a main groove extending in the tire circumferential direction, a lateral groove arranged in a direction intersecting with the main groove, and a lateral groove consisting of substantially widthless siping. In the normal state in which the tread groove is provided and the rim is assembled to the regular rim and the regular internal pressure and the regular load are added, the tire axial direction outer edge of the tread surface comes into contact with the outer circumferential edge of the tire in the axial direction. The sea ratio K (= S1), which is the ratio of the ground contact area S of the ground contact area, which is the area, to the total sum S1 of the areas of the tread grooves located in this ground contact area.
/ S) is 20% or more and 32% or less, and of the two groove walls that sandwich each tread groove included in the ground contact area, the length measured in the tire axial direction of the groove wall that comes into contact with the ground after the tire rolls. The lateral edge density α (= A / S), which is the ratio of the total length A of the above to the ground contact area S, is 0.065 mm /
The pneumatic tire has a tread groove of at least mm 2 and no more than 0.085 mm / mm 2 , and the tread groove is formed by repeating a tread pattern of 30 to 60 in the circumferential direction.

【0010】又海比Kは20%以上かつ32%以下であ
り、しかも前記ラテラルエッジ密度(mm/mm2 )をαと
すると下記(1)式を充足するのがさらに好ましい。 K≦3.5α+6 (1)
It is more preferable that the sea ratio K is 20% or more and 32% or less, and that the lateral edge density (mm / mm 2 ) is α, which satisfies the following formula (1). K ≦ 3.5α + 6 (1)

【0011】[0011]

【作用】転がり抵抗を低減するには、内圧を高めること
が効果的であることが知られている。又図5のグラフ
は、内圧を変化させた場合において、トレッド部分とそ
の他の部分との転がり抵抗低減に対する寄与率の関係を
示したものであって同グラフによれば内圧が高まるに従
い、全体的にはころがり抵抗係数(RRC)が減じるも
ののトレッド部におけるエネルギーロスの寄与が大きく
なる。なお、ころがり抵抗係数(RRC)は、{ころが
り抵抗(kg)/測定荷重(kg)}×104 で表される。
It is known that increasing the internal pressure is effective for reducing the rolling resistance. Further, the graph of FIG. 5 shows the relationship of the contribution ratio to the reduction of rolling resistance between the tread portion and the other portion when the internal pressure is changed. Although the rolling resistance coefficient (RRC) decreases, the contribution of energy loss in the tread portion becomes large. The rolling resistance coefficient (RRC) is represented by {rolling resistance (kg) / measured load (kg)} × 10 4 .

【0012】他方、2.0kgf/cm2 程度の通常のタイ
ヤにおける内圧のもとでは、タイヤは曲げ変形に起因す
るエネルギーロスが過半であるのに比して、例えば内圧
が3.5kgf/cm2 になれば図6に示す如く、トレッド
部の前後剛性及び横剛性がともに大きくなる。即ちトレ
ッド溝が少ないトレッドパターンが転がり抵抗を低減す
るためには有利となる。なお図6のグラフ中○印で囲む
数値は、前述のころがり抵抗係数(RRC)を10-4
位で示している。
On the other hand, under the internal pressure of a normal tire of about 2.0 kgf / cm 2 , the tire has a majority of energy loss due to bending deformation, while the internal pressure is 3.5 kgf / cm, for example. When it becomes 2 , as shown in FIG. 6, both the longitudinal rigidity and the lateral rigidity of the tread portion increase. That is, a tread pattern with few tread grooves is advantageous for reducing rolling resistance. The numerical values circled in the graph of FIG. 6 indicate the rolling resistance coefficient (RRC) in units of 10 −4 .

【0013】又トレッド溝の面積比を少なくすること
は、気柱共鳴音などパターンノイズの低減に対しても有
効であり、殊にエンジンからの騒音発生がガソリン車に
比べて少ない電気自動車の場合には、タイヤ騒音の低減
は、車両全体の騒音抑制に大きく寄与しうる。
Reducing the area ratio of the tread groove is also effective for reducing pattern noise such as air column resonance noise, especially in the case of an electric vehicle in which the engine produces less noise than a gasoline vehicle. In particular, the reduction of tire noise can greatly contribute to the noise suppression of the entire vehicle.

