JPH0717869Y2 - Viscous damper - Google Patents

Viscous damper

Info

Publication number
JPH0717869Y2
JPH0717869Y2 JP1988022236U JP2223688U JPH0717869Y2 JP H0717869 Y2 JPH0717869 Y2 JP H0717869Y2 JP 1988022236 U JP1988022236 U JP 1988022236U JP 2223688 U JP2223688 U JP 2223688U JP H0717869 Y2 JPH0717869 Y2 JP H0717869Y2
Authority
JP
Japan
Prior art keywords
damper
crankshaft
viscous
casing
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988022236U
Other languages
Japanese (ja)
Other versions
JPH01126452U (en
Inventor
進 沼尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP1988022236U priority Critical patent/JPH0717869Y2/en
Publication of JPH01126452U publication Critical patent/JPH01126452U/ja
Application granted granted Critical
Publication of JPH0717869Y2 publication Critical patent/JPH0717869Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、内燃機関のクランク軸に生起する捩り振動を
抑制するために用いられるビスカスダンパに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a viscous damper used to suppress torsional vibration generated in a crankshaft of an internal combustion engine.

(従来の技術) 一般に、軸線方向の寸度が大きいクランク軸を直する直
列多気筒内燃機関、特にクランク軸に加えられる加振ト
ルクが大きい直列多気筒ディーゼルエンジンでは、クラ
ンク軸に捩り振動が発生しやすく、この捩り振動に関す
るクランク軸の固有振動数が加振トルクの周波数に一致
すると、共振を起して振動の振巾が増大し、エンジン騒
音の増大或いはクランク軸の早期捩り破損を招く等の問
題が発生する。
(Prior Art) Generally, in an in-line multi-cylinder internal combustion engine that corrects a crank shaft having a large axial dimension, particularly in an in-line multi-cylinder diesel engine in which an exciting torque applied to the crank shaft is large, torsional vibration occurs in the crank shaft. If the natural frequency of the crankshaft related to this torsional vibration coincides with the frequency of the exciting torque, resonance will occur and the amplitude of the vibration will increase, leading to an increase in engine noise or early torsional damage to the crankshaft. Problem occurs.

そこで、上記クランク軸の捩り振動を抑制するために、
クランク軸に装着されて同クランク軸と一体に回転する
環状中空室を具えたケーシングと、同環状中空室内にそ
の壁面との間に小間隙を存して収蔵された環状の慣性体
とを具え、上記ケーシングの内壁面と慣性体との間の間
隙にシリコン油等の粘性液を封入したビスカスダンパが
屡々採用されている。この種のビスカスダンパは、シリ
コン油等の粘性液の粘性抵抗によってクランク軸に発生
した捩り振動のエネルギを熱エネルギに変換し、ケーシ
ングを介して外部に放散することにより振動を減衰し制
振効果を生起するものである。
Therefore, in order to suppress the torsional vibration of the crankshaft,
A casing having an annular hollow chamber mounted on the crankshaft and rotating integrally with the crankshaft; and an annular inertial body housed in the annular hollow chamber with a small gap between the inner wall and the wall surface. Often, a viscous damper in which a viscous liquid such as silicon oil is sealed in a gap between the inner wall surface of the casing and the inertial body is adopted. This type of viscous damper converts the energy of the torsional vibration generated on the crankshaft by viscous resistance of viscous liquid such as silicon oil into heat energy and dissipates it to the outside through the casing to damp the vibration and suppress the vibration. Is what causes the.

