JPH07176306A - Alkaline dry battery - Google Patents

Alkaline dry battery

Info

Publication number
JPH07176306A
JPH07176306A JP6457792A JP6457792A JPH07176306A JP H07176306 A JPH07176306 A JP H07176306A JP 6457792 A JP6457792 A JP 6457792A JP 6457792 A JP6457792 A JP 6457792A JP H07176306 A JPH07176306 A JP H07176306A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
dry battery
alkaline dry
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6457792A
Other languages
Japanese (ja)
Other versions
JP2956345B2 (en
Inventor
Tomoya Watanabe
朋也 渡邊
Kazutoshi Okubo
一利 大久保
Koichi Inoue
孝一 井上
Kohei Kitagawa
幸平 北川
Keisuke Tanaka
啓介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6457792A priority Critical patent/JP2956345B2/en
Priority to US07/958,717 priority patent/US5445908A/en
Priority to AU26368/92A priority patent/AU641597B2/en
Priority to EP92117547A priority patent/EP0537709B1/en
Priority to CA002080550A priority patent/CA2080550C/en
Priority to DE69224579T priority patent/DE69224579T2/en
Priority to KR1019920018949A priority patent/KR0150230B1/en
Priority to CN92111516A priority patent/CN1042378C/en
Publication of JPH07176306A publication Critical patent/JPH07176306A/en
Application granted granted Critical
Publication of JP2956345B2 publication Critical patent/JP2956345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline dry battery suppressing the hydrogen gas generated from a current collector and excellent in leak-resistant characteristic by using a zinc alloy added with no mercury for a negative electrode active material, and using copper or a copper alloy for a negative electrode current collector (referred to as a current collector hereafter). CONSTITUTION:A zinc alloy added with no mercury is used for the active material of a gelatinous zinc negative electrode 2, copper or a copper alloy is mainly used for a current collector 4 in this alkaline dry battery, Cu having high hydrogen overvoltage is applied on the surface of the current collector 4 at 0.10mum or above by electroless plating. The Fe, Cr, Co, Mo, W, and their oxides fixed or bitten on the surface of the current collector 4 are shielded, and the alkaline dry battery suppressing the generation of hydrogen gas and excellent in leak-resistant characteristic is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ乾電池に関し、
特に負極活物質が水銀無添加の亜鉛合金粉末である電池
の、電池内における水素ガス発生を抑制し、耐漏液特性
を向上させたアルカリ乾電池に関する。
FIELD OF THE INVENTION The present invention relates to an alkaline dry battery,
Particularly, the present invention relates to an alkaline dry battery in which hydrogen gas generation is suppressed in a battery in which the negative electrode active material is a zinc alloy powder containing no mercury and the leakage resistance is improved.

【0002】[0002]

【従来の技術】亜鉛を負極活物質として用いたアルカリ
乾電池においては、亜鉛の腐食反応により、電池保存中
に水素ガスが発生し、電池内圧が増加して電解液を外部
へ押し出し、耐漏液特性が低下するという問題があり、
場合によっては電池の破裂現象を伴う危険性もあった。
2. Description of the Related Art In alkaline dry batteries using zinc as a negative electrode active material, hydrogen gas is generated during storage of the battery due to the corrosion reaction of zinc, the internal pressure of the battery increases, and the electrolyte is pushed out to the outside to prevent leakage. Has the problem that
In some cases, there was a risk of the battery bursting.