【0014】従って、高速走行用タイヤにあっては、従
来では、トレッド溝の面積比を、排水性が確保できる最
小限の範囲にとどめ、耐摩耗性を保持するため前記ラテ
ラルエッジ成分も増加させないパターン構成が主流とな
っていたのであるが、溝部の面積比の減少は、湿潤路面
での走行性能及び雪上走行性能が損なわれる。
Therefore, in the case of a high-speed running tire, conventionally, the area ratio of the tread groove is kept within a minimum range where drainage can be secured and abrasion resistance is maintained, so that the lateral edge component is not increased. Although the pattern configuration has been the mainstream, the reduction of the groove area ratio impairs the running performance on a wet road surface and the running performance on snow.

【0015】このため雪上走行を目的とするスノータイ
ヤにあっては、溝部の面積比を高めるとともに、ラテラ
ルエッジ密度を高め、排水性と、雪上におけるグリップ
力を高めていた。
For this reason, in a snow tire intended for running on snow, the area ratio of the groove portions is increased, the lateral edge density is increased, and the drainage performance and the grip force on snow are improved.

【0016】しかし本発明にあっては、高速走行性能
と、雪上走行性能の両立を図るため、前記接地領域内に
位置するトレッド溝の面積の総和S1との比である海比
K(=S1/S)と、ラテラルエッジ密度αとをその上
限、下限について、ともに規制することによって、転が
り抵抗の低減と、雪上走行性能の向上との両立を図って
いる。
However, in the present invention, in order to achieve both high speed running performance and snow running performance, the sea ratio K (= S1), which is the ratio of the total area S1 of the tread grooves located in the ground contact area, / S) and the lateral edge density α are both regulated with respect to the upper limit and the lower limit thereof, thereby achieving both reduction of rolling resistance and improvement of snow running performance.

【0017】前記海比Kを20%以上かつ32%以下と
している。前記Kの値が20%未満では雪上走行時にお
けるグリップ力が不足し牽引性能に劣るとともに、溝面
積が不足するため排水性能が低下し、湿潤路面でのグリ
ップ力及び制動力が不足する。又32%をこえるとトレ
ッド部の耐圧縮剛性が不足し、転がり抵抗が増しかつ走
行時に生じるパターンノイズなどの通過騒音が大きくな
る。
The sea ratio K is set to 20% or more and 32% or less. If the value of K is less than 20%, the grip force during running on snow is insufficient and the traction performance is poor, and the groove area is insufficient, so the drainage performance is reduced and the grip force and braking force on wet road surfaces are insufficient. If it exceeds 32%, the compression resistance of the tread portion becomes insufficient, the rolling resistance increases, and the passing noise such as pattern noise generated during running becomes large.

【0018】他方、前記構成のラテラルエッジ密度αを
0.065mm/mm2 以上かつ0.085mm/mm2 以下で
は、雪上走行性能、特に雪上でのグリップ力が不足し、
0.085mm/mm2 をこえるとトレッド部の耐圧縮剛性
が不足し、転がり抵抗の及び通過騒音の増大を招く。
On the other hand, when the lateral edge density α of the above construction is 0.065 mm / mm 2 or more and 0.085 mm / mm 2 or less, running performance on snow, especially gripping power on snow is insufficient,
If it exceeds 0.085 mm / mm 2 , the compression resistance of the tread portion becomes insufficient, resulting in an increase in rolling resistance and passing noise.