(考案が解決しようとする課題) 近年、車両用内燃機関の高過給化が進展しつつあり、伴
れて上記ビスカスダンパの制振性能の一層の向上が要請
されている。しかし、従来のビスカスダンパでは、上記
ケーシング内に封入された粘性液の粘性抵抗に基づく減
衰効果によって捩り振動を抑制しているので、制振能力
を更に向上するためには、粘性液に接する慣性体の表面
積を増大し、かつ慣性モーメントを大きくする必要があ
り、この結果、ダンパが大型化して内燃機関への取付け
スペースを確保することが困難となり、またダンパ重量
が増大してクランク軸の重量負担が大きくなり、クラン
ク軸のたわみ、折損等を招きやすい等の問題が発生す
る。
(Problems to be Solved by the Invention) In recent years, as supercharging of internal combustion engines for vehicles has been progressing, further improvement of vibration damping performance of the viscous damper has been demanded. However, in the conventional viscous damper, since the torsional vibration is suppressed by the damping effect based on the viscous resistance of the viscous liquid enclosed in the casing, in order to further improve the vibration damping capability, the inertia contacting with the viscous liquid is required. It is necessary to increase the surface area of the body and increase the moment of inertia. As a result, the damper becomes large and it becomes difficult to secure a mounting space for the internal combustion engine. Also, the weight of the damper increases and the weight of the crankshaft increases. The burden becomes large, and problems such as bending of the crankshaft and easy breakage occur.

上記問題点を解決するために、本出願人は先に、昭和61
年特許願第198354号において、ビスカスダンパに封入さ
れるシリコン油等の粘性液として、従来の粘性液より遥
かに粘度が高い所謂粘弾性液を使用し、その粘性抵抗及
びばね特性を利用することによって、小型軽量でしかも
優れた制振性能を有するビスカスダンパを実現し得るこ
とを開示した。しかし、その後試験研究を重ねた結果、
上記粘弾性液として高粘度シリコン油を使用した場合、
稼働中不可避的に進行する熱的劣化のために、比較的早
期にシリコン油の粘度が低下して、次第に在来の低粘度
シリコン油を使用したビスカスダンパに接近し、伴れて
制振性能が漸次低減することが確認された。
In order to solve the above-mentioned problems, the present applicant has previously shown that
In Japanese Patent Application No. 198354, as a viscous liquid such as silicone oil enclosed in a viscous damper, a so-called viscoelastic liquid having much higher viscosity than a conventional viscous liquid is used, and its viscous resistance and spring characteristics are used. It has been disclosed that a viscous damper having a small size and a light weight and excellent vibration damping performance can be realized. However, as a result of repeated trial research after that,
When using high viscosity silicone oil as the viscoelastic liquid,
Due to thermal deterioration that inevitably progresses during operation, the viscosity of silicone oil decreases relatively early, gradually approaching the viscous damper using conventional low-viscosity silicone oil, and accompanying vibration damping performance. Was confirmed to be gradually reduced.

本考案は、上記事情に鑑みなされたもので、上述した高
粘度の粘弾性液を使用したビスカスダンパの耐久性を確
保することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to ensure the durability of a viscous damper using the above-mentioned viscoelastic liquid of high viscosity.

(課題を解決するための手段) 本考案は、上記目的を達成するために創案されたもの
で、クランク軸に取付けられ同クランク軸と一体に回転
する環状中空室を具えたケーシングと、上記環状中空室
内にその壁面との間に小さい間隙を存して収蔵された環
状の慣性体とを具え、上記ケーシングの内壁面と慣性体
との間の間隙に高粘度粘性液を充填してなるダンパにお
いて、上記高粘度粘性液が、充填時50〜60万cst(at25
℃)の粘弾性液であり、かつ上記ダンパの固有振動数fd
とクランク軸系の固有振動数feの比として表わされる固
有振動数比Λ、及びダンパの減衰係数をCd、ダンパの慣
性質量をIdとしたときCd/2Id×2πfeで表わされる減衰
比ζdが、夫々 0.8≦Λ≦1.1 0.3≦ζd≦0.45 の範囲内に設定されたことを特徴とするビスカスダンパ
を要旨とするものである。
(Means for Solving the Problems) The present invention was devised to achieve the above object, and includes a casing having an annular hollow chamber that is attached to a crankshaft and rotates integrally with the crankshaft; A damper having an annular inertial body housed in the hollow chamber with a small gap between it and the wall surface, and filling the gap between the inner wall surface of the casing and the inertial body with a high-viscosity viscous liquid. At the time of filling, the above high-viscosity viscous liquid is
℃) viscoelastic liquid, and the natural frequency fd of the damper
And the natural frequency ratio Λ expressed as the ratio of the natural frequency fe of the crankshaft system, and the damping ratio ζd expressed as Cd / 2Id × 2πfe when the damping coefficient of the damper is Cd and the inertial mass of the damper is Id. The gist is a viscous damper characterized by being set within the range of 0.8 ≦ Λ ≦ 1.1 0.3 ≦ ζd ≦ 0.45, respectively.

