JPH071784Y2 - Gas insulated induction - Google Patents

Gas insulated induction

Info

Publication number
JPH071784Y2
JPH071784Y2 JP1989079257U JP7925789U JPH071784Y2 JP H071784 Y2 JPH071784 Y2 JP H071784Y2 JP 1989079257 U JP1989079257 U JP 1989079257U JP 7925789 U JP7925789 U JP 7925789U JP H071784 Y2 JPH071784 Y2 JP H071784Y2
Authority
JP
Japan
Prior art keywords
shield ring
duct piece
diameter side
gas
voltage winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989079257U
Other languages
Japanese (ja)
Other versions
JPH0320418U (en
Inventor
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1989079257U priority Critical patent/JPH071784Y2/en
Publication of JPH0320418U publication Critical patent/JPH0320418U/ja
Application granted granted Critical
Publication of JPH071784Y2 publication Critical patent/JPH071784Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は六ふっ化硫黄(SF6)からなる絶縁ガスを絶
縁媒体として、鉄心や巻線を収納する密封容器内に密封
してなるガス絶縁誘導電器に関する。
[Detailed Description of the Invention] [Industrial field of application] This invention uses an insulating gas composed of sulfur hexafluoride (SF 6 ) as an insulating medium to seal a gas in a hermetically sealed container containing an iron core and windings. Insulation induction device.

〔従来の技術〕[Conventional technology]

第2図はガス絶縁誘導電器の高電圧巻線の端部の絶縁構
造を示す要部断面図である。この図は図の左側に対称軸
がある同心配置構造の断面図であり、対称軸より左側の
断面は図示を省略してある。高圧巻線4は絶縁被覆を施
した電線を図の左右の方向である半径方向に積み重ねて
巻回して構成された円板コイルを更に絶縁スペーサを挟
んで図の上下方向である軸方向に積み重て構成されたも
のであり、通常円板巻線と呼ばれている。このような高
圧巻線4内の詳細な構成は図示を省略してある。高圧巻
線4の上端部には絶縁スペーサ3を介してシールドリン
グ2が設けられいる。シールドリング2は図の上部の内
径側と外径側の角部が大きな半径で角が取られている。
これは高圧巻線4が高電圧の状態のときにこの部分に生
ずる電界の集中を緩和するためのものである。高圧巻線
4の図の左側になる内径側には誘導電器の1つである変
圧器の場合は低圧巻線が、分路リアクトルの場合は鉄心
があり、高圧巻線4とこれら図示しない低圧巻線又は鉄
心などの低電圧電極との間の絶縁構成では、シールドリ
ング2の端部に電界が集中することによる絶縁上の最弱
点になっている。シールドリング2を設けて大きなRを
とるのもこの最弱点を改善するためのものである。
FIG. 2 is a sectional view of an essential part showing an insulating structure of an end portion of a high voltage winding of a gas insulated induction electric device. This figure is a cross-sectional view of a concentric arrangement structure having a symmetry axis on the left side of the figure, and a cross section on the left side of the symmetry axis is omitted in the drawing. The high voltage winding 4 is a disk coil formed by stacking and winding electric wires coated with insulation in the radial direction, which is the left and right direction in the figure, and further stacking them in the axial direction, which is the vertical direction in the figure, with an insulating spacer interposed therebetween. It is composed of layers and is usually called a disk winding. Illustration of the detailed structure of the high-voltage winding 4 is omitted. The shield ring 2 is provided on the upper end of the high-voltage winding 4 via an insulating spacer 3. In the shield ring 2, the corners on the inner diameter side and the outer diameter side in the upper part of the drawing are angled with a large radius.
This is for alleviating the concentration of the electric field generated in this portion when the high voltage winding 4 is in a high voltage state. On the inner diameter side of the high-voltage winding 4 on the left side of the drawing, there is a low-voltage winding in the case of a transformer, which is one of the induction electric generators, and an iron core in the case of a shunt reactor. In the insulation configuration with the low voltage electrode such as the coil winding or the iron core, the electric field is concentrated at the end portion of the shield ring 2, which is the weakest point in the insulation. The reason why the shield ring 2 is provided to obtain a large R is to improve this weakest point.