【0003】その対策として、負極活物質である亜鉛の
水素過電圧を高め、亜鉛の腐食を防止し電池内部の水素
ガス発生を抑制する目的で水銀を添加した汞化亜鉛粉末
を負極活物質として用いることが一般的に行われてき
た。この亜鉛負極の負極集電体(以下集電体という)
も、従来から銅あるいは銅合金などの材質が一般に使用
され、汞化亜鉛負極に接触することにより集電体表面が
汞化されていた。さらに亜鉛の腐食を助長する集電体表
面の不純物、特にFe,Ni,Cr,Co,Mo,Wま
たは、これらの酸化物を除去し、水素ガスの発生を抑制
するために、電池組立前に集電体表面をアルカリ脱脂洗
浄や酸または過酸化水素などの化学研磨液で研磨する方
法が用いられたり、また、水素過電圧の高い金属を電解
メッキした集電体が提案されている。
As a countermeasure, zinc hydride powder to which mercury is added is used as a negative electrode active material for the purpose of increasing hydrogen overvoltage of zinc which is a negative electrode active material, preventing corrosion of zinc and suppressing generation of hydrogen gas inside the battery. Things have generally been done. Negative electrode current collector of this zinc negative electrode (hereinafter referred to as current collector)
Also, conventionally, a material such as copper or a copper alloy has been generally used, and the surface of the current collector has been selected by contact with a zinc hydride negative electrode. Further, in order to remove impurities such as Fe, Ni, Cr, Co, Mo, W or their oxides, which promotes corrosion of zinc, on the surface of the current collector, and suppress the generation of hydrogen gas, before the battery is assembled. A method of cleaning the surface of the current collector with an alkaline degreasing solution or polishing with a chemical polishing liquid such as acid or hydrogen peroxide, or a current collector in which a metal having a high hydrogen overvoltage is electrolytically plated is proposed.

【0004】しかしながら、上記従来のような集電体の
洗浄,化学研磨による方法、または水素過電圧の高い金
属を電解メッキした集電体によっても、水銀無添加の亜
鉛合金粉末では耐食性に優れ、しかも製品品質のばらつ
きを低減し、安定化を高い水準で達成したアルカリ乾電
池を得るには至っていなかった。その理由を以下に述べ
る。
However, even with the conventional methods of cleaning and chemically polishing the current collector or the current collector electrolytically plated with a metal having a high hydrogen overvoltage, the zinc alloy powder containing no mercury has excellent corrosion resistance, and It has not been possible to obtain an alkaline dry battery that reduces the variation in product quality and achieves a high level of stabilization. The reason will be described below.

【0005】[0005]

【発明が解決しようとする課題】アルカリ乾電池の集電
体として、一般的に銅または真鍮などの銅合金を主体と
する集電体が用いられているが、図2において、線材2
0を所定の線径にするために一般的に図2に示すような
数段階の伸線製造工程により絞り加工したものが使用さ
れている。これらの絞り加工金型10は通常、超鋼ある
いは熱間工具鋼が使われるため、これにより造られた集
電体の表面には鉄,ニッケルなどの金属の微細片が付着
し、しかもその微細片は集電体表面に食い込んで固着し
ている場合が多い。
Generally, a current collector mainly composed of copper or a copper alloy such as brass is used as a current collector of an alkaline dry battery. In FIG.
In order to set 0 to a predetermined wire diameter, generally, one drawn by several steps of wire drawing manufacturing process as shown in FIG. 2 is used. Since these drawing dies 10 are usually made of super steel or hot work tool steel, fine particles of metal such as iron and nickel adhere to the surface of the current collector produced by the super fine steel or hot work tool steel. In many cases, the piece bites into the surface of the current collector and adheres to it.

【0006】従って、従来の方法である集電体のアルカ
リ脱脂処理ではそれらの微細片を完全に除去できず、電
池の組立後において水素ガスの発生要因となる。
Therefore, in the conventional method, the alkaline degreasing treatment of the current collector cannot completely remove the fine particles, which becomes a cause of generation of hydrogen gas after the battery is assembled.

【0007】また、清浄作用により効果的な酸や化学研
磨材による研磨でも、前記微細片が負極集電体の表面で
深く食い込んで固着しているものは完全に除去できず、
水素ガスの発生要因となる。
Further, even when polishing with an acid or a chemical polishing material which is effective for the cleaning action, it is impossible to completely remove the fine particles which are deeply invaded and fixed on the surface of the negative electrode current collector.
It becomes a factor of generating hydrogen gas.