(作用) 前記既提案の発明に詳しく開示されているように、ケー
シング内に粘弾性液を封入したビスカスダンパをクラン
ク軸に装着した場合、クランク軸系の捩り共振ピークが
I節及びII節の二つの共振ピークに分割される。そし
て、ダンパのばね定数Kd及び減衰係数Cdを適宜に選択す
ることによって、上記I節及びII節共振ピークの振巾を
略等しくかつ低い振巾(以下最適振巾という)として、
広い周波数領域で制振作用を発揮させることができる。
(Operation) As disclosed in detail in the above-mentioned proposed invention, when a viscous damper having a casing filled with viscoelastic liquid is mounted on a crankshaft, the torsional resonance peaks of the crankshaft system are equal to those of Sections I and II. It is divided into two resonance peaks. Then, by appropriately selecting the spring constant Kd and the damping coefficient Cd of the damper, the amplitudes of the section I and II resonance peaks are set to be substantially equal and low (hereinafter referred to as optimum amplitude).
The damping effect can be exerted in a wide frequency range.

本考案により、上記ケーシングの内壁面と慣性体との間
の間隙内に、封入時点において50〜60万cst(at25℃)
の粘弾性液を充填し、かつビスカスダンパの固有振動数
比Λ及び減衰比ζdを上記範囲に設定することによっ
て、ダンパが、クランク軸の捩り振動の振巾を、その初
期状態において強度上許容し得る限界振巾(以下許容限
界振巾という)よりは十分に小さいがしかし上記最適振
巾よりは大きい振巾に制振し、引続き稼働中に粘弾性液
が次第に劣化してその粘度が低下するに伴れ漸次最適振
巾に制振し、更に粘弾性液が劣化してその粘度が一層低
下しても上記許容限界振巾よりは十分に小さいがしかし
最適振巾よりは大きい振巾に制振するように作動し、こ
の総合結果として、クランク軸の捩り振動振巾を上記許
容振巾より小さい安全な振巾に抑制し得る全作動期間を
十分に長くすることができるのである。
According to the present invention, in the gap between the inner wall surface of the casing and the inertial body, 500 to 600,000 cst (at 25 ° C) at the time of encapsulation
Of the viscous damper and by setting the natural frequency ratio Λ and the damping ratio ζd of the viscous damper within the above range, the damper allows the amplitude of the crankshaft torsional vibration in terms of strength in its initial state. The vibration amplitude is sufficiently smaller than the possible limit amplitude (hereinafter referred to as the allowable limit amplitude) but larger than the above-mentioned optimum amplitude, and the viscoelastic liquid gradually deteriorates during operation and its viscosity decreases. As a result, the vibration is damped to the optimum amplitude, and even if the viscoelastic liquid deteriorates and its viscosity further decreases, it is sufficiently smaller than the allowable limit amplitude but larger than the optimum amplitude. It operates so as to suppress vibration, and as a result of this, it is possible to sufficiently lengthen the entire operation period in which the torsional vibration amplitude of the crankshaft can be suppressed to a safe amplitude smaller than the allowable amplitude.