【0019】なお従来では、海比Kが、高速仕様のタイ
ヤにおいては28〜31%、又、雪上走行仕様のタイヤ
においては35〜42%とするトレッドパターンであっ
たのに比べて、本願では従来のタイヤ海比Kの値を低い
比率まで採用している。これは海比Kとラテラルエッジ
密度αとをともに規制するという従来にない新規な構成
とすることによりなし得たのである。
In the prior art, the sea ratio K is 28 to 31% for high speed tires and 35 to 42% for snow running tires. The conventional tire sea ratio K is adopted up to a low ratio. This can be achieved by adopting a novel structure which has never existed before, in which both the sea ratio K and the lateral edge density α are regulated.

【0020】加うるにトレッドパターンの繰返しを30
個以上かつ60個以下としている。トレッドパターンの
繰返しが30個未満では、通過騒音の分散が図れず、静
粛性に劣る一方、60個をこえるとトレッド部の耐圧縮
剛性が不足し、転がり抵抗が増しかつ通過騒音も大とな
るからである。
In addition, the tread pattern is repeated 30 times.
It is set to be not less than 60 and not more than 60. If the number of repeated tread patterns is less than 30, the passing noise cannot be dispersed and the quietness is inferior. On the other hand, if the number exceeds 60, the compression resistance of the tread is insufficient, rolling resistance increases and the passing noise becomes large. Because.

【0021】このように本発明は、前記した各構成が有
機的に結合し、かつ一体化を図ることにより、転がり抵
抗を減じ走行に際してエネルギーの利用効率を高めかつ
パターンノイズなどの通過騒音の低減を図るとともに、
雪上走行に際してグリップ性能を高め雪上走行性を向上
しうるのである。
As described above, according to the present invention, the above-mentioned components are organically combined and integrated to reduce rolling resistance, improve energy utilization efficiency during traveling, and reduce passing noise such as pattern noise. As well as
It is possible to improve grip performance when traveling on snow and improve snow traveling performance.

【0022】[0022]

【実施例】以下本発明の一実施例を図面に基づき説明す
る。図1、2において、空気入りタイヤ1は、トレッド
面2を外周面とするトレッド部12とその両端からタイ
ヤ半径方向内側に向けてのびるサイドウォール部13
と、該サイドウォール部13のタイヤ半径方向内端に位
置するビード部14とを有する。又空気入りタイヤ1に
は、前記トレッド部12からサイドウォール部13を通
りビード部14のビードコア15をタイヤ軸方向内側か
ら外側に向かって折返すカーカス16と、トレッド部1
2の内部かつカーカス16の半径方向外側に配されるベ
ルト層17とを具える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2, a pneumatic tire 1 includes a tread portion 12 having a tread surface 2 as an outer peripheral surface and a sidewall portion 13 extending from both ends thereof inward in a tire radial direction.
And a bead portion 14 located at the tire radial inner end of the sidewall portion 13. Further, in the pneumatic tire 1, a carcass 16 is formed by folding back the bead core 15 of the bead portion 14 from the tread portion 12 through the sidewall portion 13 toward the outer side in the tire axial direction, and the tread portion 1
2 and the belt layer 17 disposed on the outer side in the radial direction of the carcass 16.

【0023】前記カーカス16は、タイヤ赤道Cに対し
て本実施例では、70〜90°の角度で傾斜させたラジ
アル配列又はセミラジアル配列のカーカスコードを具え
る1枚以上、本実施例では1枚のカーカスプライからな
り、カーカスコードとしてナイロン、ポリエステル芳香
族ポリアミド等の有機繊維コードが用いられる。
In the present embodiment, the carcass 16 has at least one carcass cord of radial arrangement or semi-radial arrangement inclined at an angle of 70 to 90 ° with respect to the tire equator C. An organic fiber cord made of nylon, polyester aromatic polyamide or the like is used as the carcass cord, which is composed of a single carcass ply.

【0024】前記ベルト層17は、本実施例では2枚の
ベルトプライからなり各ベルトプライはナイロン、ポリ
エステル、芳香族ポリアミド等の有機繊維又はスチール
コードからなるベルトコードをタイヤ赤道Cに対して傾
斜して並設している。
In the present embodiment, the belt layer 17 is composed of two belt plies, and each belt ply is made of an organic fiber such as nylon, polyester, aromatic polyamide or a steel cord, and the belt cord is inclined with respect to the tire equator C. And they are installed side by side.