【0008】また、種々の電解条件での電解メッキを施
した集電体の場合、表面に付着し露出したFe,Ni,
Cr,Mo,Wまたは、これらの酸化物は隠蔽できるが
深く食いこんだFe,Ni,Cr,Co,Mo,Wまた
は、これらの酸化物上にはメッキができず、メッキ表面
に発生するピンホールより上記同様水素ガスの発生を増
大させることになる。本発明は上記従来の問題を解決す
るもので、アルカリ乾電池に水銀無添加の亜鉛合金粉末
を用いても、水素ガスの発生を抑制して耐漏液特性に優
れ、しかも製品品質のばらつきを低減し安定化させたア
ルカリ乾電池を提供することを目的とする。
Further, in the case of current collectors electrolytically plated under various electrolytic conditions, Fe, Ni,
Cr, Mo, W or oxides of these which can be hidden, but which dig deeply Fe, Ni, Cr, Co, Mo, W or pins which cannot be plated on these oxides and are generated on the plating surface As in the above case, the generation of hydrogen gas is increased from the holes. The present invention solves the above-mentioned conventional problems. Even when a mercury-free zinc alloy powder is used in an alkaline dry battery, generation of hydrogen gas is suppressed, liquid leakage resistance is excellent, and variation in product quality is reduced. An object is to provide a stabilized alkaline dry battery.

【0009】[0009]

【課題を解決するための手段】本発明者らはこの目的に
沿って鋭意研究の結果、水銀無添加の亜鉛合金粉末をア
ルカリ乾電池に用いた場合、集電体表面に固着する不純
物、特に集電体用の線材の伸線製造工程で容易に固着し
得るFe,Ni,Cr,Co,Mo,Wまたは、これら
の酸化物などの微細片が、水素の発生を増大させること
がわかった。しかも水素ガスが連続的に発生する部位は
不純物が集電体の表面に微量偏在する場所であることを
突き止めた。これらの知見より、集電体の表面に固着す
る不純物を水素過電圧の高いCuを無電解メッキするこ
とで隠蔽することにより水素の発生を抑制し、耐食性を
向上させることができることから本発明に到達した。
Means for Solving the Problems The inventors of the present invention have made earnest studies in accordance with this object. As a result, when a mercury-free zinc alloy powder was used in an alkaline dry battery, impurities adhered to the surface of the current collector, especially It has been found that fine particles such as Fe, Ni, Cr, Co, Mo, W or oxides thereof which can be easily fixed in the wire drawing manufacturing process of electric wires increase hydrogen generation. Moreover, it was found that the portion where hydrogen gas is continuously generated is a portion where impurities are unevenly distributed on the surface of the current collector. From these findings, it is possible to suppress the generation of hydrogen and improve the corrosion resistance by concealing the impurities sticking to the surface of the current collector by electroless plating of Cu having a high hydrogen overvoltage, and thus the present invention is reached. did.

【0010】[0010]

【作用】銅または銅合金を主体とする集電体の表面にF
e,Ni,Cr,Co,Mo,Wまたは、これらの酸化
物の微細片が付着すると、その微細片は水素過電圧が小
さいので、アルカリ乾電池の亜鉛負極中にこの集電体を
挿入すると、水素ガスが発生する。
[Function] F on the surface of the current collector mainly composed of copper or copper alloy
When fine particles of e, Ni, Cr, Co, Mo, W or these oxides adhere, the fine particles have a small hydrogen overvoltage. Therefore, when this current collector is inserted into the zinc negative electrode of an alkaline dry battery, hydrogen Gas is generated.