高圧巻線4の内径側には高圧巻線4を冷却するための冷
却媒体として絶縁ガスが下から上に向かって流れるため
の冷却ダクトが設けられこの冷却ダクトを確保するため
の間隔片としてのダクトピース1が設けられている。こ
のダクトピース1は水平断面て長方形の断面を持ち図の
上下方向である軸方向に細長い絶縁材でなるものであ
り、周方向には隣同士の間に間隙が開けられて等間隔に
配置されていて、この間隙に絶縁ガスが流れ高圧巻線4
の導体と接触することによって導体を冷却する構成にな
っている。
A cooling duct is provided on the inner diameter side of the high-voltage winding 4 for allowing insulating gas to flow from the bottom to the top as a cooling medium for cooling the high-voltage winding 4, and as a spacing piece for securing this cooling duct. The duct piece 1 is provided. The duct piece 1 has a rectangular horizontal cross section and is made of an insulating material which is elongated in the axial direction which is the vertical direction of the drawing. The duct piece 1 is arranged at equal intervals in the circumferential direction with a space between adjacent ones. Insulation gas flows in this gap and the high voltage winding 4
The conductor is cooled by coming into contact with the conductor.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、周知のように、高電圧電極と低電圧電極との
間に異なる誘電率の絶縁体が混在する場合、電圧分担の
割合は誘電率の小さい絶縁体ほど大きくなるという特性
がある。ダクトピース1や絶縁スペーサ3などの絶縁材
は芳香属ポリアミド繊維からなるものでその比誘電率は
約3であり、これに対して絶縁ガスの比誘電率は1であ
る。第2図に示す絶縁構成では、高圧巻線4に試験電圧
などの高電圧が印加された場合、高電圧電極の端部とし
てのシールドリング2の図の上左端部に電界が集中する
ことになるので、この集中率を低減するために図示のよ
うにシールドリング2の角を大きな曲率でRを取ってあ
る。この絶縁構成では更に、ダクトピース1とシールド
リング2との間の空隙部5は、ダクトピース1があるた
めに前述の異なる誘電率の絶縁体が混在する場合には誘
電率の小さい絶縁体に電界が集中することから、この空
隙部5の電界強度がなおのこと大きくなり、結果的に高
圧巻線4の絶縁耐力が低下することになる。そのため
に、高圧巻線4の低圧電極に対する絶縁距離を大きくす
るなどして必要とする絶縁耐力を確保することになる
が、このように絶縁距離を大きくすることはガス絶縁変
圧器全体の寸法増大とこれに伴う重量増大、価格上昇の
大きな原因になるという問題が生ずる。
By the way, as is well known, when insulators having different dielectric constants are mixed between the high-voltage electrode and the low-voltage electrode, there is a characteristic that the proportion of voltage sharing increases as the insulator having a smaller dielectric constant. The insulating material such as the duct piece 1 and the insulating spacer 3 is made of aromatic polyamide fiber and has a relative permittivity of about 3, whereas the insulating gas has a relative permittivity of 1. In the insulation configuration shown in FIG. 2, when a high voltage such as a test voltage is applied to the high voltage winding 4, the electric field is concentrated on the upper left end of the shield ring 2 as the end of the high voltage electrode in the figure. Therefore, in order to reduce this concentration rate, the corners of the shield ring 2 are rounded with a large curvature as shown in the figure. In this insulating structure, the space 5 between the duct piece 1 and the shield ring 2 is further made into an insulator having a small dielectric constant when the above-mentioned insulators having different dielectric constants are mixed because of the duct piece 1. Since the electric field is concentrated, the electric field strength of the void 5 is further increased, and as a result, the dielectric strength of the high voltage winding 4 is reduced. Therefore, the required insulation strength is ensured by increasing the insulation distance of the high-voltage winding 4 from the low-voltage electrode. However, increasing the insulation distance in this way increases the size of the entire gas-insulated transformer. As a result, there arises a problem that it becomes a major cause of weight increase and price increase.

この考案は、絶縁寸法を増大させることなしにシールド
リング端部の空隙部の電界を低下させることにより、重
量増大や価格上昇が生ずることなしに高圧巻線の絶縁耐
力を確保することのできるガス絶縁誘導電器を提供する
ことを目的とする。
This invention proposes a gas that can secure the dielectric strength of a high voltage winding without increasing the weight or increasing the price by lowering the electric field in the void portion of the shield ring end without increasing the insulation dimension. An object is to provide an insulation induction electric device.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するためにこの考案によれば、円筒状の
巻線と、この巻線の少なくとも一方の端部に絶縁スペー
サを介して設けられた導電体からなるシールドリング
と、この巻線の内径側に密接して周方向に等間隔に配置
された前記シールドリングを含めた巻線の軸方向の全長
にわたって設けられたダクトピースとを備えたガス絶縁
誘電電器において、前記ダクトピースの前記シールドリ
ングと対向する軸方向先端部の外径側を切り欠くものと
する。
According to the present invention to solve the above-mentioned problems, a cylindrical winding wire, a shield ring made of a conductor provided on at least one end of the winding wire through an insulating spacer, and a winding wire A gas-insulated dielectric electric appliance comprising: a duct piece provided over the entire length in the axial direction of a winding wire, including the shield ring closely arranged on the inner diameter side at equal intervals in the circumferential direction; The outer diameter side of the axial tip facing the ring shall be cut out.

〔作用〕[Action]

この考案の構成において、高圧巻線の内径側に接して設
けられるダクトピースのシールドリングと対向する軸方
向先端部の外径側を切り欠いてシールドリングの内径側
端部のダクトピースとの間の空隙部の寸法を大きくし、
ダクトピースの厚みを減ずることにより、比誘電率の大
きいダクトピースの寸法が小さくなり比誘電率の小さな
空隙部の寸法が大きくなるので、この空隙部の電界集中
が緩和し電界強度の値が低下する。
In the structure of the present invention, between the shield ring of the duct piece provided in contact with the inner diameter side of the high-voltage winding and the outer diameter side of the axial tip end that is opposed to the shield ring, the outer peripheral side of the shield ring is cut away from the duct piece at the inner diameter side end Increase the size of the void part of
By reducing the thickness of the duct piece, the size of the duct piece with a large relative permittivity decreases and the size of the void with a small relative permittivity increases, so the electric field concentration in this void decreases and the value of the electric field strength decreases. To do.

〔実施例〕〔Example〕

以下この考案を実施例に基づいて説明する。第1図はこ
の考案の実施例を示すガス絶縁誘導電器の要部断面図で
あり、第2図と同じ部材については同じ参照符号を付け
ることにより詳しい説明を省略する。
The present invention will be described below based on embodiments. FIG. 1 is a sectional view of an essential part of a gas-insulated induction electric machine showing an embodiment of the present invention, and the same members as those in FIG.

ダクトピース10はシールドリング2と対向する先端部12
の外径側を切り欠き、この先端部12とシールドリング2
との間の空隙部51の寸法を増大させる構成としている。
ダクトピース10の中央部11は高圧巻線4を内径側で支持
するとともに前述のように冷却ダクトを確保する必要が
あることから第2図に示す従来技術と同じ構成、寸法と
している。高圧巻線4とダクトピース10の中央部12との
間にも図示しない空隙が存在するのであるが、この部分
では高圧巻線4と低圧巻線又は鉄心などの図示しない低
圧電極とが平行に対向していて電界が集中することはな
いので、高圧巻線4の絶縁耐力に影響を与えることな
い。
The duct piece 10 has a tip 12 facing the shield ring 2.
Notch the outer diameter side of this, and this tip 12 and shield ring 2
The size of the space 51 between the space and the space is increased.
The central portion 11 of the duct piece 10 has the same structure and dimensions as the prior art shown in FIG. 2 because it is necessary to support the high-voltage winding 4 on the inner diameter side and secure the cooling duct as described above. An air gap (not shown) also exists between the high voltage winding 4 and the central portion 12 of the duct piece 10. In this portion, the high voltage winding 4 and the low voltage electrode (not shown) such as the iron core are parallel to each other. Since they are opposed to each other and the electric field is not concentrated, they do not affect the dielectric strength of the high-voltage winding 4.

比誘電率の小さな空隙部51の寸法が大きくなり、その分
比誘電率の大きなダクトピース10の先端部12の厚み寸法
が小さくなったことにより空隙部51の電界集中が緩和さ
れ、第2図に比べて空隙部51の電界強度が低下する。絶
縁ガスの絶縁破壊特性は一般に空隙部の寸法によらず電
界強度によって決まるので、空隙部51の寸法を大きくし
てもこの部分の電界強度が低下すれば高圧巻線4の絶縁
耐力は増大することになる。ちなみに大容量、及び超高
圧の変圧器やリアクトルなどの誘導電器の絶縁媒体とし
て使用されている絶縁油の場合、油隙寸法が小さくなる
と破壊電界強度が上昇するという絶縁特性を持ってい
る。したがって、電界強度が低下しても油隙間寸法が増
大するとかえって絶縁耐力が低下することもあって、こ
の考案のようにダクトピースの先端を切り欠いてシール
ドリング2の電界集中を生ずる端部の油隙部の寸法を大
きくすることによる絶縁耐力の増大は期待できないのが
普通である。このようなことから、油入絶縁の変圧器や
リアクトルの高電圧の高圧巻線端部では第2図のような
絶縁構成とするのが普通であり、更に絶縁耐力を向上さ
せるために、シールドリング2に絶縁被覆を施したり絶
縁バリアを設けて油間隙を細分するなどの方法が取られ
る。この考案はその意味で絶縁媒体が絶縁ガスであるこ
とによって始めて効果を生ずるものである。
The size of the void 51 having a small relative permittivity is increased, and the thickness of the tip portion 12 of the duct piece 10 having a large relative permittivity is correspondingly reduced, whereby the electric field concentration in the void 51 is relaxed, and FIG. The electric field strength of the void 51 is lower than that of. Since the dielectric breakdown characteristic of the insulating gas is generally determined by the electric field strength regardless of the size of the void portion, even if the size of the void portion 51 is increased, the dielectric strength of the high-voltage winding 4 increases if the electric field strength of this portion decreases. It will be. By the way, in the case of insulating oil used as an insulating medium for large-capacity and induction electric appliances such as ultra-high voltage transformers and reactors, it has the insulating property that the breakdown electric field strength increases as the oil gap size decreases. Therefore, even if the electric field strength is reduced, the oil clearance may be increased, and the dielectric strength may be reduced. Therefore, as in the present invention, the end of the shield ring 2 where the electric field is concentrated is cut out by notching the tip of the duct piece. It is usually impossible to expect an increase in dielectric strength by increasing the size of the oil gap. For this reason, oil-insulated transformers and high-voltage high-voltage winding ends of reactors usually have an insulation configuration as shown in Fig. 2. In order to further improve the dielectric strength, shield For example, an insulating coating may be applied to the ring 2 or an insulating barrier may be provided to subdivide the oil gap. In this sense, this invention is effective only when the insulating medium is an insulating gas.

第1図に明らかなように、この発明を採用するとシール
ドリング2の内径側がダクトピース10で支持されない構
成になり、シールドリング2が図の左右の方向に容易に
ずれる可能性があるような構成になっているが、実際に
はシールドリング2を含めて高圧巻線4は上下方向に大
きな力で圧縮力が与えられるものであるので、シールド
リング2は絶縁スペーサ3との間の摩擦力によってずれ
ることはない。絶縁スペーサ3も同様に高圧巻線4との
間の摩擦力で支持されるので、ダクトピース10の先端部
12の切り欠き寸法は高圧巻線4の高さ近くまで大きくし
ても支障ない。
As is apparent from FIG. 1, when the present invention is adopted, the inner diameter side of the shield ring 2 is not supported by the duct piece 10, and the shield ring 2 may be easily displaced in the left and right directions in the drawing. However, in reality, the high-voltage winding 4 including the shield ring 2 is provided with a large compressive force in the vertical direction, so that the shield ring 2 is affected by the frictional force between the shield ring 2 and the insulating spacer 3. There is no deviation. The insulating spacer 3 is also supported by the frictional force between the insulating spacer 3 and the high-voltage winding 4, so that the tip of the duct piece 10
There is no problem even if the notch size of 12 is increased close to the height of the high voltage winding 4.

〔考案の効果〕[Effect of device]

この考案は前述のように、高圧巻線の内径側のダクトピ
ースのシールドリングと対向する軸方向端部の外径側を
切り欠いてシールドリングの内径側端部と前述のダクト
ピースとの間の比誘電率の小さい空隙部の寸法を大きく
し、比誘電率の大きいダクトピースの厚みを減ずること
により、空隙部の電界集中が緩和し電界強度の値が低下
する。その結果、高圧巻線の絶縁耐力が増大すくことに
なるので、低圧電極との間の絶縁距離を短縮することが
できることから、ガス絶縁誘導電器の寸法縮小とこれに
伴う重量低減、価格低下の効果を上げることができる。
As described above, the present invention cuts off the outer diameter side of the axial end of the duct piece on the inner diameter side of the high-voltage winding that faces the shield ring, and cuts the outer diameter side between the inner diameter side end of the shield ring and the duct piece. By increasing the size of the void having a small relative permittivity and reducing the thickness of the duct piece having a large relative permittivity, the electric field concentration in the void is relaxed and the value of the electric field strength is reduced. As a result, the dielectric strength of the high-voltage winding increases, and the insulation distance between the high-voltage winding and the low-voltage electrode can be shortened. The effect can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示すガス絶縁誘導電器の要
部断面図、第2図は従来のガス絶縁誘導電器の要部断面
図である。 1,10……ダクトピース、11……中央部、12……先端部、
2……シールドリング、3……絶縁スペーサ、4……高
圧巻線、5,51……空隙部。
FIG. 1 is a sectional view of an essential part of a gas-insulated induction machine showing an embodiment of the present invention, and FIG. 2 is a sectional view of an essential part of a conventional gas-insulated induction machine. 1,10 ...... Duct piece, 11 ...... Central part, 12 ...... Tip part,
2 ... Shield ring, 3 ... Insulation spacer, 4 ... High voltage winding, 5,51 ... Void.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】円筒状の巻線と、この巻線の少なくとも一
方の端部に絶縁スペーサを介して設けられた導電体から
なるシールドリングと、この巻線の内径側に密接して周
方向に等間隔に配置された前記シールドリングを含めた
巻線の軸方向の全長にわたって設けられたダクトピース
とを備えたガス絶縁誘導電器において、 前記ダクトピースの前記シールドリングと対向する軸方
向先端部の外径側を切り欠いたことを特徴とするガス絶
縁誘導電器。
1. A cylindrical winding wire, a shield ring made of a conductor provided on at least one end of the winding wire through an insulating spacer, and in close contact with the inner diameter side of the winding wire in the circumferential direction. A gas-insulated induction electric machine, comprising: a duct piece provided over the entire length in the axial direction of a winding wire, including the shield ring arranged at equal intervals, in the axial tip end of the duct piece facing the shield ring. A gas-insulated induction electric appliance characterized in that the outer diameter side is cut away.
JP1989079257U 1989-07-05 1989-07-05 Gas insulated induction Expired - Lifetime JPH071784Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989079257U JPH071784Y2 (en) 1989-07-05 1989-07-05 Gas insulated induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989079257U JPH071784Y2 (en) 1989-07-05 1989-07-05 Gas insulated induction

Publications (2)

Publication Number Publication Date
JPH0320418U JPH0320418U (en) 1991-02-28
JPH071784Y2 true JPH071784Y2 (en) 1995-01-18

Family

ID=31623254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989079257U Expired - Lifetime JPH071784Y2 (en) 1989-07-05 1989-07-05 Gas insulated induction

Country Status (1)

Country Link
JP (1) JPH071784Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619382U (en) * 1979-07-25 1981-02-20
JPS59222913A (en) * 1983-06-01 1984-12-14 Hitachi Ltd Insulation structure for winding end of gas-insulated transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619382U (en) * 1979-07-25 1981-02-20
JPS59222913A (en) * 1983-06-01 1984-12-14 Hitachi Ltd Insulation structure for winding end of gas-insulated transformer

Also Published As

Publication number Publication date
JPH0320418U (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US4540967A (en) Molded transformer with grounded electrically conductive layer
JPH071784Y2 (en) Gas insulated induction
WO2020053931A1 (en) Static inductor
JP2728162B2 (en) Transformer for DC transmission
JP2530057B2 (en) Gas insulated transformer
US4047139A (en) Transformers of large capacity for ultra-high voltages
JPH0314028Y2 (en)
JPS62144307A (en) Oil immersed induction machine
JPS5832255Y2 (en) Three-phase gas-insulated instrument transformer
JPH05190354A (en) Stationary induction machine
JPS61224302A (en) Stationary induction electric apparatus
US3011012A (en) Shielded electrical leads
JP3522290B2 (en) Disk winding
JPH0782947B2 (en) Oil-filled induction winding
JPH0129781Y2 (en)
JPH1041143A (en) Oil containing electric apparatus
JPH0254908A (en) Gas insulated transformer
JPH071772Y2 (en) Stationary induction
JPS6344283B2 (en)
JP2000091131A (en) Gas insulating transformer
JPH07183140A (en) Static induction electrical apparatus
JPH03138916A (en) Static induction device
JPS5926582Y2 (en) oil-filled electrical equipment
JPH04123411A (en) Transformer windings
JPH03114209A (en) Static induction machine