(実施例) 先ず、第1図において、符号10は総括的にビスカスダン
パを示し、同ダンパは内燃機関のクランク軸の軸端部に
装着される円板状のダンパプレート12と、同プレート12
の外周部分に一体的に形成された長方形断面の環状中空
室14を具えたケーシング16とを有する。上記ケーシング
16の内部に、ケーシング壁面との間に夫々小間隙hi,ho
及びhsを存して長方形断面の環状慣性体18が収蔵され、
ケーシング16と慣性体18との間の隙間には、高粘度の粘
弾性液20が封入されている。上記粘弾性液には、耐熱性
が優れたシリコン油が好適であり、その粘度は50〜60万
cst(at25℃)である。また、上記慣性体18の内周両側
部分に、ケーシング16内における慣性体18の位置決め用
のスペーサ22が装着され、同スペーサ22はケーシング16
と慣性体18との直接接触を防止する機能を有するもので
ある。
(Embodiment) First, in FIG. 1, reference numeral 10 generally indicates a viscous damper, which is a disk-shaped damper plate 12 mounted on a shaft end portion of a crankshaft of an internal combustion engine, and the plate 12.
And a casing 16 having an annular hollow chamber 14 having a rectangular cross section integrally formed on the outer peripheral portion of the casing. Above casing
Inside the 16, small gaps between the casing wall and hi, ho
, And hs are retained, the annular inertial body 18 of rectangular cross section is stored,
A high-viscosity viscoelastic liquid 20 is sealed in the gap between the casing 16 and the inertial body 18. Silicon oil, which has excellent heat resistance, is suitable for the viscoelastic liquid, and its viscosity is 500,000 to 600,000.
cst (at 25 ° C). Further, spacers 22 for positioning the inertial body 18 in the casing 16 are mounted on both sides of the inner circumference of the inertial body 18, and the spacers 22 are provided in the casing 16.
It has a function of preventing direct contact between the inertial body 18 and.

ところで、従来のビスカスダンパでは、比較的低粘度例
えば10万cst(at25℃)程度の粘度を有する粘性液が用
いられていたため、粘性液の弾性的効果はほとんど得ら
れず、粘性液の粘性抵抗による減衰効果によって捩り振
動を制振していたが、本考案では、上述したように50〜
60万cst(at25℃)の高粘度シリコン油等が用いられる
ので、粘性抵抗による減衰効果と、弾性による振動制振
効果とが併存し、この両者によって制振が行なわれる。
したがって、第1図に示したビスカスダンパ10を装着し
たクランク軸系は、第2図のような2自由度系の等価振
動モデルで表わすことができる。同図において、Idはダ
ンパ10の慣性モーメント、Kdは同ダンパのばね定数、Cd
は同じく減衰係数を示し、またIeはダンパ10を除いたク
ランク軸系全体の合成慣性モーメント、Keはクランク軸
系のばね定数、Ceは同じく減衰係数を示す。
By the way, in the conventional viscous damper, since a viscous liquid having a relatively low viscosity, for example, a viscosity of about 100,000 cst (at 25 ° C) was used, the elastic effect of the viscous liquid was hardly obtained, and the viscous resistance of the viscous liquid was not obtained. Although the torsional vibration was suppressed by the damping effect due to, in the present invention, as described above,
Since 600,000 cst (at 25 ° C) of high viscosity silicone oil is used, the damping effect by viscous resistance and the vibration damping effect by elasticity coexist, and the vibration damping is performed by both of them.
Therefore, the crankshaft system equipped with the viscous damper 10 shown in FIG. 1 can be represented by an equivalent vibration model of a two-degree-of-freedom system as shown in FIG. In the figure, Id is the moment of inertia of the damper 10, Kd is the spring constant of the damper, and Cd
Also indicates a damping coefficient, Ie indicates a combined moment of inertia of the entire crankshaft system excluding the damper 10, Ke indicates a spring constant of the crankshaft system, and Ce indicates a damping coefficient.

次に、第3図は、上記ビスカスダンパ10の固有振動数比
Λ及び減衰比ζdをパラメータとして、I節及びII節の
共振ピーク頂点の共振周波数及び振巾の関係を、横軸に
周波数比λをとり、縦軸にクランク軸捩り振動の振巾θ
をとって示した線図である。上記固有振動数比Λは、ダ
ンパ10の固有振動数dと、クランク軸系の固有振動数
eとの比、即ちΛ=d/eであって、 である。また、減衰比ζdは次式によって表わされる。
即ち 更に同図において、Pはダンパの減衰比ζdが零、従っ
て減衰係数Cdが零の点であって、ダンパを装着しないク
ランク軸系の共振ピークと一致し、またQはダンパの減
衰比ζdが無限大、即ち第2図においてクランク軸系と
ダンパの慣性マスが一体化している状態を示す。ビスカ
スダンパ10の装着によってクランク軸系の捩り共振ピー
クがI節及びII節の二つの共振ピークに分割され、I,II
節の共振ピーク頂点の位置は、λ=λQ(λQは上記Q点
における共振周波数を示す)を境界線として左右に分離
される。本考案のビスカスダンパでは、固有振動数比Λ
が0.8〜1.1の範囲に設定され、また減衰比ζdが0.3〜
0.45の範囲に設定され、即ち第3図に斜線を施して示し
た領域Rに含まれるように設定される。
Next, FIG. 3 shows the relationship between the resonance frequency and the amplitude of the resonance peak vertices of Sections I and II with the natural frequency ratio Λ and the damping ratio ζd of the viscous damper 10 as parameters, and the horizontal axis indicates the frequency ratio. λ is taken, and the vertical axis is the amplitude θ of the crankshaft torsional vibration.
It is the diagram which took and showed. The natural frequency ratio Λ is the ratio of the natural frequency d of the damper 10 and the natural frequency e of the crankshaft system, that is, Λ = d / e, Is. Further, the damping ratio ζd is expressed by the following equation.
I.e. Further, in the figure, P is the point where the damping ratio ζd of the damper is zero, and therefore the damping coefficient Cd is zero, which coincides with the resonance peak of the crankshaft system without mounting the damper, and Q is the damping ratio ζd of the damper. Infinity, that is, in FIG. 2, the crankshaft system and the inertial mass of the damper are integrated. By installing the viscous damper 10, the torsional resonance peak of the crankshaft system is divided into two resonance peaks of section I and section II.
The positions of the resonance peak vertices of the node are separated into left and right with λ = λ QQ represents the resonance frequency at the point Q) as a boundary line. In the viscous damper of the present invention, the natural frequency ratio Λ
Is set in the range of 0.8 to 1.1, and the damping ratio ζd is 0.3 to
It is set to a range of 0.45, that is, to be included in a region R shown by hatching in FIG.

第4図は、縦軸に捩り振動の振巾θをとり、横軸に振動
周波数をとって、ビスカスダンパに封入されたシリコ
ン油の粘度とクランク軸捩り振動振巾との関係を示した
線図であって、図中に一点鎖線で示したθLはクランク
軸の強度上許容され得る許容限界振巾である。第3図の
領域Rに含まれるビスカスダンパ10のシリコン油は、初
期状態において例えば60万cst(at25℃)の高粘度であ
り、このとき共振ピークの頂点は第4図のA点であり、
許容限界振巾θLより十分に低く安全である。長時間の
稼働により封入されたシリコン油が次第に劣化して粘度
が低下し、例えば30万cst(at25℃)になると、共振ピ
ークの頂点はB点となり最適振巾に略等しい最低値とな
り、更にシリコン油が劣化してその粘度が10万cst(at2
5℃)まで低下したとき、共振ピークの頂点はC点とな
り、許容限界振巾θLより十分に低くなお安全である。
即ち上記ビスカスダンパは、シリコン油の劣化に伴い第
4図中に点線で示したような共振ピーク頂点A−B−C
の軌跡を画いて作動し、初期のA点から終期のC点に達
するまで、十分に長い耐久性をもって安全に制振効果を
発揮することができるのである。これを第3図によって
説明すると、初期状態においてその共振ピークが同図中
の領域Rに含まれたビスカスダンパ10はシリコン油の劣
化による粘性の低下に伴れて、図中に二本の点線S1,S2
で限界された領域内を左から次第に右方に移動する共振
ピークの軌跡を画きながら作動し、全体として十分な制
振効果を発揮しながら長期間にわたって安全に稼働する
ことができるのである。
FIG. 4 is a line showing the relationship between the viscosity of the silicone oil enclosed in the viscous damper and the crankshaft torsional vibration amplitude, with the vertical axis representing the amplitude of torsional vibration θ and the horizontal axis representing the vibration frequency. In the figure, θ L shown by the alternate long and short dash line in the figure is an allowable limit swing that is allowable in terms of the strength of the crankshaft. Silicon oil of the viscous damper 10 included in the region R of FIG. 3 has a high viscosity of, for example, 600,000 cst (at 25 ° C.) in the initial state, and at this time, the peak of the resonance peak is point A of FIG.
It is sufficiently lower than the allowable limit amplitude θ L and safe. When operating for a long time, the encapsulated silicone oil gradually deteriorates and its viscosity decreases. For example, when the viscosity reaches 300,000 cst (at 25 ° C), the peak of the resonance peak becomes point B, which is the minimum value that is approximately equal to the optimum swing. Silicon oil deteriorates and its viscosity is 100,000 cst (at2
When the temperature drops to 5 ° C), the peak of the resonance peak becomes point C, which is sufficiently lower than the allowable limit amplitude θ L and still safe.
That is, the viscous damper has a resonance peak apex A-B-C as shown by a dotted line in FIG.
It is possible to exert the vibration damping effect safely with a sufficiently long durability from the initial point A to the final point C. This will be described with reference to FIG. 3. The viscous damper 10 whose resonance peak is included in the region R in the initial state in the initial state is accompanied by a decrease in viscosity due to the deterioration of the silicone oil, and therefore two dotted lines are shown in the figure. S 1 , S 2
It operates while drawing the locus of the resonance peak that gradually moves from the left to the right in the region limited by, and can operate safely for a long period of time while exerting a sufficient damping effect as a whole.

(考案の効果) 叙上のように、本考案に係るビスカスダンパは、クラン
ク軸に取付けられ同クランク軸と一体に回転する環状中
空室を具えたケーシングと、上記環状中空室内にその壁
面との間に小さい間隙を存して収蔵された環状の慣性体
とを具え、上記ケーシングの内壁面と慣性体との間の間
隙に高粘度粘性液を充填してなるダンパにおいて、上記
高粘度粘性液が、充填時50〜60万cst(at25℃)の粘弾
性液であり、かつ上記ダンパの固有振動数fdとクランク
軸系の固有振動数feの比として表わされる固有振動数比
Λ、及びダンパの減衰係数をCd、ダンパの慣性質量をId
としたときCd/2Id×2πfeで表わされる減衰比ζdが、
夫々 0.8≦Λ≦1.1 0.3≦ζd≦0.45 の範囲内に設定されたことを特徴とし、耐久性が著しく
優れたビスカスダンパを提供し得る利点がある。
(Effect of the Invention) As described above, the viscous damper according to the present invention includes a casing having an annular hollow chamber attached to a crankshaft and rotating integrally with the crankshaft, and a wall surface of the casing in the annular hollow chamber. A damper comprising an annular inertial body stored with a small gap between them, wherein the gap between the inner wall surface of the casing and the inertial body is filled with the high-viscosity viscous liquid. Is a viscoelastic liquid of 500 to 600,000 cst (at 25 ° C) at the time of filling, and the natural frequency ratio Λ expressed as the ratio of the natural frequency fd of the damper and the natural frequency fe of the crankshaft system, and the damper Is the damping coefficient of Cd and the inertial mass of the damper is Id
Then, the damping ratio ζd represented by Cd / 2Id × 2πfe is
Each of them is set in the range of 0.8 ≦ Λ ≦ 1.1 0.3 ≦ ζd ≦ 0.45, and there is an advantage that a viscous damper having excellent durability can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案ビスカスダンパの一実施例を示す要部断
面図、第2図は第1図のビスカスダンパを装着したクラ
ンク軸の等価振動モデルの説明図、第3図はビスカスダ
ンパの動特性と捩り共振ピークの振巾、周波数との関係
を示した線図、第4図はビスカスダンパに封入されたシ
リコン油の粘度と捩り振動振巾との関係を示した線図で
ある。 10……ビスカスダンパ、14……環状中空室、16……ケー
シング、18……慣性体、20……シリコン油(粘弾性
液)。
FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a viscous damper of the present invention, FIG. 2 is an explanatory view of an equivalent vibration model of a crankshaft equipped with the viscous damper of FIG. 1, and FIG. 3 is a motion of the viscous damper. FIG. 4 is a diagram showing the relationship between the characteristics and the amplitude and frequency of the torsional resonance peak, and FIG. 4 is a diagram showing the relationship between the viscosity of the silicone oil enclosed in the viscous damper and the amplitude of the torsional vibration. 10 …… Viscous damper, 14 …… annular hollow chamber, 16 …… Casing, 18 …… Inertia, 20 …… Silicon oil (viscoelastic liquid).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】クランク軸に取付けられ同クランク軸と一
体に回転する環状中空室を具えたケーシングと、上記環
状中空室内にその壁面との間に小さい間隙を存して収蔵
された環状の慣性体とを具え、上記ケーシングの内壁面
と慣性体との間の間隙に高粘度粘性液を充填してなるダ
ンパにおいて、上記高粘度粘性液が、充填時50〜60万cs
t(at25℃)の粘弾性液であり、かつ上記ダンパの固有
振動数fdとクランク軸系の固有振動数feの比として表わ
される固有振動数比Λ、及びダンパの減衰係数をCd、ダ
ンパの慣性質量をIdとしたときCd/2Id×2πfeで表わさ
れる減衰比ζdが、夫々 0.8≦Λ≦1.1 0.3≦ζd≦0.45 の範囲内に設定されたことを特徴とするビスカスダン
パ。
Claim: What is claimed is: 1. A casing having an annular hollow chamber attached to a crankshaft and rotating integrally with the crankshaft; and an annular inertia housed in the annular hollow chamber with a small gap between its wall surface. In a damper that comprises a body and is filled with a high-viscosity viscous liquid in the gap between the inner wall surface of the casing and the inertial body, the high-viscosity viscous liquid has a capacity of 500 to 600,000 cs at the time of filling.
A natural frequency ratio Λ, which is a viscoelastic liquid of t (at 25 ° C) and is expressed as a ratio between the natural frequency fd of the damper and the natural frequency fe of the crankshaft system, and the damping coefficient of the damper is Cd, A viscous damper characterized in that the damping ratio ζd represented by Cd / 2Id × 2πfe when the inertial mass is Id is set within a range of 0.8 ≦ Λ ≦ 1.1 0.3 ≦ ζd ≦ 0.45.
JP1988022236U 1988-02-22 1988-02-22 Viscous damper Expired - Lifetime JPH0717869Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988022236U JPH0717869Y2 (en) 1988-02-22 1988-02-22 Viscous damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988022236U JPH0717869Y2 (en) 1988-02-22 1988-02-22 Viscous damper

Publications (2)

Publication Number Publication Date
JPH01126452U JPH01126452U (en) 1989-08-29
JPH0717869Y2 true JPH0717869Y2 (en) 1995-04-26

Family

ID=31240168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988022236U Expired - Lifetime JPH0717869Y2 (en) 1988-02-22 1988-02-22 Viscous damper

Country Status (1)

Country Link
JP (1) JPH0717869Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120496U (en) * 1975-03-26 1976-09-30

Also Published As

Publication number Publication date
JPH01126452U (en) 1989-08-29

Similar Documents

Publication Publication Date Title
KR20030029140A (en) Torsion spring set
JPS6222020B2 (en)
KR101770063B1 (en) Dual mass flywheel with sealed pendulum
JPH0717869Y2 (en) Viscous damper
US4462270A (en) Friction index modifier for damper
CN109372944A (en) A kind of silicon oil damper and engine
JPS6315626Y2 (en)
JP2946901B2 (en) Viscous damper device
JP2006090528A (en) Vibration control device for rotary shaft
JP2888105B2 (en) Fuel injection device with vibration suppression device
JP2007016859A (en) Flywheel structure
JPS5931949Y2 (en) Cylindrical damper noise prevention device
JPH01312245A (en) Constant order type dynamic damper
JPH0429149Y2 (en)
JPH0732998Y2 (en) Torsional damper
JPH055309Y2 (en)
JP2000179623A (en) Damper device
JPH0247306Y2 (en)
JPH0627864Y2 (en) Torsional damper
JPH0129304Y2 (en)
JPS5930275Y2 (en) Engine mounting device
JPH06264972A (en) Torsional damper
JPH06264971A (en) Pulley viscous damper
JPS63152745A (en) Viscous damper
KR200184252Y1 (en) Variable balance weight have crank shaft