【0011】特に水銀無添加の亜鉛合金粉末をアルカリ
乾電池用負極活物質に用いると、汞化した亜鉛合金粉末
に比べて水素ガスの発生が著しい。そこで前記集電体に
おいて、その製造工程で固着、食い込んだ微細なFe,
Ni,Co,Mo,Wまたは、これらの酸化物を水素過
電圧の高いCuで無電解メッキすることにより、その特
徴である集電体のきずの深部または、くぼんだ深部まで
比較的均一にメッキでき、固着および、食い込んだ微細
な不純物を水素過電圧の高いCuで被い隠蔽することが
できる。
Particularly, when a mercury-free zinc alloy powder is used as a negative electrode active material for an alkaline dry battery, hydrogen gas is remarkably generated as compared with the screened zinc alloy powder. Therefore, in the current collector, fine Fe, which is fixed and bites in the manufacturing process,
By electrolessly plating Ni, Co, Mo, W or these oxides with Cu having a high hydrogen overvoltage, it is possible to relatively uniformly plate the flaws or recesses of the current collector, which is the feature of the plating. It is possible to cover and adhere the fine impurities that have adhered and cut into the surface with Cu having a high hydrogen overvoltage.

【0012】[0012]

【実施例】以下、本発明の一実施例のアルカリ乾電池に
ついて図面に基づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An alkaline dry battery according to an embodiment of the present invention will be specifically described below with reference to the drawings.

【0013】図2に示す製造工程で得られた真鍮製の集
電体用線材30を直径1.5mm長さ30mmに加工した集
電体を硫酸銅,酒石酸ナトリウムカリウム,水酸化ナト
リウム,ホルムアルデヒド,チオ尿素より作成したメッ
キ液により無電解Cuメッキし、メッキ厚さ0.05μ
m,0.10μm.0.15μm,0.20μm.を用
意した。
A brass current collector wire 30 obtained in the manufacturing process shown in FIG. 2 was processed into a collector having a diameter of 1.5 mm and a length of 30 mm, and a copper sulfate, sodium potassium tartrate, sodium hydroxide, formaldehyde, Electroless Cu plating with a plating solution made from thiourea, plating thickness 0.05μ
m, 0.10 μm. 0.15 μm, 0.20 μm. Prepared.

【0014】こうして得られた集電体を図1に示すアル
カリマンガン乾電池LR6型に用いて本実施例1,2,
3,4とした。図1において、1は二酸化マンガンに導
電材として黒鉛を添加し成形した正極合剤、2は水酸化
カリウムを溶解させたアルカリ電解液にゲル化剤ととも
に、水銀無添加の亜鉛合金粉末を分散させたゲル状亜鉛
負極である。3は正極合剤1とゲル亜鉛負極2との間に
介したセパレータ、4は負極集電体、5は正極端子キャ
ップ、6は金属ケース、7は電池の外装缶、8は封口ガ
スケット、9は負極端子をなす底板である。
The current collector thus obtained was used for the alkaline manganese dry battery LR6 type shown in FIG.
It was set to 3 and 4. In FIG. 1, 1 is a positive electrode mixture prepared by adding manganese dioxide to which graphite is added as a conductive material, and 2 is a gelling agent in an alkaline electrolyte solution in which potassium hydroxide is dissolved, and a zinc alloy powder containing no mercury dispersed therein. It is a gelled zinc negative electrode. 3 is a separator interposed between the positive electrode mixture 1 and the gel zinc negative electrode 2, 4 is a negative electrode current collector, 5 is a positive electrode terminal cap, 6 is a metal case, 7 is a battery outer can, 8 is a sealing gasket, 9 Is a bottom plate forming a negative electrode terminal.

【0015】比較例として、次の2種の負極集電体4を
用い実施例と同様にしてアルカリ乾電池LR6型を組み
立てた。
As a comparative example, an alkaline dry battery LR6 type was assembled using the following two types of negative electrode current collectors 4 in the same manner as in the example.

【0016】比較例Aは過酸化水素,硫酸の混液で化学
研磨した真鍮製集電体、比較例Bは電解法によりCuメ
ッキ(5μm)した真鍮製集電棒である。
Comparative example A is a brass current collector chemically polished with a mixed solution of hydrogen peroxide and sulfuric acid, and comparative example B is a brass current collector rod plated with Cu (5 μm) by an electrolytic method.