【0025】トレッド部12には、本実施例では、図2
に示す如く、タイヤ赤道Cを挟んで両側で周方向に直線
状にのびる2本の主溝3、3により、トレッド部12を
タイヤ赤道Cを含む中央のリブ21と、トレッド縁Eに
沿う2つの外側のリム22、22とに区分している。
In the present embodiment, the tread portion 12 is shown in FIG.
As shown in FIG. 2, the two main grooves 3 and 3 extending in the circumferential direction on both sides of the tire equator C sandwich the tread portion 12 from the central rib 21 including the tire equator C to the tread edge E. It is divided into two outer rims 22, 22.

【0026】又外側のリム22には前記主溝3と交わる
向きに配され、主溝3に連なる内の横溝4Aとトレッド
縁Eで開口する外の横溝4Bからなる複数の横溝4…が
配される。さらに中央のリブ21、外側のリブ22に
は、前記主溝3と交わる向きに配される複数のサイピン
グ5…が配される。なおサイピングはその溝巾を0.2
〜2.0mmとして形成される。従ってトレッド部12に
はこれらの主溝3、横溝4…、サイピング5…によって
前記トレッド溝6が形成される。
Further, the outer rim 22 is provided with a plurality of lateral grooves 4 which are arranged in a direction intersecting with the main groove 3 and which are composed of an inner lateral groove 4A connected to the main groove 3 and an outer lateral groove 4B opened at the tread edge E. To be done. Further, the central rib 21 and the outer rib 22 are provided with a plurality of sipings 5 ... Arranged to intersect with the main groove 3. The width of the groove is 0.2 for siping.
It is formed as ~ 2.0 mm. Therefore, the tread groove 6 is formed in the tread portion 12 by these main groove 3, lateral groove 4, ..., Siping 5.

【0027】空気入りタイヤ1を正規リムJにリム組み
し、かつ正規内圧と正規荷重とを付加した正規状態にお
いて、トレッド面2が接地する接地面のタイヤ軸方向外
縁が周方向に連なる接地外縁M、M間の領域を接地領域
7とし、この接地領域7の接地面積Sと、接地領域7内
に位置するトレッド溝6の面積の総和との比である海比
K(=S1/S)を20%以上かつ32%以下としてい
る。
In the normal state in which the pneumatic tire 1 is assembled to the regular rim J, and the regular internal pressure and the regular load are applied, the outer circumferential edge of the tread surface 2 is in contact with the outer circumferential edge of the tire. A region between M and M is a ground region 7, and a sea ratio K (= S1 / S) which is a ratio of a ground area S of the ground region 7 and a total area of tread grooves 6 located in the ground region 7. Is 20% or more and 32% or less.

【0028】又ラテラルエッジ密度αを次の如く規制し
ている。ラテラルエッジ密度αとは、前記接地領域7に
含まれる各トレッド溝6、即ち主溝3、横溝4及びサイ
ピング5をそれぞれ挟む両側の溝壁9A、9Bの中でタ
イヤ転動に際して遅れて接地する側の溝壁9A(図4に
略示する)のタイヤ軸方向(ラテラル方向)に測定した
長さの合計長さAと、前記接地面積Sとの比A/Sを以
て表している。
Further, the lateral edge density α is regulated as follows. The lateral edge density α means that the tread groove 6 included in the ground contact area 7, that is, the main groove 3, the lateral groove 4 and the siping 5 sandwiches the groove walls 9A and 9B on both sides, respectively, and contacts the ground later with the tire rolling. The ratio A / S of the total length A of the length of the side groove wall 9A (schematically shown in FIG. 4) measured in the tire axial direction (lateral direction) and the ground contact area S is shown.

【0029】このラテラルエッジ密度α(=A/S)を
0.065mm/mm2 以上かつ0.085mm/mm2 以下と
なるよう、ブロックパターンを形成しかつサイピング5
…を配設している。
A block pattern is formed and siping 5 is performed so that the lateral edge density α (= A / S) is 0.065 mm / mm 2 or more and 0.085 mm / mm 2 or less.
... is arranged.

【0030】なお、本実施例では、前記海比Kと、前記
ラテラルエッジ密度(mm/mm2 )をαとするとき、次の
(1)式を充足させている。 K≦3.5α+6 ここでKの値が前記ラテラルエッジ密度αの函数である
(3.5α+6)のラインより大となれば、ラテラルエ
ッジ密度に対して海比が相対的に高い位置付けとなる。
殊にラテラルエッジ密度が比較的高い領域においては、
接地面積が少なくなり、充分な操縦安定性が確保出来な
いこととなる。
In this embodiment, when the sea ratio K and the lateral edge density (mm / mm 2 ) are α, the following equation (1) is satisfied. K ≦ 3.5α + 6 Here, if the value of K is larger than the line of (3.5α + 6) that is a function of the lateral edge density α, the sea ratio is relatively high with respect to the lateral edge density.
Especially in the region where the lateral edge density is relatively high,
The ground contact area will be reduced, and sufficient steering stability will not be ensured.

【0031】さらに、トレッド面2は、周方向にくり返
しのパターンを並べたトレッドパターンが形成され、そ
のパターンのくり返し単位Nの個数は30個以上かつ6
0個以下の範囲としている。従来の通常タイヤでは、前
記くり返し単位Nが60〜80であったのに比して大巾
に減少し、転がり抵抗の低減と、低騒化とを図ってお
り、くり返し単位が少ないことによる雪上走行性能の低
下は前記ラテラルエッジ密度の規制により補っているの
である。
Further, the tread surface 2 is formed with a tread pattern in which repeating patterns are arranged in the circumferential direction, and the number of repeating units N of the pattern is 30 or more and 6 or more.
The range is 0 or less. In the conventional normal tire, the repeating unit N is greatly reduced as compared with the case where the repeating unit N is 60 to 80, thereby reducing rolling resistance and reducing noise. The deterioration of running performance is compensated by the regulation of the lateral edge density.

【0032】図3は、トレッドパターンの他の例を示し
本例ではタイヤ赤道上Cに周方向にのびる1本の中央溝
3Aとその両側に配される周方向に断続する縦溝3B…
とからなる主溝3、前記縦溝3Bに結ばれる複数本の横
溝4…、及び中央溝3Aの両側に形成されるリブに配設
された複数のサイピング5…によってトレッド溝6を形
成している。
FIG. 3 shows another example of the tread pattern. In this example, one central groove 3A extending in the circumferential direction on the equator C of the tire and longitudinal grooves 3B arranged on both sides thereof which are intermittent in the circumferential direction.
Forming a tread groove 6 by a main groove 3 composed of a plurality of horizontal grooves 4 connected to the vertical groove 3B, and a plurality of sipings 5 arranged on ribs formed on both sides of the central groove 3A. There is.

【0033】本例においても海比K、ラテラルエッジ密
度α及びパターンの周方向へのくり返し個数は何れも前
述の範囲に規制している。
Also in this example, the sea ratio K, the lateral edge density α, and the number of times the pattern is repeated in the circumferential direction are all restricted within the above-mentioned ranges.

【0034】[0034]

【具体例】タイヤサイズが185/65R14 86S
でありかつ図1に示す構成を有するタイヤ(実施例1、
2)について試作するとともに、実施例1について性能
を調査した。なお同じタイヤサイズで図8に示す従来の
パターンのタイヤ(従来例)についても併せてテストを
行いその性能を比較した。
[Specific example] Tire size is 185 / 65R14 86S
And a tire having the configuration shown in FIG. 1 (Example 1,
2) was prototyped and the performance of Example 1 was investigated. A tire having the same tire size and the conventional pattern shown in FIG. 8 (conventional example) was also tested and its performance was compared.

【0035】テストは下記要領で行った。 1)転がり抵抗 転動抵抗試験機を用いて測定し、従来例を100とする
指数で示した。数値が小さいほどころがり抵抗が少なく
良好である。
The test was conducted as follows. 1) Rolling resistance It was measured using a rolling resistance tester and shown by an index with the conventional example being 100. The smaller the value, the less rolling resistance the better.

【0036】2)乗心地 実車に装着し、テストコースを周回させるとともに、ド
ライバーのフィーリングにより判定するとともに、従来
例を100とする指数で表示した。数値が大きいほど良
好であることを示す。
2) Riding comfort While mounted on an actual vehicle, the test course was circulated, the driver's feeling was used for judgment, and the index was set as 100 for the conventional example. The larger the value, the better.

【0037】3)パターンノイズ 平滑なアスファルト路面からなるテストコースにおい
て、各試供タイヤを装着した車両の運転者の右耳元にマ
イクロフォンを設置し、40、60、80、100km/
Hの各速度における音圧レベルを測定しそのオーバオー
ル値を平均化するとともに、更に官能評価でのノイズレ
ベル結果をも加味し、従来例を100とする指数で表示
した。数値が大きいほど良好であることを示す。
3) Pattern noise In a test course consisting of a smooth asphalt road surface, a microphone was installed at the right ear of the driver of a vehicle equipped with each test tire, and 40, 60, 80, 100 km /
The sound pressure level at each speed of H was measured, the overall value was averaged, and the noise level result in the sensory evaluation was also taken into consideration. The larger the value, the better.

【0038】4)ドライ性能 前記テスト車両を乾燥状態の路面からなるテストコース
において、走行させるとともに、直進安定性、応答性、
レーンチェンジの際の収斂性及び接地性などを官能評価
し、従来例を100とする指数で表示した。数値が大き
いほど良好であることを示す。
4) Dry performance While running the test vehicle on a test course composed of a dry road surface, the vehicle is allowed to run straight, and stability, responsiveness,
Sensory evaluation of the convergence and ground contact property at the time of lane change was performed, and the result was displayed as an index with the conventional example being 100. The larger the value, the better.

【0039】5)ウエット性能 前記テスト車両をウエット路面状態としたテストコース
において走行させ4項と同様なテストを行いかつ評価し
た。テスト結果を表1に示す。
5) Wet performance The test vehicle was run on a test course with a wet road surface, and the same test as in Section 4 was performed and evaluated. The test results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】叙上の如く本発明の空気入りタイヤは、
トレッドパターンの海比、ラテラルエッジ密度、パター
ンの繰返し個数をその上限、下限において、前述の如く
規制したため、転がり抵抗を減じかつパターンノイズな
どの通過騒音の低減を図るとともに雪上走行性能を高め
ることができ、転がり抵抗が少ないことを要件とする電
気自動車用のオールシーズンタイヤとして好適に採用し
うる。
As described above, the pneumatic tire of the present invention is
Since the sea ratio of the tread pattern, the lateral edge density, and the number of repeated patterns are regulated at the upper and lower limits as described above, rolling resistance can be reduced and passing noise such as pattern noise can be reduced and snow running performance can be improved. Therefore, it can be suitably used as an all-season tire for an electric vehicle, which requires low rolling resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】そのトレッドパターンを示す展開平面図であ
る。
FIG. 2 is a developed plan view showing the tread pattern.

【図3】他のトレッドパターンを示す展開平面図であ
る。
FIG. 3 is a developed plan view showing another tread pattern.

【図4】雪上走行時の状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state when traveling on snow.

【図5】タイヤ内圧ところがり抵抗との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between tire internal pressure and rolling resistance.

【図6】トレッド部の横剛性及び縦剛性と転がり抵抗と
の関係を示すグラフである。
FIG. 6 is a graph showing a relationship between lateral rigidity and vertical rigidity of a tread portion and rolling resistance.

【図7】ラテラルエッジ密度と海比との関係において本
願構成の範囲を示すグラフである。
FIG. 7 is a graph showing the range of the configuration of the present application in the relationship between the lateral edge density and the sea ratio.

【図8】従来のタイヤのトレッドパターンを示す展開平
面図である。
FIG. 8 is a developed plan view showing a tread pattern of a conventional tire.

【符号の説明】[Explanation of symbols]

2 トレッド面 3 主溝 4 横溝 5 サイピング 6 トレッド溝 7 接地領域 9 溝壁 J 正規リム M 接地外縁 2 tread surface 3 main groove 4 lateral groove 5 siping 6 tread groove 7 grounding area 9 groove wall J regular rim M grounding outer edge

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B60C 11/12 D 8408−3D G10K 11/16 8408−3D B60C 11/06 B G10K 11/16 C ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B60C 11/12 D 8408-3D G10K 11/16 8408-3D B60C 11/06 B G10K 11/16 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タイヤ周方向にのびる主溝、およびこの主
溝と交わる向きに配される横溝と、実質的に無巾のサイ
ピングからなる横方向溝によって形成されるトレッド溝
とを具えるとともに、 正規リムにリム組みしかつ正規内圧と正規荷重とを付加
した正規状態において、トレッド面が接地する接地面の
タイヤ軸方向外縁が周方向に連なる接地外縁間の領域で
ある接地領域の接地面積Sと、この接地領域内に位置す
るトレッド溝の面積の総和S1との比である海比K(=
S1/S)が20%以上かつ32%以下であり、かつ前
記接地領域に含まれる各トレッド溝を挟む両溝壁のうち
タイヤ転動に際して遅れて接地する溝壁のタイヤ軸方向
に測定した長さの合計長さAと、前記接地面積Sとの比
であるラテラルエッジ密度α(=A/S)を0.065
mm/mm2 以上かつ0.085mm/mm2 以下とし、しかも
トレッド溝は、周方向に30個以上かつ60個以下のく
り返し単位でくり返すトレッドパターンにより形成され
てなる空気入りタイヤ。
1. A tire having a main groove extending in a tire circumferential direction, a lateral groove arranged in a direction intersecting with the main groove, and a tread groove formed by a lateral groove made of substantially widthless siping. , In the normal state where the rim is assembled to the regular rim and the regular internal pressure and the regular load are applied, the contact area of the contact area, which is the area between the contact outer edges of the contact surface where the tread surface contacts the tire, extends in the circumferential direction. The sea ratio K (=, which is the ratio of S to the total sum S1 of the areas of the tread grooves located in this ground contact area
S1 / S) is 20% or more and 32% or less, and of the groove walls sandwiching each tread groove included in the ground contact area, the length measured in the tire axial direction of the groove wall that comes into contact with the ground after the tire rolls. The lateral edge density α (= A / S), which is the ratio of the total length A of the heights to the contact area S, is 0.065.
mm / mm 2 or more and a 0.085 mm / mm 2 or less, yet tread grooves circumferentially repeated with repeating units of 30 or more and 60 or less pneumatic tire comprising formed by the tread pattern.
【請求項2】前記海比Kは20%以上かつ32%以下で
あり、しかも前記ラテラルエッジ密度(mm/mm2 )をα
とするとき、次記(1)式を充足することを特徴とする
請求項1記載の空気入りタイヤ。 K≦3.5α+6 (1)
2. The sea ratio K is 20% or more and 32% or less, and the lateral edge density (mm / mm 2 ) is α.
The pneumatic tire according to claim 1, wherein the following expression (1) is satisfied. K ≦ 3.5α + 6 (1)
JP5346669A 1993-12-22 1993-12-22 Pneumatic radial tire Expired - Lifetime JP2899200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346669A JP2899200B2 (en) 1993-12-22 1993-12-22 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346669A JP2899200B2 (en) 1993-12-22 1993-12-22 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH07179104A true JPH07179104A (en) 1995-07-18
JP2899200B2 JP2899200B2 (en) 1999-06-02

Family

ID=18385015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346669A Expired - Lifetime JP2899200B2 (en) 1993-12-22 1993-12-22 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP2899200B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356105A (en) * 2001-05-31 2002-12-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2006176079A (en) * 2004-12-24 2006-07-06 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2007210472A (en) * 2006-02-09 2007-08-23 Toyo Tire & Rubber Co Ltd Method of simulating noise from tire
JP2009012534A (en) * 2007-07-02 2009-01-22 Yokohama Rubber Co Ltd:The Pneumatic tire
US20170129289A1 (en) * 2014-06-19 2017-05-11 Pirelli Tyre S.P.A. Car type
US20180257438A1 (en) * 2015-09-04 2018-09-13 The Yokohama Rubber Co., Ltd. Pneumatic Tire
JP2020108989A (en) * 2019-01-07 2020-07-16 横浜ゴム株式会社 Pneumatic tire
JP2020108990A (en) * 2019-01-07 2020-07-16 横浜ゴム株式会社 Pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826608A (en) * 1981-08-06 1983-02-17 Toyo Tire & Rubber Co Ltd Low noise bias pneumatic tire
JPS6060008A (en) * 1983-09-13 1985-04-06 Toyo Tire & Rubber Co Ltd All-weather type tiretread
JPH05139121A (en) * 1991-11-21 1993-06-08 Sumitomo Rubber Ind Ltd Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826608A (en) * 1981-08-06 1983-02-17 Toyo Tire & Rubber Co Ltd Low noise bias pneumatic tire
JPS6060008A (en) * 1983-09-13 1985-04-06 Toyo Tire & Rubber Co Ltd All-weather type tiretread
JPH05139121A (en) * 1991-11-21 1993-06-08 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356105A (en) * 2001-05-31 2002-12-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2006176079A (en) * 2004-12-24 2006-07-06 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2007210472A (en) * 2006-02-09 2007-08-23 Toyo Tire & Rubber Co Ltd Method of simulating noise from tire
JP2009012534A (en) * 2007-07-02 2009-01-22 Yokohama Rubber Co Ltd:The Pneumatic tire
US20170129289A1 (en) * 2014-06-19 2017-05-11 Pirelli Tyre S.P.A. Car type
US10486474B2 (en) * 2014-06-19 2019-11-26 Pirelli Tyre S.P.A. Car tyre
US20180257438A1 (en) * 2015-09-04 2018-09-13 The Yokohama Rubber Co., Ltd. Pneumatic Tire
US10994574B2 (en) * 2015-09-04 2021-05-04 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2020108989A (en) * 2019-01-07 2020-07-16 横浜ゴム株式会社 Pneumatic tire
JP2020108990A (en) * 2019-01-07 2020-07-16 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2899200B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP6408520B2 (en) Pneumatic radial tire for passenger cars and method of using the same
JP3391692B2 (en) Pneumatic tire
JP3395986B2 (en) Pneumatic tire
KR20140043659A (en) Pneumatic tire
EP0688685A2 (en) Pneumatic Tires
JPH07300005A (en) Pneumatic tire
CN103298631A (en) Pneumatic radial tire for use on passenger vehicle
JPH03139402A (en) Pneumatic tire
JP2899200B2 (en) Pneumatic radial tire
JPH11147406A (en) Pneumatic tire
JP4398218B2 (en) Pneumatic tire
JP3875364B2 (en) Pneumatic radial tire
JP4705284B2 (en) Radial tire for ATV
JP2702877B2 (en) Pneumatic tire
JPS6123446Y2 (en)
JP3377262B2 (en) Pneumatic tires for motorcycles
JPH10100613A (en) Pneumatic radial tire
JP2702878B2 (en) Pneumatic tire
JP2968672B2 (en) Pneumatic tire
JPS60203507A (en) Radial-ply tire
JP2899206B2 (en) Radial tires for RV vehicles
JPH09193615A (en) Pneumatic tire
JP3308086B2 (en) Pneumatic radial tire for electric vehicles
JP2896089B2 (en) Pneumatic tire
JPH0747812A (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14