【0017】このようにして、本実施例1,2,3,4
および比較例A,Bの電池各10000個を常温に3ヶ
月貯蔵した後の漏液個数(目視判定)の結果を表1に示
す。
In this way, the present embodiment 1, 2, 3, 4
Table 1 shows the results of the number of leaked liquids (visual judgment) after the 10,000 batteries each of Comparative Examples A and B were stored at room temperature for 3 months.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示す結果より、本実施例は集電体4
の無電解メッキ、そのメッキ厚が0.1μm以上のもの
はまったく漏液せず、実用的な耐漏液特性が確保でき
る。しかし、0.05μmでは漏液が発生した。また、
漏液した電池は多量のガスを発生しており集電体4の表
面からFe,Ni,Crなどが検出された。これは0.
05μm以下では表面に食い込んでいるFe,Ni,C
rなどの微細片が無電解メッキのCuで完全に隠蔽でき
ないためと考えられる。一方、比較例A,Bにおいては
多数の漏液が発生し、いずれの集電体表面からもFe,
Cr,Niなどが検出された。この理由として、比較例
Aの化学研磨では表面に付着した程度の微細不純物であ
れば除去可能であるが、表面に深く食い込んだものにつ
いては溶解除去できなかったと考えられる。また、比較
例Bの真鍮地に電解Cuメッキを施したものは無電解メ
ッキと異なりくぼんだところに存在するFe,Cr,N
iなどがCuにより隠蔽できなかったためと思われる。
From the results shown in Table 1, this example shows that the current collector 4
The electroless plating with the plating thickness of 0.1 μm or more does not leak at all, and practical leakproof characteristics can be secured. However, liquid leakage occurred at 0.05 μm. Also,
The leaked battery generated a large amount of gas, and Fe, Ni, Cr, etc. were detected on the surface of the current collector 4. This is 0.
Fe, Ni, C that penetrate into the surface when the thickness is less than 05 μm
It is considered that fine pieces such as r cannot be completely covered with Cu of electroless plating. On the other hand, in Comparative Examples A and B, many liquid leaks were generated, and Fe, Fe,
Cr, Ni, etc. were detected. It is considered that the reason for this is that, in the chemical polishing of Comparative Example A, fine impurities that adhere to the surface can be removed, but those that have deeply penetrated into the surface could not be dissolved and removed. Further, the brass base material of Comparative Example B plated with electrolytic Cu is different from the electroless plating in that Fe, Cr, and N are present in the recesses.
It is considered that i and the like could not be hidden by Cu.

【0020】[0020]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明のアルカリ乾電池によれば、水銀無添加の亜
鉛合金粉末をアルカリ乾電池の負極活物質に用いても、
水素ガスの発生を抑制し、耐漏液特性に優れた良品質の
製品を提供できる。
As is apparent from the above description of the embodiments, according to the alkaline dry battery of the present invention, even if the mercury-free zinc alloy powder is used as the negative electrode active material of the alkaline dry battery,
It is possible to provide a good quality product that suppresses the generation of hydrogen gas and has excellent leakage resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のアルカリ乾電池(LR6
型)の縦断面図
FIG. 1 shows an alkaline dry battery (LR6) according to an embodiment of the present invention.
Type) vertical sectional view

【図2】本発明の一実施例および従来のアルカリ乾電池
に用いる負極集電体用線材の伸線製造工程と同工程中の
要部拡大断面を示す図
FIG. 2 is a drawing showing an enlarged cross-section of a main part of a wire drawing manufacturing process of a wire material for a negative electrode current collector used in an embodiment of the present invention and a conventional alkaline dry battery.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 ゲル状亜鉛負極 3 セパレータ 4 負極集電体 1 Positive Electrode Mixture 2 Gel Zinc Negative Electrode 3 Separator 4 Negative Electrode Current Collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 幸平 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田中 啓介 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kohei Kitagawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Keisuke Tanaka, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電池の中心部に設けた負極活物質として
水銀無添加の亜鉛合金粉末をゲル状アルカリ電解液に混
合分散した負極と、この負極の外周にセパレータを介し
て設けた正極と、前記負極内に集電体として挿入された
銅または銅合金を主体とする負極集電体とを備えたアル
カリ乾電池であって、表面に銅を無電解メッキした前記
負極集電体を備えたアルカリ乾電池。
1. A negative electrode in which a mercury-free zinc alloy powder is mixed and dispersed in a gelled alkaline electrolyte as a negative electrode active material provided in the center of a battery, and a positive electrode provided on the outer periphery of the negative electrode via a separator. An alkaline dry battery comprising a negative electrode current collector mainly composed of copper or a copper alloy inserted as a current collector in the negative electrode, the alkali comprising a negative electrode current collector having electrolessly plated copper on its surface. Dry batteries.
【請求項2】 銅無電解メッキ厚が0.1μm以上であ
る請求項1記載のアルカリ乾電池。
2. The alkaline dry battery according to claim 1, which has a copper electroless plating thickness of 0.1 μm or more.
JP6457792A 1991-10-17 1992-03-23 Alkaline batteries Expired - Fee Related JP2956345B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6457792A JP2956345B2 (en) 1992-03-23 1992-03-23 Alkaline batteries
US07/958,717 US5445908A (en) 1991-10-17 1992-10-09 Alkaline dry cell
AU26368/92A AU641597B2 (en) 1991-10-17 1992-10-13 Alkaline dry cell
CA002080550A CA2080550C (en) 1991-10-17 1992-10-14 Alkaline dry cell
EP92117547A EP0537709B1 (en) 1991-10-17 1992-10-14 Alkaline dry cell
DE69224579T DE69224579T2 (en) 1991-10-17 1992-10-14 Alkaline dry cell
KR1019920018949A KR0150230B1 (en) 1991-10-17 1992-10-15 Alkaline dry cell
CN92111516A CN1042378C (en) 1991-10-17 1992-10-17 Alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6457792A JP2956345B2 (en) 1992-03-23 1992-03-23 Alkaline batteries

Publications (2)

Publication Number Publication Date
JPH07176306A true JPH07176306A (en) 1995-07-14
JP2956345B2 JP2956345B2 (en) 1999-10-04

Family

ID=13262232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6457792A Expired - Fee Related JP2956345B2 (en) 1991-10-17 1992-03-23 Alkaline batteries

Country Status (1)

Country Link
JP (1) JP2956345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196363A (en) * 2005-01-14 2006-07-27 Fdk Energy Co Ltd Fixed electric capacity alkaline dry battery
JP2011076978A (en) * 2009-10-01 2011-04-14 Panasonic Corp Alkaline dry battery, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196363A (en) * 2005-01-14 2006-07-27 Fdk Energy Co Ltd Fixed electric capacity alkaline dry battery
JP2011076978A (en) * 2009-10-01 2011-04-14 Panasonic Corp Alkaline dry battery, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2956345B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR0150230B1 (en) Alkaline dry cell
EP1430562B1 (en) Zinc/air cell
JP2770396B2 (en) Zinc alkaline battery
JPH05109411A (en) Alkaline dry battery
JPH0620694A (en) Alkaline dry battery
JP2956345B2 (en) Alkaline batteries
JPH07326358A (en) Alkaline battery
JPH0729573A (en) Manufacture of alkaline battery
JP2008034370A (en) Electrochemical element
JPH05109410A (en) Alkaline dry battery
JPH06275280A (en) Alkaline battery
JP3060141B2 (en) Manufacturing method of alkaline batteries
JP2946874B2 (en) Mercury-free alkaline batteries
JP2006179430A (en) Zinc alloy powder for alkaline battery
JP2946894B2 (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JPH0620687A (en) Alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JPS60221958A (en) Alkaline battery with no added mercury
JPH09129200A (en) Button type alkaline battery
JPS6141099B2 (en)
JPH07254396A (en) Button type alkaline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees