JPH07175848A - Automatically designing device for irradiation direction of floodlighting apparatus - Google Patents

Automatically designing device for irradiation direction of floodlighting apparatus

Info

Publication number
JPH07175848A
JPH07175848A JP5318588A JP31858893A JPH07175848A JP H07175848 A JPH07175848 A JP H07175848A JP 5318588 A JP5318588 A JP 5318588A JP 31858893 A JP31858893 A JP 31858893A JP H07175848 A JPH07175848 A JP H07175848A
Authority
JP
Japan
Prior art keywords
floodlighting
light distribution
lighting
group
fixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5318588A
Other languages
Japanese (ja)
Inventor
Masanori Shimizu
正則 清水
Yoshinori Tanabe
吉徳 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5318588A priority Critical patent/JPH07175848A/en
Publication of JPH07175848A publication Critical patent/JPH07175848A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PURPOSE:To provide an automatically irradiation direction designing device for floodlighting apparatus practical in use and with wide application ranges even for complicated lighting design conditions. CONSTITUTION:Floodlighting apparatus group entire light distribution deriving parts a 3-d 6 selected by a processing procedure selection means a 2 are operated at every satisfaction of a design condition inputted by a floodlighting design condition input part 1, and the entire light distribution of a floodlighting apparatus group is calculated. Lighting direction decision parts a 11-b 12 selected by a processing procedure selection means b 10 are operated by using a floodlighting apparatus inputted by a floodlighting apparatus light distribution input part 8, and the lighting direction of the floodlighting apparatus can be decided. Furthermore, it is decided whether or not such result can be further optimized by using secondary processing parts a 14-b 15 by a processing procedure selection means (c), and a floodlighting design result is outputted from a final result output part 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投光照明器具照射方向
自動設計装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for automatically designing an irradiation direction of a floodlighting fixture.

【0002】[0002]

【従来の技術】従来、電子計算機を利用した、投光照明
器具の照射方向自動設計装置には、William E.Bracket
t,Automatic flood light aiming optimization,JOURNA
L OF IES,JULY 1978,P223.で発表された、線形計画法の
アルゴリズムを利用したものが知られている。
2. Description of the Related Art Conventionally, William E. Bracket has been used as an automatic irradiation direction designing device for floodlighting luminaires using an electronic computer.
t, Automatic flood light aiming optimization, JOURNA
It is known to use the algorithm of linear programming, which was published in L OF IES, JULY 1978, P223.

【0003】[0003]

【発明が解決しようとする課題】しかし、この手法では
線形計画法の計算プロセスを電子計算機により解く際
に、投光照明器具の照射方向設計の条件が複雑になるほ
ど、指数関数的に多大なコンピュータパワーが必要とな
り実用化が困難であった。
However, in this method, when the calculation process of the linear programming method is solved by an electronic computer, the more complicated the conditions for designing the irradiation direction of the floodlighting luminaire, the more exponentially a large computer. Power was needed and practical application was difficult.

【0004】本発明は、このような従来の自動設計装置
の課題を考慮し、照明設計条件が複雑なものに対しても
実用的で適用範囲の広い投光照明器具照射方向自動設計
装置を提供することを目的とする。
In consideration of the above problems of the conventional automatic designing apparatus, the present invention provides a floodlighting lighting apparatus irradiation direction automatic designing apparatus which is practical and has a wide range of application even for complicated lighting design conditions. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の投光照明器具照射方向自動設計装置は、投光
照明器具群全体の配光を照明諸元から逆算した中間状態
が、投光照明器具個々の配光で投光照明器具群全体の配
光を近似する最終状態を規定するごとく、最適性原理に
従った動的計画法のアルゴリズムを利用して構成されて
いる。すなわち、以下のような手段を持つ。
In order to achieve this object, the apparatus for automatically designing the irradiation direction of a floodlighting luminaire according to the present invention has an intermediate state in which the light distribution of the entire floodlighting luminaire group is calculated back from the illumination specifications. It is constructed by using an algorithm of dynamic programming according to the optimality principle so that the final state that approximates the light distribution of the whole floodlighting luminaire group by the light distribution of each floodlighting luminaire is defined. That is, it has the following means.

【0006】請求項1においては、投光照明の投光照明
器具の照射方向自動設計装置が、被照射範囲と投光照明
器具群の幾何位置、および、設計目標照明諸元を入力す
る投光照明設計条件入力部、前記投光照明設計条件入力
部により入力された投光照明器具群の幾何位置に仮想光
度を持つ完全球面配光の点光源を仮定し、前記点光源に
より被照射範囲に与えられる仮想照度分布を関数とし
て、照明諸元を満足する投光照明器具群全体の配光を逆
算する投光照明器具群全体配光導出部、使用する投光照
明器具の配光を入力する使用投光照明器具配光入力部、
前記投光照明器具群全体配光導出部の出力を使用投光照
明器具配光入力部で入力された投光照明器具個々の配光
で近似する照射方向決定部からなり、投光照明器具照射
方向設計を、投光照明器具群全体の配光を仮想照度分布
を関数に、入力された照明諸元をみたすごとく逆算した
後、投光照明器具個々の配光で前記投光照明器具群全体
の配光を近似する。
According to a first aspect of the present invention, an apparatus for automatically designing an irradiation direction of a floodlighting fixture of a floodlight is configured to input a range to be illuminated, a geometric position of the floodlighting fixture group, and design target lighting specifications. Illumination design condition input unit, assuming a point source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the floodlighting lighting fixture group input by the floodlighting design condition input unit, and irradiating range by the point light source Using the given virtual illuminance distribution as a function, input the light distribution of the whole floodlighting fixture group to calculate the light distribution of the whole floodlighting fixture group that satisfies the lighting specifications, and the light distribution of the floodlighting fixture to be used. Use floodlighting equipment light distribution input section,
The output of the entire light distribution and deriving unit of the floodlighting luminaire group is used, and the illuminating light fixture irradiation includes an irradiation direction determining unit that approximates the light distribution of each of the floodlighting luminaires input by the light flooding luminaire light distribution input unit. The directional design is calculated by backcalculating the light distribution of the entire floodlighting luminaire group as a function of the virtual illuminance distribution as the input lighting specifications are calculated, and then the floodlighting luminaires are individually distributed to the entire floodlighting luminaire group. To approximate the light distribution of.

【0007】請求項2においては、請求項1の課題を解
決する手段の内、投光照明器具の照射方向自動設計装置
の投光照明器具群全体配光導出部において、投光照明設
計条件入力部に入力された投光照明器具群の幾何位置に
仮想光度を持つ完全球面配光の点光源を仮定し、前記点
光源により被照射範囲に与えられる仮想照度分布を、照
度は距離の2乗に逆比例するという物理法則の下で計算
し、被照射範囲の各位置毎に前記仮想照度を一番多く与
えた幾何位置の投光照明器具群が照明諸元を与えるごと
く投光照明器具群全体の配光を構成する、処理手続きを
持つ照明器具群全体配光導出部を有する。
According to a second aspect of the present invention, among the means for solving the problem of the first aspect, a floodlighting lighting design condition input is performed in a floodlighting lighting fixture group entire light distribution deriving unit of an irradiation direction automatic designing device for floodlighting lighting fixtures. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the floodlight lighting device group input to the section, the virtual illuminance distribution given to the illuminated range by the point light source is the square of the distance. Is calculated under the physical law of being inversely proportional to, and the floodlighting lighting fixture group is such that the floodlighting lighting fixture group at the geometrical position that gives the most virtual illuminance at each position of the illuminated range gives the illumination specifications. The lighting device group has an entire light distribution derivation unit having a processing procedure, which constitutes the entire light distribution.

【0008】請求項3においては、請求項1の課題を解
決する手段の内、投光照明器具の照射方向自動設計装置
の投光照明器具群全体配光導出部において、投光照明設
計条件入力部に入力された投光照明器具群の幾何位置に
仮想光度を持つ完全球面配光の点光源を仮定し、前記点
光源により被照射範囲に与えられる仮想照度分布を、照
度は距離の2乗に逆比例するという物理法則の2乗を−
4乗から4乗までの間で変化させて計算し、被照射範囲
の各位置毎の目標照明諸元を、前記仮想照度の比率で各
投光照明器具群毎に分割して与えるごとく投光照明器具
群全体の配光を構成する、処理手続きを持つ投光照明器
具群全体配光導出部を有する。
According to a third aspect of the present invention, among the means for solving the problem of the first aspect, the floodlighting lighting device group entire light distribution deriving unit of the irradiation direction automatic designing device for the floodlighting lighting device inputs the floodlighting design condition. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the floodlight lighting device group input to the section, the virtual illuminance distribution given to the illuminated range by the point light source is the square of the distance. The square of the physical law that is inversely proportional to
Projection is carried out by changing the calculation from the fourth power to the fourth power and dividing the target illumination specifications for each position of the irradiation range for each floodlighting luminaire group by the ratio of the virtual illuminance. It has a floodlighting luminaire group whole light distribution derivation | leading-out part which has a process procedure and comprises the light distribution of the whole luminaire group.

【0009】請求項4においては、請求項1の課題を解
決する手段の内、投光照明の照射方向自動設計装置の照
明器具群全体配光導出部において、投光照明設計条件入
力部に入力された投光照明器具群の幾何位置に仮想光度
を持つ完全球面配光の点光源を仮定し、前記点光源によ
り被照射範囲に与えられる仮想照度分布を、照度は距離
の2乗に逆比例するという物理法則の下で計算し、照射
範囲の各位置毎の目標照明諸元を目的関数に、前記仮想
照度を制限関数に設定し、各々の投光照明器具群全体の
配光を構成する、処理手続きを持つ投光照明器具群全体
配光導出部を有する。
According to a fourth aspect of the present invention, in the means for solving the problem of the first aspect, an input is made to a floodlight design condition input section in a whole lighting fixture group light distribution deriving section of an apparatus for automatically designing an irradiation direction of floodlight. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometric position of the floodlighting lighting device group, the virtual illuminance distribution given to the illuminated range by the point light source is the illuminance is inversely proportional to the square of the distance. The target lighting specifications for each position of the irradiation range are set as the objective function, and the virtual illuminance is set as the limiting function, and the light distribution of the entire floodlighting luminaire group is configured. , Has an entire light distribution derivation unit having a processing procedure.

【0010】請求項5においては、請求項2記載の投光
照明器具群全体配光導出部と請求項4記載の投光照明器
具群全体配光導出部とを同時に有し、前記二つの投光照
明器具群全体配光導出部の投光照明器具群全体の配光を
任意の比率で合成した結果を最終的な投光照明器具群全
体の配光として構成する、処理手続きを持つ投光照明器
具群全体配光導出部を有する。
According to a fifth aspect of the present invention, the floodlighting fixture group overall light distribution deriving unit according to the second aspect and the floodlighting luminaire group overall light distribution deriving unit according to the fourth aspect are provided at the same time. Light projection with a processing procedure that configures the result of combining the light distributions of the entire light distribution group of the light distribution group as the final light distribution of the entire light distribution group. The entire lighting fixture group has a light distribution derivation unit.

【0011】請求項6においては、請求項1から5のい
ずれかの項の課題を解決する手段に加え、投光照明器具
群全体配光導出部で得られた中間結果を出力する中間結
果出力部を有する。
According to a sixth aspect of the present invention, in addition to the means for solving the problem of any one of the first to fifth aspects, an intermediate result output for outputting the intermediate result obtained by the entire light distribution and deriving section of the floodlighting luminaire group. Parts.

【0012】請求項7においては、請求項1から6のい
ずれかの項の課題を解決する手段の内、投光照明器具照
射方向自動設計装置の照射方向決定部において、投光照
明器具群全体配光導出部で得られた投光照明器具群全体
の配光の最大光度点の位置に、使用投光照明器具配光入
力部で入力された使用投光照明器具の配光の最大光度点
を重ね合わせ、これを初期配光とし、前記投光照明器具
群全体の配光で得られた照明結果と、前記初期配光で得
られた照明結果との差分を最も多く与えた位置に、再び
使用投光照明器具配光入力部で入力された使用投光照明
器具の配光の最大光度点を重ね合わせ、これを新たな初
期配光とする手続きを、前記差分が最小化されるまで繰
り返すことにより、投光照明器具群全体の配光を、投光
照明器具個々の配光で近似する照射方向決定部を有す
る。
According to a seventh aspect of the present invention, in the means for solving the problem of any one of the first to sixth aspects, in the irradiation direction determining unit of the automatic irradiation device irradiation direction designing apparatus, the entire projection lighting device group is used. At the position of the maximum luminous intensity point of the light distribution of the entire floodlighting fixture group obtained by the light distribution derivation unit, the maximum luminous intensity point of the light distribution of the used floodlighting fixture input by the used floodlighting fixture light distribution input unit Are overlapped with each other, and this is the initial light distribution, and the lighting result obtained by the light distribution of the entire floodlighting lighting fixture group, and the position that gives the most difference between the lighting results obtained by the initial light distribution, Repeat the procedure for superimposing the maximum luminous intensity points of the distributions of the used floodlights input by the floodlighted light distribution input unit for use again, and setting this as a new initial light distribution until the difference is minimized. By repeating this, the light distribution of the entire group of floodlighting luminaires can be In having a radiation direction determining unit that approximates.

【0013】請求項8においては、請求項1から6のい
ずれかの項の課題を解決する手段の内、投光照明器具照
射方向自動設計装置の照射方向決定部において、使用投
光照明器具配光入力部で入力された、投光照明器具を任
意の個数かつ任意の方向に照射して投光照明器具全体配
光導出部で得られた投光照明器具群全体の配光を上回る
初期光度配光を得て後、前記投光照明器具群全体の配光
と前記初期光度配光による被照射範囲の照明結果の差分
を算出し、前記初期配光を構成した投光照明器の内、最
も差分を大きく与えた投光照明器具を消去し、これによ
り得られた配光を新たな初期配光とし、前記投光照明器
具群全体の配光と前記新たな初期配光による被照射範囲
の照明結果の差分を算出し、前記初期配光を構成した投
光照明器具の内、最も差分を大きく与えた投光照明器具
を消去する手続きを差分が最小化されるまで繰り返すこ
とにより、投光照明器具群全体の配光を、投光照明器具
個々の配光で近似する照射方向決定部を有する。
According to an eighth aspect of the present invention, among the means for solving the problems of any one of the first to sixth aspects, in the irradiation direction determining section of the apparatus for automatically designing the irradiation direction of the projection lighting equipment, the distribution of the lighting equipment used. The initial luminous intensity, which is input by the light input unit, exceeds the light distribution of the whole floodlighting fixture group obtained by irradiating the floodlighting fixtures in any number and in any direction. After obtaining the light distribution, the difference between the light distribution of the entire floodlighting lighting fixture group and the illumination result of the illuminated range by the initial luminous intensity light distribution is calculated, and among the floodlighting illuminators that configure the initial light distribution, The floodlighting fixture having the largest difference is erased, and the light distribution obtained thereby is set as a new initial light distribution, and the light distribution of the entire floodlighting fixture group and the irradiation range by the new initial light distribution are set. Calculate the difference of the illumination result of, of the floodlighting luminaire that constituted the initial light distribution, Is repeated until the difference is minimized, the light distribution of the entire floodlighting fixture group is approximated by the light distribution of each floodlighting fixture. It has a decision part.

【0014】請求項9においては、請求項7又は8記載
の投光照明の照射方向自動設計装置の照射方向決定部
が、使用投光照明器具配光入力部で入力された、投光照
明器具の配光のビーム角を検出し、ビーム光軸中心の被
照射範囲に対しての入射角が深い場合に、使用投光照明
器具配光入力部で入力されたビーム角の広い広角配光の
照明器具を照射し、ビーム光軸中心の被照射範囲に対し
ての入射角が浅い場合に、使用投光照明器具配光入力部
で入力されたビーム角の狭い狭角配光の照明器具を照射
するごとく、使用投光照明器具のビーム角が狭角化する
ほどビーム光軸中心の被照射範囲に対しての入射角を浅
く設定する処理手続を有する。
According to a ninth aspect of the present invention, there is provided a floodlighting fixture, wherein the illumination direction determining unit of the apparatus for automatically designing the illumination direction of the floodlight according to claim 7 or 8 is input by a floodlighting fixture light distribution input unit used. The beam angle of the light distribution is detected, and when the incident angle with respect to the irradiation range at the center of the beam optical axis is deep, When illuminating a luminaire and the incident angle to the irradiated area around the beam optical axis is shallow, use a illuminator with a narrow-angle light distribution with a narrow beam angle input at the floodlight illuminator light distribution input section. For each irradiation, there is a processing procedure for setting the incident angle with respect to the irradiation range around the center of the beam optical axis to be shallower as the beam angle of the floodlighting fixture used becomes narrower.

【0015】請求項10においては、請求項1から9の
いずれかの項の投光照明器具照射方向自動設計装置にお
いて、投光照明器具群全体配光導出部の出力を使用投光
照明器具配光入力部で入力された投光照明器具個々の配
光で近似する照射方向決定部からの出力を合成し、投光
照明器具照射方向設計を行った後の被照射範囲の照明結
果を算出し、投光照明器具照射方向設計を行った後の被
照射範囲の照明結果と、照明諸元との差分の内、最も過
剰に差分が大きい被照射範囲の位置の投光照明器具の照
射方向を削除し、投光照明照射方向設計を行った後の被
照射範囲の照明結果と照明諸元との差を最小化する、二
次処理部を有する。
According to a tenth aspect of the invention, in the apparatus for automatically designing the irradiation direction of the floodlighting equipment according to any one of the first to ninth aspects, the output of the entire light distribution deriving section of the floodlighting equipment group is used. The output from the irradiation direction determination unit, which is approximated by the light distribution of each of the floodlighting luminaires input by the light input unit, is combined to calculate the lighting result of the irradiation range after the irradiation direction of the floodlighting luminaire is designed. , The projection direction of the floodlighting luminaire at the position of the irradiating range that has the largest difference among the differences between the illumination results after designing the projection direction of the floodlighting luminaire and the lighting specifications. A secondary processing unit is provided that minimizes the difference between the illumination result and the illumination specifications of the illuminated area after the removal and the illumination projection illumination direction design.

【0016】請求項11においては、請求項1から9の
いずれかに記載の投光照明器具照射方向自動設計装置に
おいて、投光照明器具群全体配光導出部の出力を使用投
光照明器具配光入力部で入力された投光照明器具個々の
配光で近似する照射方向決定部からの出力を合成し、投
光照明器具照射方向設計を行った後の被照射範囲の照明
結果を算出し、投光照明器具照射方向設計を行った後の
被照射範囲の照明結果と、照明諸元との差分の内、最も
過小に差分が大きい被照射範囲の位置に投光照明器具の
照射方向を追加し、投光照明照射方向設計を行った後の
被照射範囲の照明結果と照明諸元との差を最小化する、
二次処理部を有する。
In the eleventh aspect of the present invention, in the apparatus for automatically designing the irradiation direction of the floodlighting equipment according to any one of the first to ninth aspects, the output of the entire light distribution deriving unit of the floodlighting equipment group is used. The output from the irradiation direction determination unit, which is approximated by the light distribution of each of the floodlighting luminaires input by the light input unit, is combined to calculate the lighting result of the irradiation range after the irradiation direction of the floodlighting luminaire is designed. , The projection direction of the projection lighting fixture is set to the position of the irradiation range that has the smallest difference among the differences between the illumination results after designing the projection direction of the projection lighting fixture and the lighting specifications. In addition, minimize the difference between the illumination result and the illumination specifications of the illuminated area after performing the floodlight illumination direction design.
It has a secondary processing unit.

【0017】請求項12においては、被照射範囲と投光
照明器具群の幾何位置、および、設計目標証明諸元を入
力する投光照明設計条件入力部、前記投光照明設計条件
入力部により入力された投光照明器具群の幾何位置に仮
想光度を持つ完全球面配光の点光源を仮定し、前記点光
源により被照射範囲に与えられる仮想照度分布を関数と
して、照明諸元を満足する投光照明器具群全体の配光を
逆算する請求項2から5のいれかに記載の記載の投光照
明器具群全体配光導出部、請求項6記載の中間結果出力
部、請求項1記載の使用投光照明器具配光入力部、前記
投光照明器具群全体配光導出部の出力を使用投光照明器
具配光入力部で入力された投光照明器具個々の配光で近
似する請求項7から9のいずれかに記載の照射方向決定
部、個々の投光照明器具群全体の配光の近似結果を合成
した後の被照射範囲の照度分布と照明諸元の比較処理か
ら投光照明照射方向設計をより最適化する請求項10、
又は11に記載の二次処理部を有し、さらに、請求項2
から5のいずれかに記載の投光照明器具群全体配光導出
部のいずれの処理を行うかの処理手続き選択手段、請求
項7、又は8記載の照射方向決定部のいずれの処理を行
うかの処理手続き選択手段、前記選択手段により選択さ
れた照射方向決定部の処理に加え請求項9記載の照射方
向決定部の処理を行うか否かの処理手続き選択手段、請
求項10、又は11記載の二次処理部のいずれの処理を
行うか否かの処理手続き選択手段を有する。
According to a twelfth aspect of the present invention, the illumination range and the geometrical position of the floodlighting fixture group, and the floodlighting design condition input section for inputting design target proof specifications are input by the floodlighting design condition input section. Assuming a point light source of perfect spherical light distribution having a virtual light intensity at the geometric position of the projected floodlight luminaire group, a projection that satisfies the illumination specifications as a function of the virtual illuminance distribution given to the illuminated range by the point light source. The light distribution deriving unit according to any one of claims 2 to 5 for back-calculating the light distribution of the entire light lighting fixture group, the intermediate result output unit according to claim 6, and the first embodiment. A light-projecting-lighting-device light distribution input unit used, and an output of the whole light-projecting lighting device group light distribution deriving unit is approximated by light distribution of each light-projecting lighting device input at the light-projecting lighting device light distribution input unit. 7. The irradiation direction determination unit according to any one of 7 to 9 Claim 10 further optimize the floodlights radiation direction designed from the illuminance distribution and lighting specifications of comparison processing of the irradiated range after combining the approximate results of the light distribution of the entire instrument group,
Or the secondary processing unit according to claim 11, further comprising:
9. The processing procedure selecting unit for determining which process of the floodlighting luminaire group overall light distribution deriving unit according to any one of claims 1 to 5 and which process of the irradiation direction determining unit according to claim 7 or 8 to perform. 12. The processing procedure selecting means for determining whether or not the processing of the irradiation direction determining section according to claim 9 is performed in addition to the processing of the processing procedure selecting means according to claim 9 and the processing of the irradiation direction determining section selected by the selecting means. It has a processing procedure selecting means for determining which processing of the secondary processing unit of (1) is to be performed.

【0018】請求項13においては、請求項12記載の
投光照明の投光照明器具の照射方向自動設計装置におい
て、投光照明器具群全体配光導出部の出力に代え、既に
投光照明器具の照射方向が決定されている結果を、照射
方向決定部に入力する手段を有する。
According to a thirteenth aspect of the invention, in the apparatus for automatically designing the irradiation direction of the floodlighting luminaire according to the twelfth aspect of the invention, instead of the output of the entire light distribution deriving unit of the floodlighting luminaire group, the floodlighting luminaire is already used. It has a means for inputting the result of the irradiation direction being determined to the irradiation direction determination unit.

【0019】[0019]

【作用】本発明では、投光照明器具照射方向設計を、投
光照明器具群全体の配光を仮想照度分布を関数に、入力
された照明諸元をみたすごとく逆算した後、投光照明器
具個々の配光で前記投光照明器具群全体の配光を近似
し、さらに、個々の投光照明器具群全体の配光の記事結
果を合成した後の被照射範囲の照度分布と照明諸元の比
較処理から投光照明照射方向設計をより最適化する処理
を行う処理手続をもつ投光照明器具照射方向自動設計装
置を実現することで、投光照明器具照射方向設計を、投
光照明器具群全体の配光を照明諸元から逆算した中間状
態が、投光照明器具個々の配光で投光照明器具群全体の
配光を近似する最終状態を規定する、最適性原理に従っ
た動的計画法の処理で行うことができるようになった。
In the present invention, the illumination direction design of the floodlighting fixture is calculated by back-calculating the light distribution of the entire floodlighting fixture group as a function of the virtual illuminance distribution as a function of the input illumination specifications. The light distribution of the entire floodlighting luminaire group is approximated by each light distribution, and further, the illuminance distribution and the illumination specifications of the illuminated range after the result of the light distribution of the entire floodlighting luminaire group is combined By implementing an automatic floodlight lighting device irradiation direction design device that has a processing procedure that further optimizes the floodlight lighting irradiation direction design from the comparison processing of FIG. The operation according to the principle of optimality, in which the intermediate state obtained by back-calculating the light distribution of the entire group from the lighting specifications defines the final state that approximates the light distribution of the entire group of floodlighting luminaires by the light distribution of each floodlighting luminaire. Can now be done in the process of dynamic programming.

【0020】旧来の線形計画法による処理では、被照射
範囲全体に対してシンプレックス法のシンプレックステ
ーブルを組んでいたので、演算マトリックスが巨大なも
のとなり解の収斂には大型コンピュータクラスの演算能
力を要していたものが、本発明の動的計画法の処理に従
った投光照明器具照射方向自動設計装置では、シンプレ
ックス法を使用する場合においても、被照射範囲のある
点ごとに対しての演算となるので演算マトリックスは小
さくてよく、パーソナルコンピュータクラスの演算能力
でも実現可能となった。
In the processing by the conventional linear programming method, since the simplex table of the simplex method is constructed for the entire irradiation range, the calculation matrix becomes huge and the calculation ability of a large computer class is required to converge the solution. What has been done is that in the floodlight fixture irradiation direction automatic designing apparatus according to the processing of the dynamic programming method of the present invention, even when the simplex method is used, the calculation for each point in the irradiation range is performed. Therefore, the calculation matrix can be small, and can be realized even with the computing power of a personal computer class.

【0021】前記ある点の演算に六面照度の考えとG.
R.の考えを導入できたことにより半円筒面照度、円筒
面照度、半球面照度、球面照度を目標照明設計条件とお
いてもこれに柔軟に対応できる。
For the calculation of the certain point, the idea of the six-sided illuminance and G.
R. By introducing the above idea, the semi-cylindrical surface illuminance, the cylindrical surface illuminance, the hemispherical surface illuminance, and the spherical illuminance can be flexibly dealt with even if they are set as the target illumination design conditions.

【0022】また、動的計画法の処理プロセスが本発明
のように、適応的に選択が可能となったことで、応用範
囲が広いものとなった。
Further, since the processing process of the dynamic programming can be adaptively selected as in the present invention, the application range is widened.

【0023】さらに、広角型・中角型・狭角型の投光照
明器具を混在させて、より照明設計の最適化をはかるこ
とや、処理結果を二次利用して変則的な処理を行うこと
が可能となった。更に具体的に述べると、請求項1のご
とく、電子計算機からなる投光照明の投光照明器具の照
射方向自動設計装置において、被照射範囲と投光照明器
具群の幾何位置、および、設計目標照明諸元を入力する
投光照明設計条件入力部、前記投光照明設計条件入力部
により入力された投光照明器具群の幾何位置に仮想光度
を持つ完全球面配光の点光源を仮定し、前記点光源によ
り被照射範囲に与えられる仮想照度分布を関数として、
照明諸元を満足する投光照明器具群全体の配光を逆算す
る投光照明器具群全体配光導出部、使用する投光照明器
具の配光を入力する使用投光照明器具配光入力部、前記
投光照明器具群全体配光導出部の出力を使用投光照明器
具配光入力部で入力された投光照明器具個々の配光で近
似する照射方向決定部からなり、投光照明器具照射方向
設計を、投光照明器具群全体の配光を仮想照度分布を関
数に、入力された照明諸元をみたすごとく逆算した後、
投光照明器具個々の配光で前記投光照明器具群全体の配
光を近似する処理手続をもつことで、解の中間状態であ
る投光照明器具群全体の配光を、入力された照明諸元か
ら仮想照度分布を関数に、自動的に逆算することが可能
となる。この解の中間状態を利用して、解の最終状態で
ある投光照明器具の照射方向を、投光照明器具個々の配
光で投光照明器具群全体の配光を近似することで求める
ことが可能となる。すなわち、最適中間状態が最適最終
状態を規定するという最適性原理に従って、動的計画法
に基づいた投光照明器具照射方向の自動設計を具現化す
る事が可能となる。
Further, the wide-angle / medium-angle / narrow-angle floodlighting luminaires are mixed to optimize the lighting design, and the irregular processing is performed by secondarily utilizing the processing result. It has become possible. More specifically, as described in claim 1, in an automatic irradiation direction designing apparatus for a floodlighting luminaire, which comprises an electronic calculator, the irradiation range, the geometric position of the floodlighting luminaire group, and the design target. Assuming a point light source of perfect spherical light distribution having virtual luminosity at the geometric position of the floodlighting lighting fixture group input by the floodlighting design condition input unit for inputting illumination specifications, As a function of the virtual illuminance distribution given to the illuminated area by the point light source,
Floodlighting equipment group total light distribution derivation unit that back-calculates the light distribution of the whole floodlighting lighting equipment group that satisfies the lighting specifications, and floodlighting lighting equipment light distribution input unit that inputs the light distribution of the floodlighting lighting equipment to be used A projection direction determining unit that approximates the light distribution of each of the floodlighting fixtures input by the floodlighting fixture light distribution input unit using the output of the entire floodlighting fixture group After designing the irradiation direction, the light distribution of the entire floodlighting luminaire group is backcalculated as the input illumination specifications are evaluated using the virtual illuminance distribution as a function.
By providing a processing procedure for approximating the light distribution of the entire floodlighting luminaire group by the light distribution of each floodlighting luminaire, the light distribution of the entire floodlighting luminaire group, which is in the intermediate state of the solution, is input to the illumination. It is possible to automatically calculate the virtual illuminance distribution as a function from the specifications. Using the intermediate state of this solution, determine the irradiation direction of the floodlighting fixture, which is the final state of the solution, by approximating the light distribution of the entire floodlighting fixture group with the light distribution of each floodlighting fixture. Is possible. That is, it is possible to embody the automatic design of the irradiation direction of the floodlighting fixture based on the dynamic programming method according to the optimality principle that the optimal intermediate state defines the optimal final state.

【0024】請求項2のごとく、請求項1記載の投光照
明器具の照射方向自動設計装置の投光照明器具群全体配
光導出部において、投光照明設計条件入力部に入力され
た投光照明器具群の幾何位置に仮想光度を持つ完全球面
配光の点光源を仮定し、前記点光源により被照射範囲に
与えられる仮想照度分布を、照度は距離の2乗に逆比例
するという物理法則の下で計算し、被照射範囲の各位置
毎に前記仮想照度を一番多く与えた幾何位置の投光照明
器具群が照明諸元を与えるごとく投光照明器具群全体の
配光を構成する、処理手続きを持つ照明器具群全体配光
導出部を有することを特徴とした投光照明器具照射方向
自動設計装置を構成した場合、解の中間状態である投光
照明器具群全体の配光を被照射範囲内の水平面照度に対
して最も効率よく与えることが可能なように自己生成さ
せることが可能となり、使用投光照明器具の数を最小化
することが実現可能なコスト優先型の設計投光照明器具
照射方向自動設計装置を具現化することが可能となる。
According to a second aspect of the present invention, in the whole light distribution deriving section of the floodlighting luminaire group of the apparatus for automatically designing the irradiation direction of the floodlighting luminaire according to the first aspect, the floodlight input to the floodlighting design condition input section is input. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the lighting equipment group, the virtual law of illuminance given to the illuminated range by the point light source is such that the illuminance is inversely proportional to the square of the distance. And the light distribution of the entire floodlighting luminaire group is configured so that the floodlighting luminaire group at the geometrical position that gives the most virtual illuminance at each position of the illuminated range gives the illumination specifications. , A light projecting lighting device irradiation direction automatic designing device characterized by having a light distribution derivation unit for a whole lighting device group having a processing procedure, Most efficient for horizontal illuminance within the illuminated area It is possible to realize self-generation so that it is possible to minimize the number of floodlights to be used. Is possible.

【0025】請求項3のごとく、請求項1記載の投光照
明器具の照射方向自動設計装置の投光照明器具群全体配
光導出部において、投光照明設計条件入力部に入力され
た投光照明器具群の幾何位置に仮想光度を持つ完全球面
配光の点光源を仮定し、前記点光源により被照射範囲に
与えられる仮想照度分布を、照度は距離の2乗に逆比例
するという物理法則の2乗を−4乗から4乗までの間で
変化させて計算し、被照射範囲の各位置毎の目標照明諸
元を、前記仮想照度の比率で各投光照明器具群毎に分割
して与えるごとく投光照明器具群全体の配光を構成す
る、処理手続きを持つ投光照明器具群全体配光導出部を
有することを特徴とした投光照明器具照射方向自動設計
装置を構成した場合、目標照明諸元に対し被照明範囲の
照明の鉛直面照度と水平面照度の近似度を、高いものか
ら低いものまで、−4から4までの乗数をパラメータと
して任意に可変可能な投光照明器具照射方向自動設計装
置を具現化することが可能となる。
According to a third aspect of the invention, in the floodlighting fixture group overall light distribution deriving section of the apparatus for automatically designing the irradiation direction of the floodlighting luminaire according to the first aspect, the floodlight input to the floodlighting design condition input section is used. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the lighting equipment group, the virtual law of illuminance given to the illuminated range by the point light source is such that the illuminance is inversely proportional to the square of the distance. Is calculated by changing the square of 4 from the −4th power to the 4th power, and the target illumination specifications for each position of the irradiation range are divided for each floodlighting fixture group at the ratio of the virtual illuminance. In the case of configuring a floodlighting fixture irradiation direction automatic designing device characterized by having a light distribution derivation unit for the whole floodlighting fixture group having a processing procedure, which configures the light distribution of the entire floodlighting fixture group as described above. , And the vertical illuminance of the illumination in the illuminated area with respect to the target illumination specifications The approximation of the planar illumination, to low from high, it is possible to embody varied arbitrarily floodlights fixture irradiation direction automatic designing apparatus multipliers -4 to 4 as a parameter.

【0026】請求項4のごとく、請求項1記載の投光照
明の照射方向自動設計装置の照明器具群全体配光導出部
において、投光照明設計条件入力部に入力された投光照
明器具群の幾何位置に仮想光度を持つ完全球面配光の点
光源を仮定し、前記点光源により被照射範囲に与えられ
る仮想照度分布を、照度は距離の2乗に逆比例するとい
う物理法則の下で計算し、照射範囲の各位置毎の目標照
明諸元を目的関数に、前記仮想照度を制限関数に設定
し、各々の投光照明器具群全体の配光を構成する、処理
手続きを持つ投光照明器具群全体配光導出部を有するこ
とを特徴とした投光照明器具照射方向自動設計装置を構
成した場合、複雑な照明設計条件が与えられた場合にお
いても、最も前記投光照明設計条件入力部により入力さ
れた目標照明諸元に近い投光照明器具群全体の配光を、
被照射範囲の水平面・鉛直面照度ともに考慮にいれなが
ら自己生成することが可能となり、最も入力された照明
諸元に近似度が高い、高品質な投光照明器具照射方向の
自動設計を行う品質優先型の投光照明器具照射方向自動
設計装置を具現化することが可能となる。
According to a fourth aspect of the present invention, in the whole lighting distribution group deriving section of the lighting direction automatic designing apparatus for flood lighting according to the first aspect, the flood lighting apparatus group input to the flood lighting design condition input section. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometric position of, the virtual illuminance distribution given to the illuminated range by the point light source is based on the physical law that illuminance is inversely proportional to the square of the distance. A light projection having a processing procedure of calculating and setting the target illumination specifications for each position of the irradiation range as an objective function and the virtual illuminance as a limit function, and configuring the light distribution of each floodlighting luminaire group as a whole. In the case of configuring the floodlighting fixture irradiation direction automatic designing device characterized by having the entire lighting fixture group light distribution derivation unit, even when complicated lighting design conditions are given, the above-mentioned floodlighting design condition input The target lighting specifications input by the department The light distribution of the whole had floodlight fixture group,
It is possible to self-generate while taking into consideration both horizontal and vertical illuminance in the illuminated area, and a quality that automatically approximates the quality of flood lighting fixtures with a high degree of approximation to the most input lighting specifications. It is possible to embody a priority type floodlighting device irradiation direction automatic designing device.

【0027】請求項5のごとく、請求項1記載の投光照
明の照射方向自動設計装置において、請求項2記載の投
光照明器具群全体配光導出部と請求項4記載の投光照明
器具群全体配光導出部とを同時に有し、前記二つの投光
照明器具群全体配光導出部の投光照明器具群全体の配光
を任意の比率で合成した結果を最終的な投光照明器具群
全体の配光として構成する、処理手続きを持つ投光照明
器具群全体配光導出部を有することを特徴とした投光照
明器具照射方向自動設計装置を構成した場合、請求項2
記載の投光照明器具群全体配光導出部を使用して得れる
結果のコストを優先する設計と、請求項4記載の投光照
明器具群全体配光導出部を使用して得られる品質を優先
する設計との中間解を任意に選ぶことができる。
According to a fifth aspect of the invention, in the apparatus for automatically designing the irradiation direction of the floodlight according to the first aspect, the entire light distribution deriving unit of the floodlighting fixture group according to the second aspect and the floodlighting fixture according to the fourth aspect. A final floodlight with a result of combining the light distributions of the entire floodlighting lighting fixture groups of the two floodlighting lighting fixtures group whole light distribution lead-out units at an arbitrary ratio. 3. A floodlighting fixture irradiation direction automatic designing device comprising a floodlighting fixture group overall light distribution derivation unit having a processing procedure, which is configured as a light distribution of the whole fixture group.
The design which gives priority to the cost of the result obtained by using the whole floodlighting fixture group light distribution derivation part, and the quality obtained by using the floodlighting lighting device group whole light distribution derivation part according to claim 4. An intermediate solution with the design with priority can be arbitrarily selected.

【0028】請求項6のごとく、請求項1から5のいず
れかに記載の投光照明の投光照明器具の照射方向自動設
計装置において、投光照明器具群全体配光導出部で得ら
れた中間結果を出力する中間結果出力部を有し、投光照
明器具照射方向の自動設計を行う際に、投光照明器具群
全体配光導出部で得られた中間結果が途中出力可能であ
ることを特徴とした投光照明器具照射方向自動設計装置
を構成することで、投光照明器具照射方向の自動設計を
行う際に、投光照明器具群全体配光導出部で得られた中
間結果が出力可能であることで投光照明器具の照射方向
の自動設計ができあがる前に入力条件下での照明設計の
理論的限界値あらかじめ予測できる。
According to a sixth aspect of the invention, in the apparatus for automatically designing the irradiation direction of the floodlight of the floodlight according to any one of the first to fifth aspects, it is obtained by the entire light distribution deriving unit of the floodlight group. It has an intermediate result output section that outputs an intermediate result, and when performing automatic design of the irradiation direction of the floodlighting luminaire, it is possible to output the intermediate result obtained by the whole light distribution deriving section of the floodlighting luminaire group. By configuring the floodlighting fixture irradiation direction automatic designing device characterized by, when performing the automatic designing of the floodlighting fixture irradiation direction, the intermediate results obtained by the entire light distribution and derivation unit of the floodlighting fixture group are By being able to output, the theoretical limit value of lighting design under input conditions can be predicted in advance before the automatic design of the irradiation direction of the floodlighting luminaire is completed.

【0029】請求項7のごとく、請求項1から6のいず
れかに記載の投光照明器具照射方向自動設計装置の照射
方向決定部において、投光照明器具群全体配光導出部で
得られた投光照明器具群全体の配光の最大光度点の位置
に、使用投光照明器具配光入力部で入力された使用投光
照明器具の配光の最大光度点を重ね合わせ、これを初期
配光とし、前記投光照明器具群全体の配光で得られた照
明結果と、前記初期配光で得られた照明結果との差分を
最も多く与えた位置に、再び使用投光照明器具配光入力
部で入力された使用投光照明器具の配光の最大光度点を
重ね合わせ、これを新たな初期配光とする手続きを、前
記差分が最小化されるまで繰り返すことにより、投光照
明器具群全体の配光を、投光照明器具個々の配光で近似
する照射方向決定部を有することを特徴とした投光照明
器具照射方向自動設計装置を構成することで、短い処理
時間で投光照明器具群全体の配光を、投光照明器具個々
の配光で近似することが可能となる。
According to a seventh aspect, in the irradiation direction determining section of the projection direction lighting apparatus irradiation direction automatic designing apparatus according to any one of the first to sixth aspects, it is obtained by the entire light distribution deriving section of the projection lighting apparatus group. The maximum luminous intensity point of the light distribution of the used floodlighting fixture input from the used floodlighting fixture light distribution input section is superimposed on the position of the maximum luminous intensity point of the light distribution of the entire floodlighting fixture group, and this is initially distributed. Again, at the position where the difference between the illumination result obtained by the light distribution of the entire floodlighting luminaire group and the illumination result obtained by the initial light distribution is given most, the used floodlighting illuminator light distribution is performed again. By projecting the maximum luminous intensity points of the light distributions of the floodlights used, which are input by the input unit, and repeating this procedure as a new initial light distribution until the difference is minimized, the floodlights. Determines the irradiation direction by approximating the light distribution of the entire group with the light distribution of each floodlight By configuring an apparatus for automatically designing the irradiation direction of a floodlighting luminaire, the light distribution of the entire floodlighting luminaire group can be approximated by the light distribution of each floodlighting luminaire in a short processing time. It will be possible.

【0030】請求項8のごとく、請求項1から6のいず
れかに記載の投光照明器具照射方向自動設計装置の照射
方向決定部において、使用投光照明器具配光入力部で入
力された、投光照明器具を任意の個数かつ任意の方向に
照射して投光照明器具全体配光導出部で得られた投光照
明器具群全体の配光を上回る初期光度配光を得て後、前
記投光照明器具群全体の配光と前記初期光度配光による
被照射範囲の照明結果の差分を算出し、前記初期配光を
構成した投光照明器の内、最も差分を大きく与えた投光
照明器具を消去し、これにより得られた配光を新たな初
期配光とし、前記投光照明器具群全体の配光と前記新た
な初期配光による被照射範囲の照明結果の差分を算出
し、前記初期配光を構成した投光照明器具の内、最も差
分を大きく与えた投光照明器具を消去する手続きを差分
が最小化されるまで繰り返すことにより、投光照明器具
群全体の配光を、投光照明器具個々の配光で近似する照
射方向決定部を有することを特徴とした投光照明器具照
射方向自動設計装置を構成することで、投光照明器具群
全体の配光を、近似精度を任意に設定しながら投光照明
器具個々の配光で近似することができる。
According to an eighth aspect of the present invention, in the irradiation direction determining section of the floodlighting illuminator irradiation direction automatic designing apparatus according to any one of the first to sixth aspects, the input is made at the used floodlighting illuminator light distribution input section. After irradiating the floodlighting luminaire in any number and in any direction, after obtaining the initial luminous intensity distribution exceeding the light distribution of the entire floodlighting luminaire group obtained by the floodlighting luminaire whole light distribution deriving unit, The difference between the light distribution of the entire floodlighting luminaire group and the illumination result of the illuminated range due to the initial light intensity distribution is calculated, and among the floodlighting illuminators forming the initial light distribution, the light source having the largest difference is projected. The luminaire is erased, and the light distribution obtained by this is used as a new initial light distribution, and the difference between the light distribution of the entire floodlighting luminaire group and the illumination result of the illuminated range by the new initial light distribution is calculated. Among the floodlighting luminaires that make up the initial light distribution, the one with the largest difference is given. By repeating the procedure for deleting the luminaires until the difference is minimized, a light distribution of the entire floodlighting luminaire group is approximated by the light distribution of each of the floodlighting luminaires. By configuring the above-described device for automatically designing the irradiation direction of the floodlighting fixture, the light distribution of the entire floodlighting fixture group can be approximated by the light distribution of each floodlighting fixture while arbitrarily setting the approximation accuracy.

【0031】請求項9のごとく、請求項7から8のいず
れかに記載の投光照明の照射方向自動設計装置の照射方
向決定部が、使用投光照明器具配光入力部で入力され
た、投光照明器具の配光のビーム角を検出し、ビーム光
軸中心の被照射範囲に対しての入射角が深い場合に、使
用投光照明器具配光入力部で入力されたビーム角の広い
広角配光の照明器具を照射し、ビーム光軸中心の被照射
範囲に対しての入射角が浅い場合に、使用投光照明器具
配光入力部で入力されたビーム角の狭い狭角配光の照明
器具を照射するごとく、使用投光照明器具のビーム角が
狭角化するほどビーム光軸中心の被照射範囲に対しての
入射角を浅く設定する処理手続をもつことを特徴とした
投光照明器具照射方向自動設計装置を構成することで、
より効率良く被照射範囲に照明光を与えることができ
る。
According to a ninth aspect of the present invention, the irradiation direction determining section of the apparatus for automatically designing the irradiation direction of the floodlight according to any one of claims 7 to 8 is input by the light distribution input section of the floodlighting apparatus used. The beam angle of the light distribution of the floodlight is detected, and when the incident angle of the center of the beam optical axis with respect to the irradiation range is deep, the beam angle input by the floodlight distribution input unit used is wide. Narrow-angle light distribution with a narrow beam angle input at the light distribution input part of the floodlight illuminator used when illuminating a wide-angle light fixture and the incident angle at the center of the beam optical axis to the illuminated range is shallow The projection procedure is such that, as the beam angle of the projection illuminator used is narrowed, the incident angle with respect to the irradiation range at the center of the beam optical axis is set to be shallower. By configuring an automatic lighting device irradiation direction design device,
Illumination light can be given to the irradiated area more efficiently.

【0032】請求項10のごとく、請求項1から9の投
光照明器具照射方向自動設計装置において、投光照明器
具群全体配光導出部の出力を使用投光照明器具配光入力
部で入力された投光照明器具個々の配光で近似する照射
方向決定部からの出力を合成し、投光照明器具照射方向
設計を行った後の被照射範囲の照明結果を算出し、投光
照明器具照射方向設計を行った後の被照射範囲の照明結
果と、照明諸元との差分の内、最も過剰に差分を与えた
投光照明器具の照射方向を削除し、投光照明照射方向設
計を行った後の被照射範囲の照明結果と照明諸元との差
を最小化する、二次処理部を有し、投光照明器具群全体
の配光を目標照明要件から逆算した後、投光照明器具個
々の配光で投光照明器具群全体の配光を近似し、さら
に、個々の投光照明器具群全体の配光の近似結果を合成
した後の被照射範囲の照明結果と照明諸元の比較処理か
ら投光照明照射方向設計をより最適化することを特徴と
した投光照明器具照射方向自動設計装置を構成すること
で、投光照明照射方向設計をより最適化する処理を行う
ことができる。
According to a tenth aspect of the present invention, in the apparatus for automatically designing the irradiation direction of the floodlighting equipment according to any one of the first to ninth aspects, the output of the entire light distribution deriving part of the floodlighting lighting equipment group is input to the use floodlighting equipment light distribution input part. Each of the projected lighting fixtures is combined with the output from the irradiation direction determination unit that approximates the light distribution, and the lighting result of the illuminated range after the projection direction of the floodlighting fixture is designed is calculated. Of the differences between the illumination results of the irradiation range after the irradiation direction design and the illumination specifications, the irradiation direction of the floodlighting fixture that gives the most excessive difference is deleted, and the floodlighting irradiation direction design is performed. It has a secondary processing unit that minimizes the difference between the lighting result of the irradiated area and the lighting specifications after performing, and calculates the light distribution of the entire floodlight luminaire group from the target lighting requirements, and then projects the light. The light distribution of each lighting fixture approximates the light distribution of the entire lighting fixture group. Illumination direction of floodlight lighting equipment characterized by further optimizing design of floodlight illumination direction from comparison processing of illumination result and illumination specifications after combining approximate results of light distribution of entire fixture group By configuring the automatic design device, it is possible to perform a process for further optimizing the design of the projection direction of the floodlight.

【0033】請求項11のごとく、請求項1から9の投
光照明器具照射方向自動設計装置において、投光照明器
具群全体配光導出部の出力を使用投光照明器具配光入力
部で入力された投光照明器具個々の配光で近似する照射
方向決定部からの出力を合成し、投光照明器具照射方向
設計を行った後の被照射範囲の照明結果を算出し、投光
照明器具照射方向設計を行った後の被照射範囲の照明結
果と、照明諸元との差分の内、最も過小に差分が大きい
被照射範囲の位置に投光照明器具の照射方向を追加し、
投光照明照射方向設計を行った後の被照射範囲の照明結
果と照明諸元との差を最小化する、二次処理部を有し、
投光照明器具群全体の配光を目標照明要件から逆算した
後、投光照明器具個々の配光で投光照明器具群全体の配
光を近似し、さらに、個々の投光照明器具群全体の配光
の近似結果を合成した後の被照射範囲の照明結果と照明
諸元の比較処理から投光照明照射方向設計をより最適化
することを特徴とした投光照明器具照射方向自動設計装
置を構成することで、投光照明照射方向設計をより最適
化する処理を行うことができる。
According to an eleventh aspect of the invention, in the apparatus for automatically designing the irradiation direction of the floodlighting equipment according to any one of the first to ninth aspects, the output of the entire light distribution deriving section of the floodlighting equipment group is input to the light distribution input section of the used floodlighting equipment. Each of the projected lighting fixtures is combined with the output from the irradiation direction determination unit that approximates the light distribution, and the lighting result of the illuminated range after the projection direction of the floodlighting fixture is designed is calculated. The illumination result of the irradiation range after performing the irradiation direction design, and among the differences between the illumination specifications, add the irradiation direction of the floodlighting luminaire to the position of the irradiation range that has the smallest difference
Having a secondary processing unit that minimizes the difference between the illumination result and the illumination specifications of the illuminated area after performing the floodlight illumination direction design,
After the light distribution of the whole floodlighting fixture group is calculated back from the target lighting requirement, the light distribution of the whole floodlighting fixture group is approximated by the individual light distribution of the floodlighting fixture, and further A device for automatically designing the irradiation direction of a floodlighting luminaire, which is characterized by further optimizing the designing of the irradiation direction of the floodlight from the comparison processing of the illumination result and the illumination specifications after combining the approximate results of the light distribution of By configuring the above, it is possible to perform a process for further optimizing the design of the floodlight illumination irradiation direction.

【0034】請求項12のごとく、投光照明の投光照明
器具の照射方向自動設計装置において、被照射範囲と投
光照明器具群の幾何位置、および、設計目標証明諸元を
入力する投光照明設計条件入力部、前記投光照明設計条
件入力部により入力された投光照明器具群の幾何位置に
仮想光度を持つ完全球面配光の点光源を仮定し、前記点
光源により被照射範囲に与えられる仮想照度分布を関数
として、照明諸元を満足する投光照明器具群全体の配光
を逆算する請求項2から5のいずれかに記載の投光照明
器具群全体配光導出部、請求項6記載の中間結果出力
部、請求項1記載の使用投光照明器具配光入力部、前記
投光照明器具群全体配光導出部の出力を使用投光照明器
具配光入力部で入力された投光照明器具個々の配光で近
似する請求項7から9のいずれかに記載の照射方向決定
部、個々の投光照明器具群全体の配光の近似結果を合成
した後の被照射範囲の照度分布と照明諸元の比較処理か
ら投光照明照射方向設計をより最適化する請求項10か
ら11のいずれかに記載の二次処理部を有し、さらに、
請求項2から5のいずれかに記載の投光照明器具群全体
配光導出部のいずれの処理を行うかの処理手続き選択手
段、請求項7から8のいずれかに記載の照射方向決定部
のいずれの処理を行うかの処理手続き選択手段、前記選
択手段により選択された照射方向決定部の処理に加え請
求項9記載の照射方向決定部の処理を行うか否かの処理
手続き選択手段、請求項10から11のいずれかに記載
の二次処理部のいずれの処理を行うか否かの処理手続き
選択手段を有することを特徴とし、処理手続きを可変可
能な投光照明器具照射方向自動設計装置を構成すること
で、投光照明設計のあらゆる局面に対しても所要の照明
設計が可能となる。
According to a twelfth aspect of the present invention, in the apparatus for automatically designing the irradiation direction of a floodlighting fixture of floodlighting, the floodlight for inputting a range to be illuminated, a geometric position of the floodlighting fixture group, and design target proof specifications. Illumination design condition input unit, assuming a point source of perfect spherical light distribution having a virtual luminous intensity at the geometrical position of the floodlighting lighting fixture group input by the floodlighting design condition input unit, and irradiating range by the point light source The total light distribution deriving unit for floodlighting lighting device group according to any one of claims 2 to 5, wherein the light distribution of the entire floodlighting lighting device group that satisfies the illumination specifications is back-calculated as a function of the given virtual illuminance distribution. The output of the intermediate result output unit according to claim 6, the use floodlighting fixture light distribution input unit according to claim 1, and the whole floodlighting fixture group light distribution derivation unit is input to the use floodlighting fixture light distribution input unit. 8. The light distribution of each of the floodlighting luminaires is approximated. The irradiation direction determination unit according to any one of 1), the projection direction irradiation direction design from the comparison processing of the illuminance distribution and the illumination specifications of the irradiation range after synthesizing the approximate results of the light distribution of each individual floodlighting lighting equipment group The secondary processing unit according to any one of claims 10 to 11, which further optimizes
A processing procedure selecting means for selecting which process of the floodlighting lighting device group whole light distribution deriving unit according to any one of claims 2 to 5, and an irradiation direction determining unit according to any one of claims 7 to 8. 10. A processing procedure selection unit that determines which processing is to be performed, a processing procedure selection unit that determines whether or not to perform the processing of the irradiation direction determination unit according to claim 9, in addition to the processing of the irradiation direction determination unit selected by the selection unit. Item 10. An apparatus for automatically designing the irradiation direction of a floodlighting luminaire, which has a processing procedure selection unit that determines which processing of the secondary processing unit according to any one of items 10 to 11 is to be performed, By configuring the above, the required lighting design can be performed for all aspects of the floodlight design.

【0035】請求項13においては、請求項12記載の
投光照明の投光照明器具の照射方向自動設計装置におい
て、既に投光照明器具の照射方向が決定されている結果
を、照射方向決定部に入力する手段を有し、新たに投光
照明設計条件入力部により入力された投光照明設計条件
を満たすごとく、前記既に投光照明器具の照射方向が決
定されている結果を再処理することを特徴とした投光照
明器具照射方向自動設計装置を構成することで、一つの
照明の場において、できるかぎり同じ投光照明器具を用
いて投光照明器具の点灯消灯で異なる照明シーンを実現
する照明設計の要求に対応することができる。
In the thirteenth aspect, in the irradiation direction automatic designing apparatus of the floodlighting luminaire according to the twelfth aspect, the irradiation direction deciding unit indicates the result that the irradiation direction of the floodlighting luminaire has already been determined. To reprocess the result of the irradiation direction of the floodlighting luminaire having already been determined so that the floodlighting design condition newly input by the floodlighting design condition input unit is satisfied. By constructing a device for automatically designing the irradiation direction of a floodlighting luminaire, the same floodlighting luminaire is used as much as possible to realize different lighting scenes by turning on and off the floodlighting luminaire in one lighting field. The lighting design requirements can be met.

【0036】[0036]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0037】図1は、本発明の一実施例の構成図であ
り、1は投光照明設計条件入力部、2は処理手続き選択
手段a、3は投光照明器具群全体配光導出部a、4は投
光照明器具群全体配光導出部b、5は投光照明器具群全
体配光導出部c、6は投光照明器具群全体配光導出部
d、7は中間結果出力部、8は投光照明器具配光入力
部、9は投光照明器具配光データベース、10は処理手
続き選択手段b、11は照射方向決定部a、12は照射
方向決定部b、13は処理手続き選択手段c、14は二
次処理部a、15は二次処理部b、16は最終結果出力
部、17は最終結果フィードバック部である。
FIG. 1 is a block diagram of an embodiment of the present invention, in which 1 is a floodlighting design condition input unit, 2 is a processing procedure selecting means a, and 3 is a whole floodlighting fixture group light distribution deriving unit a. 4 is a whole floodlighting fixture group light distribution deriving unit b, 5 is a floodlighting lighting device group whole light distribution deriving unit c, 6 is a floodlighting lighting device group whole light distribution deriving unit d, 7 is an intermediate result output unit, 8 is a floodlighting fixture light distribution input unit, 9 is a floodlighting fixture light distribution database, 10 is a processing procedure selection unit b, 11 is an irradiation direction determination unit a, 12 is an irradiation direction determination unit b, and 13 is a processing procedure selection. Means c and 14 are secondary processing units a, 15 is a secondary processing unit b, 16 is a final result output unit, and 17 is a final result feedback unit.

【0038】次に、本実施例の動作を説明する。投光照
明の投光照明器具の照射方向自動設計装置を駆動させる
に際し、先ず被照射範囲と投光照明器具群の幾何位置、
および、設計目標照明諸元を、投光照明設計条件入力部
1で入力する。次に投光照明設計条件入力部1の入力デ
ータを基に、処理手続き選択手段a2は、投光照明器具
群全体配光導出部a〜c 3〜5の何れの処理を行うか
を選定する。
Next, the operation of this embodiment will be described. When driving the irradiation direction automatic design device of the floodlighting fixture of the floodlighting, first, the irradiation range and the geometric position of the floodlighting fixture group,
Also, the design target illumination specifications are input in the floodlight illumination design condition input unit 1. Next, based on the input data of the floodlight design condition input unit 1, the processing procedure selection unit a2 selects which of the floodlighting fixture group entire light distribution deriving units a to c 3 to 5 is to be performed. .

【0039】各投光照明器具群全体配光導出部a〜c
3〜5は、どれが選択された場合においても、まず、前
記投光照明設計条件入力部1で得られた投光照明器具群
の幾何位置に仮想光度を持つ完全球面配光の点光源を仮
定し、前記点光源により被照射範囲に与えられる仮想照
度分布を計算する。このとき仮想照度の計算は
The entire light distribution derivation parts a to c of each floodlighting lighting device group
No. 3 to No. 5, regardless of which one is selected, first of all, a point source of perfect spherical light distribution having virtual luminous intensity at the geometric position of the floodlighting lighting fixture group obtained by the floodlighting design condition input unit 1 is selected. Assuming that the virtual illuminance distribution given to the illuminated area by the point light source is calculated. At this time, the virtual illuminance is calculated

【0040】[0040]

【数1】 [Equation 1]

【0041】による。ここで、θは被照射面への入射
角、Eは仮想照度、Iは仮想光度、Rは光源と被照射点
の距離、Nは本実施例で新たに規定するパラメーターで
ある。以降、前記NをN値と規定する。N値が2という
常数の場合は、一般に照明工学で用いられる距離の逆2
乗の光の物理法則の一般式に対応するが、本実施例では
このN値は新たに設定された仮想変数であるので、Eは
通常の照度とは異なる仮想照度、Iは通常の光度とは異
なる仮想光度という仮想単位となる。
According to Here, θ is the incident angle on the irradiated surface, E is the virtual illuminance, I is the virtual luminous intensity, R is the distance between the light source and the irradiated point, and N is a parameter newly defined in this embodiment. Hereinafter, the N is defined as the N value. When the N value is a constant of 2, it is the inverse 2 of the distance that is generally used in lighting engineering.
Although this corresponds to the general formula of the physical law of light of power, in the present embodiment, since this N value is a newly set virtual variable, E is a virtual illuminance different from normal illuminance, and I is a normal luminosity. Is a virtual unit of different virtual luminosity.

【0042】図2〜図5は、被照射範囲として50
[m]角のグランド、投光照明器具群の幾何位置として
対角線上の一隅にグランドから10[m]離れて25
[m]の高さが、前記投光照明設計条件入力部1で入力
された場合のスポーツ競技場をモデルケースに、1つの
投光照明器具群がどのような仮想照度分布の様子を示す
かをN値の変化毎に示したものである。なお、図2〜図
5において、18は50[m]角のグランド、19は投
光照明器具である。各図はN値が−2、0、2、4の場
合にそれぞれ対応する。N値が2の場合は通常の物理法
則下と同じ照度分布を示し仮想照度分布と照度分布が等
しいが、N値が4のごとく、大きくなるほど通常の物理
法則下より、近くが明るく、遠くが暗い仮想照度の分布
が自己生成され、N値が−4のごとく、小さくなるほど
通常の物理法則とは逆に、近くが暗く、遠くが明るい仮
想照度の分布が自己生成される。この仮想照度の値を各
位置毎の関数とし、処理手続き選択手段a2で選択され
た処理手続きに従い、次の、投光照明器具群全体配光導
出部a3、投光照明器具群全体配光導出部b4、投光照
明器具群全体配光導出部c5、または投光照明器具群全
体配光導出部d6の何れかの投光照明器具群全体配光導
出部の処理が行われる。
2 to 5 show 50 as the irradiated area.
Ground of [m] corner, geometrical position of floodlighting fixture group is 25 at 10 [m] away from ground at one corner on diagonal line.
What kind of virtual illuminance distribution one floodlight fixture group shows when the height of [m] is input by the floodlight design condition input unit 1 in a sports stadium as a model case. Is shown for each change of N value. 2 to 5, 18 is a ground of 50 [m] square, and 19 is a floodlighting fixture. Each figure corresponds to N values of -2, 0, 2, and 4, respectively. When the N value is 2, the illuminance distribution is the same as under the normal physical law, and the virtual illuminance distribution is equal to the illuminance distribution. The distribution of dark virtual illuminance is self-generated, and as the N value becomes smaller, such as -4, the distribution of virtual illuminance that is dark near and bright at far is self-generated as the N value becomes smaller, contrary to the normal physical law. The value of this virtual illuminance is used as a function for each position, and in accordance with the processing procedure selected by the processing procedure selection means a2, the following floodlighting fixture group overall light distribution deriving section a3 and floodlighting fixture group overall light distribution derivation are performed. The process of the floodlighting fixture group overall light distribution deriving unit, which is either the unit b4, the floodlighting fixture group overall light distribution deriving unit c5, or the floodlighting fixture group entire light distribution deriving unit d6, is performed.

【0043】ここで、投光照明器具群全体配光導出部d
が処理手続き選択手段a2で選択されていた場合は、投
光照明器具群全体配光導出部a3と投光照明器具群全体
配光導出部c5の処理が行われ、その結果の二つの出力
が任意の比率で投光照明器具群全体配光導出部d6で合
成されることになっている。
Here, the entire light distribution derivation unit d
Is selected by the processing procedure selection means a2, the processes of the floodlighting luminaire group overall light distribution deriving unit a3 and the floodlighting luminaire group overall light distribution deriving unit c5 are performed, and two outputs of the results are output. It is supposed that they are combined at an arbitrary ratio by the entire light distribution and derivation unit d6.

【0044】さて、目標照明諸元が、あらゆる形で与え
られたとしても、それに対応出来るように、必要に応じ
て目標照明諸元を6面照度に展開する。また、仮想照度
分布を計算する際、必要に応じて、ある点ごとにの相直
交する6方向の照度である六面照度に相当する六面仮想
照度を計算する。
Now, even if the target illumination specifications are given in any form, the target illumination specifications are expanded to 6-sided illuminance so that it can be dealt with. When calculating the virtual illuminance distribution, six-sided virtual illuminance corresponding to six-sided illuminance, which is the illuminance in six directions orthogonal to each other at each point, is calculated as necessary.

【0045】ここで、六面照度の概念を図6を使用して
説明する。六面照度は互いに相直交する6方向の照度で
あり、その4方向の鉛直面照度を20のEv1,21の
Ev2,22のEv3,23のEv4と定義し、水平面
照度を24のEhu、逆方向の水平面照度を25のEh
dと表現する。この6方向の照度の線形結合で、スポー
ツ競技場の投光照明の場合にボールの見え方を評価する
ときに用いられる球面照度Esや半球面照度Escや、
人の見え方を評価するときに用いられる円筒面照度Ec
や半円筒面照度Esyを近似することができる。
Here, the concept of six-sided illuminance will be described with reference to FIG. The six-sided illuminance is the illuminance in six directions that are orthogonal to each other, and the vertical illuminance in the four directions is defined as Ev1, Ev2 of 21, Ev2 of 22, Ev3 of 23, and Ev4 of 23, and the horizontal illuminance is Ehu of 24 and reverse. Direction horizontal illuminance is 25 Eh
Express as d. With the linear combination of the illuminances in the six directions, the spherical illuminance Es and the hemispherical illuminance Esc used to evaluate the appearance of the ball in the case of floodlighting in a sports arena,
Cylindrical surface illuminance Ec used to evaluate how people see
The semi-cylindrical surface illuminance Esy can be approximated.

【0046】その近似式をThe approximate expression

【0047】[0047]

【数2】 [Equation 2]

【0048】[0048]

【数3】 [Equation 3]

【0049】[0049]

【数4】 [Equation 4]

【0050】[0050]

【数5】 [Equation 5]

【0051】に示す。As shown in FIG.

【0052】また、六面照度に含まれる4方向の鉛直面
照度と水平面照度を用い
Further, the vertical illuminance and the horizontal illuminance in four directions included in the six-sided illuminance are used.

【0053】[0053]

【数6】 [Equation 6]

【0054】でG.R.で表現されるグレアも記述可能
であり、六面照度の制限関数の条件に導入しておけばグ
レアも考慮して投光照明器具群全体の配光をあらかじめ
構成することも可能である。ここでEvは六面照度の鉛
直面成分の照度であり、Eaveは被照射範囲内の各点
のEhuの平均照度、δは前記鉛直面成分の照度の主軸
方向と投光照明器具群がなす各[deg]である。
In G. R. The glare expressed by can be described, and if it is introduced into the condition of the limiting function of the six-sided illuminance, it is also possible to preconfigure the light distribution of the entire floodlighting fixture group in consideration of the glare. Here, Ev is the illuminance of the vertical surface component of the six-sided illuminance, Eave is the average illuminance of Ehu at each point in the irradiation range, and δ is the main axis direction of the illuminance of the vertical surface component and the floodlight lighting device group. Each [deg].

【0055】ただし、この場合、被照射範囲であるグラ
ンドの反射率ρが投光照明設計条件入力部1において入
力されるべき照明諸元に追加されなければならない。ま
た、これによりグラウンドの輝度とグランドからの反射
による逆方向の水平面照度25のEhdや4方向の鉛直
面照度の反射成分が考慮可能となる。
In this case, however, the reflectance ρ of the ground, which is the illuminated area, must be added to the illumination specifications to be input in the projection illumination design condition input section 1. Further, this makes it possible to take into consideration the luminance of the ground and Ehd of the horizontal plane illuminance 25 in the opposite direction due to reflection from the ground and the reflection components of the vertical plane illuminance in four directions.

【0056】さて、これが各点毎に計算されることによ
り、被照射範囲内の照明諸元の分布のあり方までも六面
照度で記述が可能となり、目標照明諸元が六面照度の線
形結合方程式として展開できる。
By calculating this for each point, it is possible to describe even the distribution of the illumination specifications within the illuminated area by the six-sided illuminance, and the target illumination specification is a linear combination of the six-sided illuminance. It can be developed as an equation.

【0057】ここで、何れの処理においても、各投光照
明器具群の位置に仮定された仮想点光源が与えた仮想照
度の値を各位置毎の関数とし、その比率で六面照度に展
開された目標照明諸元を各投光照明器具群の受持ち分と
して割り当てるという処理プロセスを行うのであるが、
目標照明諸元をどの照明器具群の位置からどれだけ与え
るかが前記処理で一義的にもとまるので、投光照明器具
群の全体配光も一義的に逆算が可能となる。
Here, in any processing, the value of the virtual illuminance given by the hypothetical virtual point light source at the position of each floodlighting fixture group is used as a function for each position, and the illuminance is expanded to six sides by the ratio. The target lighting specifications are assigned as a share of each floodlighting fixture group,
Since the above processing uniquely determines how much the target lighting specifications are given from the position of which lighting equipment group, the total light distribution of the floodlighting lighting equipment group can also be uniquely backcalculated.

【0058】そこで、投光照明器具群全体配光導出部a
3が処理手順として選択された場合、仮想照度分布を、
N値が2として計算し、被照射範囲の各位置毎に前記六
面仮想照度の内24のEhuを一番多く与えた幾何位置
の投光照明器具群が照明諸元を与えるごとく投光照明器
具群全体の配光を構成する。
Therefore, the entire light distribution derivation unit a
When 3 is selected as the processing procedure, the virtual illuminance distribution is
N-value is calculated as 2, and floodlighting is performed as if the floodlighting fixture group at the geometrical position that gives the largest Ehu of 24 of the six-sided virtual illuminance for each position in the illuminated range gives the illumination specifications. Configure the light distribution for the entire fixture group.

【0059】これにより、投光照明器具群が照射を受け
持つ被照射範囲がいかなる形状の場合においても、照度
24のEhuを最も効率よく与えるごとく自動的に最適
分割される。
As a result, regardless of the shape of the illuminated area covered by the floodlighting / illumination equipment group, the optimal division is automatically performed so that the Ehu of the illuminance 24 is most efficiently given.

【0060】つぎに、投光照明器具群全体配光導出部b
4が処理手順として選択された場合、仮想照度分布を、
−4から4までの間でN値を変化させて計算し、被照射
範囲の各位置毎の目標照明諸元を、前記仮想照度の比率
で各投光照明器具群毎に分割して与えるごとく投光照明
器具群全体の配光を構成する。
Next, the entire light distribution derivation unit b
When 4 is selected as the processing procedure, the virtual illuminance distribution is
Calculation is performed by changing the N value from -4 to 4, and the target illumination specifications for each position of the illuminated range are divided by the ratio of the virtual illuminance for each floodlighting luminaire group and given. Configure the light distribution for the entire floodlighting fixture group.

【0061】これにより、被照射範囲内のある点では、
N値が減少するほど遠くの投光照明器具群が受け持つ照
度の割合が増す。つまり、被照射範囲内のある点はより
遠くの投光照明器具群から照明されるため照明光の入射
角が浅くなり、結果として六面照度の鉛直面成分が増加
し、鉛直面重視型の照明設計となる。逆に、N値が増加
するほど近くの投光照明器具群が受け持つ照度の割合が
増す。つまり、被照射範囲内のある点はより近くの投光
照明器具群から照明されるため照明光の入射角が深くな
り、結果として六面照度の水平面成分が増加し、水平面
重視型の照明設計となる。
As a result, at a certain point within the irradiated area,
As the N value decreases, the proportion of the illuminance that the distant lighting fixture group receives increases. In other words, a certain point within the illuminated area is illuminated by a group of illuminating luminaires that are farther away, and the incident angle of the illumination light becomes shallower.As a result, the vertical component of the six-sided illuminance increases, and Lighting design. On the contrary, as the N value increases, the proportion of the illuminance that a nearby floodlighting fixture group takes up increases. In other words, a certain point within the illuminated area is illuminated by a group of floodlighting luminaires that are closer, so the angle of incidence of the illumination light becomes deeper, resulting in an increase in the horizontal plane component of the six-sided illuminance, and a horizontal plane-oriented lighting design Becomes

【0062】また、投光照明器具群全体配光導出部c5
が処理手順として選択された場合、仮想照度分布を、照
度は距離の2乗に逆比例するという物理法則の下で計算
し、照射範囲の各位置毎の目標照度を近似において目的
となる目的関数に、前記仮想照度を近似において制限と
なる制限関数に設定し、複数の投光照明器具群によって
得られるある点の仮想照度の相対値を変化させ、照射範
囲の各位置毎に目標照度に最も近くなるように各々の投
光照明器具群全体の配光を構成する。
Further, the entire light distribution and derivation unit c5
Is selected as the processing procedure, the virtual illuminance distribution is calculated under the physical law that the illuminance is inversely proportional to the square of the distance, and the target illuminance at each position of the irradiation range is the objective function that is the target in the approximation. In the above, the virtual illuminance is set to a limit function that is a limit in approximation, the relative value of the virtual illuminance at a certain point obtained by a plurality of floodlighting lighting equipment groups is changed, and the target illuminance is set to the target illuminance at each position of the irradiation range. The light distribution of each of the floodlighting lighting equipment groups is configured to be close to each other.

【0063】これにより、被照射範囲内のある点の照度
が、どの様に、各投光照明器具群に分割されるかを事例
を用いて解説する。
As a result, how the illuminance at a certain point within the irradiation range is divided into each floodlighting lighting fixture group will be described with reference to an example.

【0064】野球場をモデルケースに被照射範囲内での
六面仮想照度のサンプルを計算した結果を図7に示す。
ここで、投光照明器具群は26の投光照明器具群a、2
7の投光照明器具群b、28の投光照明器具群c、29
の投光照明器具群d、30の投光照明器具群e、31の
投光照明器具群fの6群が仮定されている。
FIG. 7 shows the result of calculation of a sample of the six-sided virtual illuminance within the illuminated range using a baseball field as a model case.
Here, the floodlighting lighting equipment group includes 26 floodlighting lighting equipment groups a and 2
Projection lighting equipment group b of 7 and projection lighting equipment group c of 29
6 groups of the floodlighting lighting equipment groups d, 30 of the floodlighting lighting equipment group e, and 31 of the floodlighting lighting equipment group f are assumed.

【0065】さらに、32のピッチャーマウンドに相当
する部分の仮想六面照度を各投光照明器具群がどれだけ
与えていたかに分割した詳細を(表1)に示す。
Further, (Table 1) shows details in which the virtual six-sided illuminance of the portion corresponding to the 32 pitcher mounds is divided according to how much each of the floodlight fixture groups provided.

【0066】[0066]

【表1】 [Table 1]

【0067】(表1)において一つの照明器具群が与え
る仮想六面照度の比率は前記モデルケースのグランドの
幾何条件や投光照明器具群の取り付け位置が変わらない
以上絶対的なものであり(表1)でマトリックス演算を行
う際の制限条件、つまり制限関数となる、可変可能なパ
ラメータは26の投光照明器具群aから31の投光照明
器具群fまでの相互の比率であり、この比率を可変させ
て六面照度に分割された目標値つまり目的関数である照
明諸元の照度値の近づける処理を行えばよい。
In Table 1, the ratio of the virtual six-sided illuminance given by one lighting equipment group is absolute as long as the geometric conditions of the ground of the model case and the mounting position of the floodlighting lighting equipment group do not change ( In Table 1), the variable condition that is the limiting condition when performing the matrix calculation, that is, the limiting function, is the mutual ratio from the floodlighting fixture group a of 26 to the floodlighting fixture group f of 31. It is only necessary to change the ratio and perform processing to bring the target value divided into the six-sided illuminance, that is, the illuminance value of the illumination specifications, which is the objective function, closer.

【0068】今、例として野球場で目標の照明諸元が水
平面照度1000[lx]均一であるとすると、スポー
ツ照明の場合、Ehu:Ev1:Ev2:Ev3:Ev
4の比が2:1:1:1:1であることが照明の質とし
て望ましいという理論に従えば、目標の照明諸元として
水平面照度、鉛直面照度、球面照度、半球面照度、円筒
面照度、半円筒面照度の内の何れかが一つでも入力され
れば、その目標の照明諸元を六面照度で記述することが
できる。
Assuming now that the target lighting specifications are uniform on a horizontal plane of 1000 [lx] in a baseball field as an example, in the case of sports lighting, Ehu: Ev1: Ev2: Ev3: Ev.
According to the theory that it is desirable that the ratio of 4 is 2: 1: 1: 1: 1 as the quality of illumination, the target illumination specifications are horizontal illumination, vertical illumination, spherical illumination, hemispherical illumination, cylindrical illumination. If any one of the illuminance and the semi-cylindrical surface illuminance is input, the target illumination specification can be described by the six-sided illuminance.

【0069】この場合、自動的に4方向の鉛直面照度が
500[lx]と決定するので、(表1)の仮想照度の
比率を利用し現実の照度を各照明塔に割り当てればよ
い。
In this case, since the vertical illuminance in the four directions is automatically determined to be 500 [lx], the actual illuminance may be assigned to each lighting tower by utilizing the ratio of the virtual illuminance in (Table 1).

【0070】前記の仮想照度の比率(水平面照度:2方
向の鉛直面照度)は、照明塔とグランドの幾何関係が変
化しない限り絶対のものである。
The ratio of the virtual illuminance (horizontal plane illuminance: vertical illuminance in two directions) is absolute unless the geometrical relationship between the illumination tower and the ground changes.

【0071】ここで、32のピッチャーマウンドの目標
の水平面照度を1000[lx]、鉛直面照度は500
[lx]とした場合、まず、水平面照度の1000[l
x]を優先に固定し、0.295を1000とおき、仮
想照度の比を利用(例えば、26の投光照明器具群aの
Ehuであれば0.295:0.076=1000:X
であるのでX=258)して照度を割り付ける。さらに
これを利用して23のEv4を割り付ける(例えば、2
6の投光照明器具群aの23のEv4であれば0.07
6:0.108=258:XであるのでX=367)と
(表2)のような結果となる。
Here, the target horizontal illuminance of the 32 pitcher mounds is 1000 [lx], and the vertical illuminance is 500.
When [lx] is set, first, the horizontal plane illuminance is 1000 [l
x] is fixed preferentially, 0.295 is set to 1000, and the ratio of the virtual illuminance is used (for example, in the case of 26 Ehu of the floodlighting fixture group a, 0.295: 0.076 = 1000: X
Therefore, X = 258) and the illuminance is assigned. Furthermore, 23 Ev4s are allocated using this (for example, 2
0.07 for 23 Ev4s of the floodlighting fixture group a of 6
Since it is 6: 0.108 = 258: X, X = 367) and the result as shown in (Table 2) is obtained.

【0072】[0072]

【表2】 [Table 2]

【0073】また、鉛直面照度の500[lx]を優先
に固定し、(表2)の0.148,0.242,0.2
49,0.227をそれぞれ500とおき、仮想照度の
比を利用して照度を割り付けると(表3)のような結果
となる。
Further, the vertical illuminance of 500 [lx] is fixed preferentially, and 0.148, 0.242, 0.2 of (Table 2)
When 49 and 0.227 are set to 500 and the illuminance is assigned using the ratio of virtual illuminance, the result as shown in (Table 3) is obtained.

【0074】[0074]

【表3】 [Table 3]

【0075】ここで、26の投光照明器具群aであれば
2方向の鉛直面照度の比は0.108:0.106でな
ければならないが、各4方向の鉛直面照度を500[l
x]とするためには、この比は217:233でなけれ
ばならないこともわかる。
Here, in the case of 26 floodlighting fixture groups a, the ratio of the vertical illuminance in the two directions must be 0.108: 0.106, but the vertical illuminance in each of the four directions is 500 [l.
It can also be seen that this ratio must be 217: 233 in order to be [x].

【0076】本実施例では、In this embodiment,

【0077】[0077]

【数7】 [Equation 7]

【0078】の目標照度の六面照度の方程式を目的関数
に設定し、
The equation of the six-sided illuminance of the target illuminance of is set to the objective function,

【0079】[0079]

【数8】 [Equation 8]

【0080】[0080]

【数9】 [Equation 9]

【0081】[0081]

【数10】 [Equation 10]

【0082】[0082]

【数11】 [Equation 11]

【0083】[0083]

【数12】 [Equation 12]

【0084】の六面仮想照度の方程式を制限関数に設定
し、シンプレックス法を用いて、前記の相対問題を解
く。このとき、Ehu,a Ehu,b Ehu,c
Ehu,d Ehu,e Ehu,fは投光照明器具群
abcdefがある点のEhuに与える照度の割合であ
り、Ev1,a Ev1,b Ev1,c Ev1,d
Ev1,e Ev1,fからEv4,a Ev4,b
Ev4,c Ev4,dEv4,e Ev4,fは投光
照明器具群abcdefがある点の4方向のEv1から
Ev4に与える照度の割合である。
The equation of the six-sided virtual illuminance is set as a limiting function, and the simplex method is used to solve the relative problem. At this time, Ehu, a Ehu, b Ehu, c
Ehu, d Ehu, e Ehu, f is the ratio of the illuminance given to Ehu at a certain point of the floodlighting fixture group abcdef, and Ev1, a Ev1, b Ev1, c Ev1, d
Ev1, e Ev1, f to Ev4, a Ev4, b
Ev4, c Ev4, dEv4, e Ev4, f are ratios of illuminance given to Ev1 to Ev4 in four directions at a certain point of the floodlighting fixture group abcdef.

【0085】解は双対問題として二つ考えられ、一つは
各鉛直面照度を500[lx]に最大化するも解、もう
一つは各鉛直面照度を500[lx]に最小化する解で
ある。
Two solutions are considered as a dual problem. One is a solution that maximizes each vertical illuminance to 500 [lx], and the other is a solution that minimizes each vertical illuminance to 500 [lx]. Is.

【0086】線形計画法(シンプレックス法)を使って
解を最適化する手法について述べると、旧来の線形計画
法による(Brackettの方式)の目的関数と制限関数式と
大きく異なる点は、被照射範囲のある点の6面照度を最
適化するためにシンプレックス法を使用することで、シ
ンプレックスタブローは旧来方式のように全体を線形計
画の対象とするわけではないため大きなディメンジョン
が不必要となったことである。
A method of optimizing a solution by using a linear programming method (simplex method) will be described. The difference between the objective function and the limiting function expression of the conventional linear programming method (Brackett's method) is that the irradiation range is large. By using the simplex method to optimize the six-sided illuminance at a certain point, simplex tableau does not take the whole linear programming as in the traditional method, so that a large dimension becomes unnecessary. Is.

【0087】水平面照度を1000[lx]、鉛直面照
度500[lx]となるように6面照度を最大化する問
題と最小化する問題(双対問題)の解をシンプレックス
タブロー(表4)、(表5)に示す。
The solution of the problem of maximizing the 6-sided illuminance and the problem of minimizing the 6-sided illuminance (dual problem) so that the horizontal plane illuminance is 1000 [lx] and the vertical plane illuminance is 500 [lx] is shown in simplex tableau (Table 4), ( It shows in Table 5).

【0088】[0088]

【表4】 [Table 4]

【0089】[0089]

【表5】 [Table 5]

【0090】この値が、この幾何条件で、六面照度が最
適化できる限界値であり、さらにEhuを1000[l
x]にするという追加処理として、(表4)のSS変数
つまり1000[lx]に対する不足分342.2[l
x]を(表6)のごとくさらに最小化することも可能で
ある。
This value is the limit value at which the six-sided illuminance can be optimized under this geometric condition, and Ehu is 1000 [l
x] is added to the SS variable in (Table 4), that is, the deficit 342.2 [l for 1000 [lx].
x] can be further minimized as in (Table 6).

【0091】[0091]

【表6】 [Table 6]

【0092】本実施例では、仮想照度の比率を実際の照
度分割比率に置き換えするときに前記プロセスを取った
が、求めたい解に合わせ仮想照度の比率を実際の照度分
割比率に置き換えるプロセスは、得たい目標照明要件に
よって種々のバリエーションをもたせてよい。(このと
き不等式を拡張して一部等式とすれば、鉛直面照度を優
先して解を求めることも可能である) 他に、もう一つの実施例を挙げれば、シンプレックス法
を使わずに単なる比例関数のみで近似解を求めることも
可能である。
In this embodiment, the above process is used when replacing the virtual illuminance ratio with the actual illuminance division ratio. However, the process of replacing the virtual illuminance ratio with the actual illuminance division ratio according to the desired solution is as follows: Various variations may be provided depending on the desired lighting requirements. (At this time, if the inequalities are expanded to partial equalities, it is possible to give priority to the vertical illuminance to obtain the solution.) In addition, another example is given without using the simplex method. It is also possible to obtain an approximate solution using only a proportional function.

【0093】例えば、(表1)と(表2)の関係を用い
て、一つの投光照明器具群が影響を与える二つの鉛直面
照度の内、大きく結果に影響を与える方を固定するとし
て、26の投光照明器具群aの場合、22のEv3の2
33を固定値と考えると、24のEhuと23のEv4
は仮想照度の比で求められるので、Ehu:233=
0.076:0.106から、Ehu=167であり、
Ev4:233=0.108:0.106から、Ev4
=237である。
For example, by using the relationship between (Table 1) and (Table 2), it is assumed that, of the two vertical illuminances that one floodlighting fixture group influences, the one that largely affects the result is fixed. , 26 of the floodlighting luminaire group a, 2 of 22 Ev3
Considering 33 as a fixed value, Ehu of 24 and Ev4 of 23
Is calculated by the ratio of virtual illuminance, so Ehu: 233 =
From 0.076: 0.106, Ehu = 167,
From Ev4: 233 = 0.108: 0.106, Ev4
= 237.

【0094】これを全てについて計算した結果を(表
7)にまとめて示す。
The results of calculation for all of them are summarized in (Table 7).

【0095】[0095]

【表7】 [Table 7]

【0096】このほか、180°反対の鉛直面照度の1
または2方向を目標の500[lx]に固定し、他方を
変化させる方法も可能であり、例えば21のEv2と2
3のEv4を固定すると(表8)のような結果となる。
Besides, 1 of the vertical illuminance opposite to 180 °
Alternatively, a method of fixing the two directions to the target 500 [lx] and changing the other is also possible, for example, Ev2 and 2 of 21.
When Ev4 of 3 is fixed, the result is as shown in (Table 8).

【0097】[0097]

【表8】 [Table 8]

【0098】さて、(表7)では24のEhuの合計は
668であるが、これを目標照度の1000[lx]に
なるように照度マトリックス全体に係数をかける(本例
の場合は、l.5)と(表9)のようになり比例関係の
みでの近似解がもとまる。比例関係を利用する処理にお
いても、得たい結果に合わせて様々なバリエーションを
持たせることが可能であり目的に応じて任意に適応すれ
ばよい。
In Table 7, the total of Ehu of 24 is 668, which is multiplied by a coefficient so that the target illuminance becomes 1000 [lx] (in the case of this example, l. As shown in 5) and (Table 9), an approximate solution based only on the proportional relationship can be obtained. Even in the processing using the proportional relationship, it is possible to have various variations in accordance with the desired result, and it may be arbitrarily adapted according to the purpose.

【0099】[0099]

【表9】 [Table 9]

【0100】前記投光照明器具群全体配光導出部a3か
ら、前記投光照明器具群全体配光導出部d6の処理で導
かれる投光照明器具群全体の配光の模式図を図8に示
す。
FIG. 8 is a schematic diagram of the light distribution of the entire floodlighting luminaire group guided by the processing of the whole floodlighting luminaire group light distribution deriving section d6 from the floodlighting luminaire group overall light distribution deriving section a3. Show.

【0101】図8aは投光照明器具群全体配光導出部a
3によって求められた投光照明器具群全体の配光の模式
図、図8bは投光照明器具群全体配光導出部b4、投光
照明器具群全体配光導出部d6によって求められた投光
照明器具群全体の配光の模式図、図8cは投光照明器具
群全体配光導出部c5によって求められた投光照明器具
群全体の配光の模式図である。
FIG. 8a shows the entire light distribution deriving portion a of the floodlighting luminaire group.
8b is a schematic view of the light distribution of the entire floodlighting luminaire group obtained by Step 3 of FIG. 3, and FIG. 8b is the light projection obtained by the total light distribution deriving unit b4 of the floodlighting illuminator group and the light distribution deriving unit d6 of the entire floodlighting luminaire group. FIG. 8c is a schematic diagram of the light distribution of the entire lighting fixture group, and FIG. 8c is a schematic diagram of the light distribution of the entire floodlighting fixture group obtained by the total light distribution lead-out unit c5.

【0102】図8aの場合、投光照明器具群の全体配光
は被照射範囲に最も近く最も入射効率の高いものに多く
割り振られることになり、最も少ない光束でグランド上
の水平面照度が満たされる解が得られる。しかしこの場
合、グランドへの光の入射角が深くなり水平面照度は満
たされるが、グランド上の鉛直面照度は満足できず、グ
ランド上の選手などに横方向からは十分な照明が与えら
れない。このときはコスト優先型の照明設計となる。
In the case of FIG. 8A, the total light distribution of the floodlighting lighting equipment group is allocated to the one closest to the illuminated area and having the highest incidence efficiency, and the illuminance in the horizontal plane on the ground is satisfied with the least luminous flux. The solution is obtained. However, in this case, the incident angle of light on the ground becomes deep and the horizontal plane illuminance is satisfied, but the vertical plane illuminance on the ground cannot be satisfied, and sufficient illumination is not given laterally to the players on the ground. In this case, the cost-first lighting design is used.

【0103】図8cの場合、投光照明器具群の全体配光
は被照射範囲全体に水平面照度も鉛直面照度も目標照度
を満足するように割り振ることができる。このとき、グ
ランドへの光の入射角が浅くなることで水平面照度に加
え鉛直面照度も満たされる様になり、グランド上の六面
照度が十分満足たされる解が得られる。この場合、投光
照明器具群の全体配光は被照射範囲全体グランド上で重
なる形となる。そして、グランド上での選手などにどの
横方向からも十分な照明が与える品質優先型の照明設計
となる。しかし、ビームの利用効率は必ずしも高いもの
にならずより多くの投光器が必要になる。
In the case of FIG. 8C, the total light distribution of the floodlighting fixture group can be allocated so that both the horizontal plane illuminance and the vertical plane illuminance satisfy the target illuminance over the entire illuminated area. At this time, since the incident angle of light on the ground becomes shallow, the vertical plane illuminance is satisfied in addition to the horizontal plane illuminance, and a solution is obtained in which the hexahedral illuminance on the ground is sufficiently satisfied. In this case, the entire light distribution of the floodlighting lighting equipment group is in a form of overlapping on the entire ground of the illuminated area. In addition, the quality-first lighting design will provide sufficient lighting to players on the ground from any lateral direction. However, the beam utilization efficiency is not necessarily high, and more projectors are required.

【0104】図8bの場合、投光照明器具群の全体配光
は図8aと図8cの中間的な様子に構成される。この場
合、投光照明器具群の全体配光は被照射範囲全体グラン
ド上で一部重なる形となる。そして、N値の値が大きく
なるほど図8aに近いグランドへの光の入射角が深くな
る図8aの結果に近いものとなり、N値の値が小さくな
るほど図8cに近いグランドへの光の入射角が浅くなる
ものとなる。
In the case of FIG. 8b, the total light distribution of the floodlighting lighting equipment group is configured in an intermediate state between FIGS. 8a and 8c. In this case, the entire light distribution of the floodlighting luminaire group partially overlaps with the ground of the entire illuminated area. Then, as the value of N increases, the angle of incidence of light on the ground becomes closer to that of FIG. 8a, which is closer to the result of FIG. 8a, and as the value of N decreases, the angle of incidence of light on the ground becomes closer to that of FIG. 8c. Will become shallower.

【0105】つぎに図2〜図5で示した仮想照度分布を
関数にして、被照射範囲として50[m]角のグラン
ド、投光照明器具群の幾何位置として対角線上の四隅に
グランドから10[m]離れて25[m]の高さが、投
光照明設計条件入力部1で入力されたスポーツ競技場を
モデルケースに、各照明器具群の全体配光が逆算された
結果を図9〜12に示す。各図は、N値が−2,0,
2,4にそれぞれ対応する。N値が減少するほど投光照
明器具群全体の配光の最大高度点の角度が浅くなり、N
値が増加するほど投光照明器具群全体の配光の最大高度
点の角度が深くなっていることがわかる。
Next, using the virtual illuminance distributions shown in FIGS. 2 to 5 as a function, a ground having a 50 [m] angle is used as the illuminated area, and the geometric positions of the floodlighting fixture group are 10 from the ground at the four corners on the diagonal. FIG. 9 shows a result in which the total light distribution of each lighting fixture group is back calculated with the height of 25 [m] apart from [m] as the model case of the sports stadium input by the floodlight design condition input unit 1. ~ 12. In each figure, N value is -2,0,
It corresponds to 2 and 4, respectively. As the N value decreases, the angle of the maximum altitude point of the light distribution of the floodlighting luminaire group becomes shallower.
It can be seen that as the value increases, the angle of the maximum altitude point of the light distribution of the entire floodlighting luminaire group becomes deeper.

【0106】前記投光照明器具群全体の配光を、この後
に述べる11の照射方向決定部a、もしくは12の照射
方向決定部bを用いて、実際の投光照明器具で近似すれ
ばその照射方向設計は、図13〜16に示すものとな
る。各図は、N値が−2,0,2,4にそれぞれ対応す
る。
If the light distribution of the entire floodlighting luminaire group is approximated by an actual floodlighting luminaire by using the irradiation direction deciding unit 11 or the irradiation direction deciding unit 12 to be described later, the irradiation is performed. The directional design will be that shown in FIGS. In each figure, N values correspond to -2, 0, 2, and 4, respectively.

【0107】N値が小さくなるほど、起点となる投光照
明器具群から照射方向が遠くへ向い、それにともなって
被照射範囲の六面照度の水平面成分の照度に比べ鉛直面
成分の照度が増加し、N値が小さくなるほど、起点とな
る投光照明器具群から照射方向が近くへ向い、それにと
もなって被照射範囲の六面照度の鉛直面成分の照度に比
べ水平面成分の照度が増加している。
The smaller the N value, the farther the irradiation direction is from the projecting lighting fixture group as the starting point, and accordingly, the illuminance of the vertical surface component increases compared to the illuminance of the horizontal surface component of the six-sided illuminance in the irradiated area. , The smaller the N value, the closer the illuminating direction is from the starting floodlighting fixture group, and accordingly the illuminance of the horizontal plane component is higher than the illuminance of the vertical plane component of the six-sided illuminance in the illuminated range. .

【0108】前記3の投光照明器具群全体配光導出部a
の処理で導かれた結果は、N値が2の結果とほぼ等価で
あり、前記5の投光照明器具群全体配光導出部cの処理
でEhu:Ev1:Ev2:Ev3:Ev4の比が2:
1:1:1:1と言う関係で導かれた結果は、N値が−
4の結果とほぼ等価である。
[0108] The light distribution deriving part a for the entire group of floodlighting luminaires described in 3 above.
The result derived by the process of 1 is almost equivalent to the result of N value of 2, and the ratio of Ehu: Ev1: Ev2: Ev3: Ev4 is 5 by the process of the total light distribution deriving unit c of the floodlighting lighting device group of 5 above. 2:
The result derived by the relationship of 1: 1: 1: 1 shows that the N value is −
It is almost equivalent to the result of 4.

【0109】つまり、これにより、N値という新たな一
つのパラメータのみで照明設計をコスト優先型から品質
優先型まで任意のバランスで設計できるということであ
る。
In other words, this makes it possible to design the lighting design from the cost-priority type to the quality-priority type in an arbitrary balance with only one new parameter, the N value.

【0110】ここで、6の投光照明器具群全体配光導出
部dが処理手順として選択された場合であるが、この場
合、前記3の投光照明器具群全体配光導出部aと、前記
5の投光照明器具群全体配光導出部cの処理で導かれる
投光照明器具群全体の配光を任意の比率で合成するので
あるから、前記4の投光照明器具群全体配光導出部bが
選択された場合と同じく、前記3の投光照明器具群全体
配光導出部aと、前記5の投光照明器具群全体配光導出
部cの処理で導かれる投光照明器具群全体の配光の中間
解を任意のバランスで求めることが出来る。
Here, there is a case where the whole floodlighting fixture group light distribution deriving unit d of 6 is selected as the processing procedure. In this case, the above floodlighting fixture group whole light distribution deriving unit a of Since the light distributions of the entire floodlighting lighting device group guided by the processing of the floodlighting lighting device group overall light distribution deriving unit c of 5 are combined at an arbitrary ratio, the entire floodlighting lighting device group light distribution of 4 above. Similar to the case where the derivation unit b is selected, the floodlighting luminaires guided by the processing of the above-mentioned whole floodlighting fixture group light distribution deriving unit a and the above-mentioned floodlighting fixture group whole light distribution deriving unit c. The intermediate solution of the light distribution of the entire group can be obtained with an arbitrary balance.

【0111】さて、どの投光照明器具群が被照射範囲の
どの方向にどれだけの照度を与えるかが決定されると、
これから逆に投光照明器具群全体の光度配光が逆算でき
るので、投光照明器具群全体配光導出部の出力は、7の
中間結果出力部で投光照明器具群全体の配光としてアウ
トプット可能である。
Now, when it is determined which floodlighting luminaire group provides which illuminance in which direction of the illuminated area,
On the contrary, since the luminous intensity distribution of the whole floodlighting fixture group can be back-calculated, the output of the overall light distribution deriving unit of the floodlighting fixture group is output as the light distribution of the whole floodlighting fixture group at the intermediate result output unit 7 It is possible.

【0112】この時点で、投光照明器具による投光照明
器具群全体の配光を個々の投光照明器具の配光で近似す
る以前にどれだけの六面照度分布が実現できるかが分か
ることから、(数2)から(数5)を使用しての球面照
度、半球面照度、円筒面照度、半円筒面照度の各種照度
分布の近似限界がわかる。また、(数6)を使用すれば
グレアがどの程度になるかも予想可能である。
At this point, it is possible to know how much six-sided illuminance distribution can be realized before approximating the light distribution of the entire floodlight lighting fixture group by the floodlight lighting fixture with the light distribution of each floodlight lighting fixture. From these, the approximation limits of various illuminance distributions of spherical illuminance, hemispherical illuminance, cylindrical illuminance, and semi-cylindrical illuminance using (Equation 2) to (Equation 5) are known. Also, it is possible to predict how much glare will occur by using (Equation 6).

【0113】中間結果出力部7の投光照明器具群全体の
配光の出力結果を受けてなる予想は、投光照明器具に何
を使用するかによらず、純粋な照明諸元だけによるもの
であるので、投光照明器具の選択ミスか、照明諸元の設
定ミスかが分離でき、ここにおいて設計の妥当性が検証
できる。
The prediction based on the output result of the light distribution of the entire floodlighting luminaire group of the intermediate result output unit 7 is based on pure illumination specifications regardless of what is used for the floodlighting luminaire. Therefore, it is possible to separate the mistake of selecting the floodlighting luminaire and the mistake of setting the illumination specifications, and the validity of the design can be verified here.

【0114】次に中間結果出力部7の出力結果を受け、
8の投光照明器具配光入力部で具体的な投光照明器具の
配光データを直接入力、もしくは、投光照明器具の形式
番号を入力することで9の照明器具の配光データベース
から設計にしようする投光照明器具の配光を入力する。
Next, receiving the output result of the intermediate result output unit 7,
Designed from the light distribution database of 9 by directly inputting the concrete light distribution data of the floodlighting fixture or by inputting the model number of the floodlighting fixture at the floodlighting fixture light distribution input unit of 8. Enter the light distribution of the floodlight to be used.

【0115】前記投光照明器具配光入力部8で使用する
投光照明器具が決定すれば、10の処理手続き選択部b
により、11の照射方向決定部a、12の照射方向決定
部bのいずれかで、具体的に投光照明器具群の配光が入
力された投光照明器具の個々の配光で近似されるかが選
択されるとともに、照射方向決定部が使用投光照明器具
配光入力部で入力された、投光照明器具の配光のビーム
角を検出し、ビーム光軸中心の被照面に対しての入射角
が深い場合に、使用投光照明器具配光入力部で入力され
たビーム角の広い広角配光の照明器具を照射し、ビーム
光軸中心の被照面に対しての入射角が浅い場合に、使用
投光照明器具配光入力部で入力されたビーム角の狭い狭
角配光の照明器具を照射するごとく、使用投光照明器具
のビーム角が狭角化するほどビーム光軸中心の被照面に
対しての入射角を浅く設定する機能を稼動させるか否か
を選択する。
When the floodlighting fixture to be used in the floodlighting fixture light distribution input unit 8 is determined, the processing procedure selection unit b of 10 is selected.
Accordingly, in any one of the irradiation direction determination unit a of 11 and the irradiation direction determination unit b of 12, the light distribution of the floodlighting lighting device group is specifically approximated by the individual light distribution of the floodlighting lighting device. Is selected, and the irradiation direction determination unit detects the beam angle of the light distribution of the floodlight lighting device, which is input by the floodlight lighting device light distribution input unit, with respect to the illuminated surface at the center of the beam optical axis. When the incident angle of the beam is deep, the illumination device used emits a wide-angle light with a wide beam angle input from the light distribution input section, and the incident angle on the illuminated surface at the center of the beam optical axis is shallow. In this case, as the lighting device with a narrow-angle light distribution with a narrow beam angle input at the floodlighting device to be used is irradiated, Select whether or not to activate the function of setting the incident angle to the illuminated surface at a shallow angle.

【0116】前記機能が選択された場合には、使用投光
照明器具の配光毎に使用角度が設定される。
When the above-mentioned function is selected, the use angle is set for each light distribution of the use floodlighting luminaire.

【0117】ここで図17にサッカー場の照明設計事例
で前記機能が選択された場合の出力結果を示す。図18
はその諸条件を示す図である。実線は狭角型投光照明器
具の振り向け位置を示しており、破線は中角型投光照明
器具の振り向け位置、一点鎖線は広角型投光照明器具の
振り向け位置を示している。前記機能が選択された場合
は照射角度が浅くなるほど狭角型のビームを持つ投光照
明器具が選択されており、これにより使用される投光照
明器具の総光束が少なくかつ均斉度のよい照明設計が可
能となる。
Here, FIG. 17 shows an output result when the function is selected in a lighting design example of a soccer field. FIG.
Is a diagram showing various conditions thereof. The solid line indicates the turning position of the narrow-angle floodlighting luminaire, the broken line indicates the turning position of the medium-angle floodlighting illuminator, and the alternate long and short dash line indicates the turning position of the wide-angle floodlighting illuminator. When the above-mentioned function is selected, a floodlighting fixture having a narrow-angle beam is selected as the irradiation angle becomes shallower, and thus the floodlighting fixture used has a small total luminous flux and good uniformity. Design becomes possible.

【0118】つぎに図19〜21に投光照明器具の配光
と振り向け角の関係を示す。図19は広角型の投光照明
器具の場合、図20は中角型の投光照明器具の場合、図
21は狭角型の投光照明器具の場合である。
Next, FIGS. 19 to 21 show the relationship between the light distribution and the turning angle of the floodlighting luminaire. FIG. 19 shows the case of a wide-angle floodlight, FIG. 20 shows the case of a medium-angle floodlight, and FIG. 21 shows the case of a narrow-angle floodlight.

【0119】図19から広角型のごとくビーム角が広い
ものほど振り向け角が浅くなるほど狙った場所に光が届
かず投光照明の意味がなくなることが解る。また、図2
1から振り向け角の深い場所に狭角型のごとくビーム角
が狭い照明器具を用いると照度分布のムラが発生し易く
なることが解る。このため前記のごとく、使用投光照明
器具の配光毎に使用角度が設定されることにより、実際
の投光照明器具による近似の精度を向上させることが出
来る。
It can be seen from FIG. 19 that the wider the beam angle, such as the wide-angle type, the smaller the turning angle, the light does not reach the intended location, and the meaning of the floodlight is lost. Also, FIG.
It can be seen from 1 that unevenness in the illuminance distribution is likely to occur when an illumination device having a narrow beam angle such as a narrow angle type is used in a place where the turning angle is deep. Therefore, as described above, the use angle is set for each light distribution of the flood-lighting fixture used, so that the accuracy of approximation by the actual flood-lighting fixture can be improved.

【0120】また、この設定角度は目標照度によって可
変とし、目標照度が高い場合は、より中心光度が高いビ
ーム角の広い投光照明器具を使用する範囲を広げ、目標
照度が低い場合は、より中心光度が低いビーム角の広い
投光照明器具を使用する範囲を広げるようにすれば、よ
りビーム利用率を向上させることが可能である。
Further, this set angle is variable according to the target illuminance. When the target illuminance is high, the range of using the floodlighting luminaire having a high central luminous intensity and a wide beam angle is widened, and when the target illuminance is low, The beam utilization rate can be further improved by expanding the range of use of the floodlighting illuminator having a low central luminous intensity and a wide beam angle.

【0121】さて、照射方向決定部a11が選択された
場合、照射方向決定部が投光照明器具群全体の配光の最
大光度点を、使用投光照明器具配光入力部で入力された
使用投光照明器具の配光の最大光度点に重ね合わせた
後、投光照明器具群全体の配光と前記使用投光照明器具
の配光の差分を算出する。前記算出された投光照明器具
群全体の配光の最大光度点を、再び前記使用投光照明器
具の配光の最大光度点に重ね合わせ差分を算出する。こ
のプロセスを、差分が最小化されるまで繰り返すことに
より、投光照明器具群全体の配光を、投光照明器具個々
の配光で近似する。
When the irradiation direction determination unit a11 is selected, the irradiation direction determination unit uses the maximum luminous intensity point of the light distribution of the entire floodlighting lighting device group, which is input by the use floodlighting lighting device light distribution input unit. After superimposing it on the maximum luminous intensity point of the light distribution of the flood light, the difference between the light distribution of the entire flood light fixture group and the light distribution of the used flood light is calculated. The calculated maximum luminous intensity point of the light distribution of the entire floodlighting luminaire group is superimposed on the maximum luminous intensity point of the light distribution of the used floodlighting luminaire again to calculate a difference. By repeating this process until the difference is minimized, the light distribution of the entire floodlighting luminaire group is approximated by the light distribution of each floodlighting luminaire.

【0122】また、照射方向決定部b12が選択された
場合、使用投光照明器具配光入力部で入力された、投光
照明器具を任意の個数かつ任意の方向に照射して投光照
明器具群全体の配光を上回る初期光度配光を得て後、前
記投光照明器具群全体の配光と前記初期光度配光による
被照面の差分を算出し、任意の個数かつ任意の方向に照
射して、前記初期配光を構成した投光照明器具の内、最
も差分を大きく与えた投光照明器具を消去し、これによ
り得られた配光を新たに初期配光とする。再び、前記投
光照明器具群全体の配光と前記初期配光による被照射範
囲の差分を算出し、前記初期配光を構成した投光照明器
具の内、最も差分を大きく与えた投光照明器具を消去す
る。このプロセスを差分が最小化されるまで繰り返すこ
とにより、投光照明器具群全体の配光を、投光照明器具
個々の配光で近似する。本実施例では初期配光を与える
ための初期照射はグランドに対して等間隔に与えたが、
目標照度への近似精度を上げたい位置がある場合その場
所の照射間隔を密にすればよい。
When the irradiation direction determining unit b12 is selected, the floodlighting fixtures input by the floodlighting fixture light distribution input unit to be used are illuminated in any number and in any direction. After obtaining the initial luminous intensity distribution that exceeds the luminous intensity distribution of the entire group, calculate the difference between the luminous intensity distribution of the entire floodlighting lighting fixture group and the illuminated surface due to the initial luminous intensity distribution, and irradiate in any number and in any direction. Then, among the floodlighting illuminators that make up the initial light distribution, the floodlighting illuminator that gives the largest difference is deleted, and the light distribution thus obtained is newly set as the initial light distribution. Again, the difference between the light distribution of the entire floodlighting luminaire group and the illuminated area due to the initial light distribution is calculated, and the floodlight that gives the largest difference among the floodlighting luminaires that constitute the initial light distribution. Erase the fixture. By repeating this process until the difference is minimized, the light distribution of the entire floodlighting luminaire group is approximated by the light distribution of each floodlighting luminaire. In this embodiment, the initial irradiation for giving the initial light distribution was given at equal intervals to the ground,
If there is a position where the accuracy of approximation to the target illuminance is desired to be increased, the irradiation interval at that position may be made closer.

【0123】本処理の、投光照明器具群の配光を個々の
投光照明器具の配光で近似するということは、すなわち
個々の投光照明器具の振り向け角を決定するということ
と等価である。これで得られた近似結果は、投光照明器
具群それぞれが分割された目標の照明諸元に近づくよう
に決定されたものであるため、投光照明器具全体の配光
をさらに合成した結果の合成後に目標照明諸元が真に満
足されているかどうかが判定される。
In this processing, approximating the light distribution of the floodlighting luminaire group by the light distribution of each floodlighting illuminator is equivalent to determining the turning angle of each floodlighting illuminator. is there. Since the approximation result obtained by this is determined so that each of the floodlighting fixture groups approaches the divided target illumination specifications, the result of further combining the light distributions of the entire floodlighting fixtures After composition, it is determined whether the target illumination parameters are truly satisfied.

【0124】前記判定の結果を受けて、13の処理手続
き選択手段cにより、14の二次処理部a、15の二次
処理部bが稼働する、もしくは二次処理は行わないかが
決定される。
On the basis of the result of the judgment, the processing procedure selecting means c of 13 determines whether the secondary processing parts a of 14 and the secondary processing part b of 15 are activated or not. .

【0125】14の二次処理部a、もしくは、15の二
次処理部b、の処理を行う選択がなされた場合、投光照
明器具群全体配光の合成結果と目標の照明諸元の差分を
とるが、このとき、投光照明器具照射方向設計を行った
後の被照射範囲の算出結果が目標の照明諸元より過剰に
得られていた場合、算出結果と照明諸元との差分の内、
最も過剰に差分を与えた投光照明器具の照射方向を削除
する手続きを繰り返し、投光照明照射方向設計を行った
後の被照射範囲の照明諸元との差を最小化する、14の
二次処理部aが稼働する。
When the processing of the 14th secondary processing section a or the 15th secondary processing section b is selected, the difference between the combined result of the entire light distribution of the floodlighting luminaire group and the target illumination specification. However, at this time, if the calculation result of the irradiated area after performing the projection direction design of the floodlighting luminaire is excessively obtained from the target illumination specifications, the difference between the calculation result and the illumination specifications is calculated. Of which
The procedure of deleting the irradiation direction of the floodlighting luminaire that gives the most excessive difference is repeated to minimize the difference from the illumination specifications of the illuminated range after the designing of the floodlighting illumination direction. The next processing unit a operates.

【0126】また、投光照明器具照射方向設計を行った
後の被照射範囲の算出結果が目標の照明諸元より不足し
ていた場合、投光照明器具照射方向設計を行った後の被
照射範囲の照度分布と、照明諸元との差分の内、最も過
小に差分が大きい被照射範囲の位置に投光照明器具の照
射方向を追加する処理を繰り返し、投光照明照射方向設
計を行った後の被照射範囲の照明諸元との差を最小化す
る、14の二次処理部bが稼働する。
When the calculation result of the irradiation range after designing the irradiation direction of the floodlighting illuminating device is less than the target illumination specifications, the irradiation target after irradiating the irradiation direction of the floodlighting lighting device is designed. Of the differences between the illuminance distribution in the range and the lighting specifications, the process of adding the irradiation direction of the floodlighting luminaire to the position of the irradiated range with the smallest difference is repeated, and the projection direction of the floodlighting illumination was designed. The 14 secondary processing units b that minimize the difference from the illumination specifications of the subsequent irradiation area are activated.

【0127】これにより、投光照明照射方向設計を、投
光照明器具群全体の配光を目標照明要件から逆算した
後、投光照明器具個々の配光で投光照明器具群全体の配
光を近似し、さらに、個々の投光照明器具群全体の配光
の近似結果を合成した後の被照射範囲の照明設計結果と
照明諸元の比較処理から投光照明照射方向設計をより最
適化する処理の流れが完了することとなる。
Thus, after the floodlight illumination direction design is back-calculated from the target lighting requirement for the light distribution of the whole floodlighting fixture group, the light distribution of the whole floodlighting fixture group is performed by the light distribution of each floodlighting fixture. And the comparison of the light distribution of the entire group of individual floodlighting luminaires and the comparison of the lighting design results of the illuminated area and the lighting specifications, and then the design of the floodlighting lighting direction is further optimized. The flow of processing to be performed is completed.

【0128】前記結果を16の最終結果出力部が出力す
ることにて、投光照明設計のひと通りの流れは完了する
が、これにくわえて、投光照明器具群全体配光導出部の
出力に代え、既に投光照明器具の照射方向が決定されて
た前記結果を、13の処理手続き選択手段bに入力する
17の最終結果フィードバック部を有することで、照明
設計が終わった結果を利用して、新たな1の投光照明設
計条件入力部からの入力データを満足するように、さら
に照度を高めたい場合や、さらに照度を落としたい場合
に前記結果をどの様に増灯・減灯すればよいかという問
題に対応できる。つまり、一つの照明の場において、で
きるかぎり同じ投光照明器具を用いて投光照明器具の点
灯消灯で異なる照明シーンを実現する照明設計の要求に
対応することができることで、同じ競技場で公式競技を
行うときには高レベルの照明を、練習時には低レベルの
照明を切り替えて使用したいというようなニーズや、同
一スポーツ施設でサッカーと陸上競技が行われるような
ときに、投光照明器具の点灯パターンの制御でシーン切
り替えを行う要望の設計に答えられる。
The above-mentioned result is output by the 16 final result output section, and the general flow of the floodlighting design is completed. In addition to this, the output of the whole light distribution deriving section of the floodlighting luminaire group is outputted. In place of the above, by providing the final result feedback section of 17 for inputting the result in which the irradiation direction of the floodlighting luminaire has already been determined to the processing procedure selection means b of 13, the result of the lighting design is utilized. Then, if you want to further increase the illuminance or if you want to further decrease the illuminance so that the input data from the new floodlight design condition input section 1 is satisfied, how to increase / decrease the above results? Can handle the question of whether or not to do it. In other words, in the same stadium, it is possible to meet the requirements of a lighting design that realizes different lighting scenes by turning on and off the floodlights using the same floodlights as much as possible in one lighting field. The lighting pattern of the floodlighting fixtures is used when there is a need to switch between high-level lighting during competition and low-level lighting during practice, or when soccer and athletics are played in the same sports facility. You can answer the desired design to switch the scenes under the control of.

【0129】さらに野球場など、目標照度は内野が高く
外野が低い様な場合、つまり、被照射範囲内に目標照度
が違うエリアが輻輳している照明設計を行う場合におい
ても、異なる目標照度を持つエリアの照明設計結果の幾
何的足し算だけではなく(内野で照明設計を行った結果
と、外野で照明設計を行った結果の幾何的加算であれば
本フィードバック機構を用いずとも可能)、全エリアに
均一に照度を与える照明設計を行っておいて、その状態
からの照明灯の増灯・減灯という処理が行えるため、照
明設計結果にムリがなくなる。
Furthermore, even when the target illuminance is high in the infield and low in the outfield, such as in a baseball field, that is, when the illumination design is performed in which areas with different target illuminances are congested within the illuminated area, different target illuminances are set. Not only the geometrical addition of the lighting design result of the area to have (it is possible without using this feedback mechanism if geometrical addition of the result of lighting design in the infield and the result of lighting design in the outfield) Since the lighting design that uniformly gives the illuminance to the area is performed, and the process of increasing / decreasing the lighting from that state can be performed, the lighting design result does not have any trouble.

【0130】以上構成をもって、投光照明の投光照明器
具の照射方向自動設計装置を、動的計画法のアルゴリズ
ムで構成し、処理手法を組み替え可能とすることで照明
設計条件が複雑なものに対しても実用的で適用範囲の広
い投光照明器具照射方向自動設計装置を提供することが
できる。
With the above configuration, the apparatus for automatically designing the irradiation direction of the floodlight lighting fixture of floodlight is configured by the algorithm of the dynamic programming method, and the processing method can be changed to make the lighting design condition complicated. It is possible to provide an apparatus for automatically designing the irradiation direction of a floodlighting luminaire that is practical and has a wide range of application.

【0131】なお、上記実施例では、各手段は、コンピ
ュータを用いてソフトウェア的に実現したが、それら各
機能を有する専用のハード回路を用いて実現する事も出
来る。
In the above embodiment, each means is realized by software using a computer, but it may be realized by using a dedicated hardware circuit having each of these functions.

【0132】[0132]

【発明の効果】以上述べたところから明らかなように、
本発明は、照明設計条件が複雑なものに対しても、実用
的で適用範囲の広い投光照明器具照射方向自動設計装置
を提供出来る。
As is apparent from the above description,
INDUSTRIAL APPLICABILITY The present invention can provide an apparatus for automatically designing the irradiation direction of a floodlighting luminaire, which is practical and has a wide range of application, even for complicated lighting design conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる投光照明器具照射方
向自動設計装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus for automatically designing an irradiation direction of a floodlighting luminaire according to an embodiment of the present invention.

【図2】同実施例における、N=−2の場合の仮想照度
分布図である。
FIG. 2 is a virtual illuminance distribution diagram in the case of N = -2 in the example.

【図3】同実施例における、N=0の場合の仮想照度分
布図である。
FIG. 3 is a virtual illuminance distribution diagram in the case of N = 0 in the example.

【図4】同実施例における、N=2の場合の仮想照度分
布図である。
FIG. 4 is a virtual illuminance distribution diagram when N = 2 in the example.

【図5】同実施例における、N=4の場合の仮想照度分
布図である。
FIG. 5 is a virtual illuminance distribution diagram when N = 4 in the example.

【図6】六面照度の概念を示す図である。FIG. 6 is a diagram showing a concept of six-sided illuminance.

【図7】野球場をモデルケースに被照射範囲内での六面
仮想照度のサンプルを計算した結果を示す図である。
FIG. 7 is a diagram showing a result of calculating a sample of six-sided virtual illuminance within an illuminated range in a baseball field as a model case.

【図8】投光照明器具群全体の配光の模式図である。FIG. 8 is a schematic diagram of the light distribution of the entire floodlighting luminaire group.

【図9】N=−2の各照明器具群の全体配光が逆算され
た結果を示す図である。
FIG. 9 is a diagram showing a result of back calculation of the total light distribution of each lighting fixture group of N = −2.

【図10】N=0の各照明器具群の全体配光が逆算され
た結果を示す図である。
FIG. 10 is a diagram showing a result of back calculation of the total light distribution of each lighting fixture group with N = 0.

【図11】N=2の各照明器具群の全体配光が逆算され
た結果を示す図である。
FIG. 11 is a diagram showing a result of back calculation of the total light distribution of each lighting fixture group with N = 2.

【図12】N=4の各照明器具群の全体配光が逆算され
た結果を示す図である。
FIG. 12 is a diagram showing a result of back calculation of the total light distribution of each lighting fixture group of N = 4.

【図13】N=−2の照射方向設計の結果を示す図であ
る。
FIG. 13 is a diagram showing a result of irradiation direction design for N = −2.

【図14】N=0の照射方向設計の結果を示す図であ
る。
FIG. 14 is a diagram showing a result of irradiation direction design of N = 0.

【図15】N=2の照射方向設計の結果を示す図であ
る。
FIG. 15 is a diagram showing a result of irradiation direction design for N = 2.

【図16】N=4の照射方向設計の結果を示す図であ
る。
FIG. 16 is a diagram showing a result of irradiation direction design for N = 4.

【図17】請求項9の機能が選択された場合と選択され
なかった場合の出力結果を示す図である。
FIG. 17 is a diagram showing output results when the function of claim 9 is selected and when it is not selected.

【図18】図17の諸条件を示す図である。FIG. 18 is a diagram showing various conditions of FIG. 17;

【図19】広角型投光照明器具の配光と振り向け角の関
係を示す図である。
FIG. 19 is a diagram showing the relationship between the light distribution and the turning angle of the wide-angle floodlighting illuminator.

【図20】中角型投光照明器具の配光と振り向け角の関
係を示す図である。
FIG. 20 is a diagram showing the relationship between the light distribution and the turning angle of the medium-angle type floodlighting luminaire.

【図21】挟角型投光照明器具の配光と振り向け角の関
係を示す図である。
FIG. 21 is a diagram showing the relationship between the light distribution and the turning angle of the narrow-angle floodlight lighting fixture.

【符号の説明】[Explanation of symbols]

1 投光照明設計条件入力部 2 処理手続き選択手段a 3 投光照明器具群全体配光導出部a 4 投光照明器具群全体配光導出部b 5 投光照明器具群全体配光導出部c 6 投光照明器具群全体配光導出部d 7 中間結果出力部 8 投光照明器具配光入力部 9 投光照明器具配光データベース 10 処理手続き選択手段b 11 照射方向決定部a 12 照射方向決定部b 13 処理手続き選択手段c 14 二次処理部a 15 二次処理部b 16 最終結果出力部 17 最終結果フィードバック部 18 50[m]角のグランド 19 投光照明器具 20 Ev1 21 Ev2 22 Ev3 23 Ev4 24 Ehu 25 Ehd 26 投光照明器具群a 27 投光照明器具群b 28 投光照明器具群c 29 投光照明器具群d 30 投光照明器具群e 31 投光照明器具群f 32 ピッチャーマウンドの仮想六面照度 1 Projection lighting design condition input section 2 Processing procedure selection means a 3 Projection lighting equipment group whole light distribution deriving section a 4 Projection lighting equipment group whole light distribution deriving section b 5 Projection lighting equipment group whole light distribution deriving section c 6 Projection lighting equipment group whole light distribution derivation unit d 7 Intermediate result output unit 8 Projection lighting equipment light distribution input unit 9 Projection lighting equipment light distribution database 10 Processing procedure selection means b 11 Irradiation direction determination unit a 12 Irradiation direction determination Part b 13 Processing procedure selection means c 14 Secondary processing part a 15 Secondary processing part b 16 Final result output part 17 Final result feedback part 18 Ground of 50 [m] angle 19 Floodlight luminaire 20 Ev1 21 Ev2 22 Ev3 23 Ev4 24 Ehu 25 Ehd 26 Floodlight fixture group a 27 Floodlight fixture group b 28 Floodlight fixture group c 29 Floodlight fixture group d 30 Floodlight fixture group e 31 Floodlight illuminator Equipment group f 32 Pitcher mound virtual six-sided illuminance

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】被照射範囲と投光照明器具群の幾何位置、
および、設計目標照明諸元を入力するための投光照明設
計条件入力部と、 前記投光照明設計条件入力部により入力された投光照明
器具群の幾何位置に仮想光度を持つ完全球面配光の点光
源を仮定し、前記点光源により被照射範囲に与えられる
仮想照度分布を関数として、照明諸元を満足する投光照
明器具群全体の配光を逆算する投光照明器具群全体配光
導出部と、 使用する投光照明器具の配光を入力するための使用投光
照明器具配光入力部と、 前記投光照明器具群全体配光導出部の出力を前記使用投
光照明器具配光入力部で入力された投光照明器具個々の
配光で近似する照射方向決定部とを備え、 投光照明器具照射方向設計を、投光照明器具群全体の配
光を仮想照度分布を関数に、入力された照明諸元をみた
すごとく逆算した後、投光照明器具個々の配光で前記投
光照明器具群全体の配光を近似する処理を行うことを特
徴とする投光照明器具照射方向自動設計装置。
1. A range to be illuminated and a geometric position of a group of floodlighting luminaires,
And a projection lighting design condition input section for inputting design target lighting specifications, and a perfect spherical light distribution having virtual luminous intensity at the geometric position of the projection lighting fixture group input by the projection lighting design condition input section Assuming that the point light source is a point light source, and the virtual illuminance distribution given to the illuminated range by the point light source as a function, the total light distribution of the floodlight lighting equipment group that back-calculates the light distribution of the entire floodlight lighting equipment group that satisfies the illumination specifications A derivation unit, a floodlighting fixture light distribution input unit for inputting the light distribution of the floodlighting fixture to be used, and an output of the floodlighting fixture group entire light distribution derivation unit is used for the floodlighting fixture distribution. Equipped with an irradiation direction determination unit that approximates the light distribution of each of the floodlighting fixtures input by the light input unit. After calculating the input lighting specifications, An apparatus for automatically designing an irradiation direction of a floodlighting luminaire, wherein processing for approximating the light distribution of the entire floodlighting luminaire group is performed by light distribution of each luminaire.
【請求項2】投光照明器具群全体配光導出部は、 投光照明設計条件入力部に入力された投光照明器具群の
幾何位置に仮想光度を持つ完全球面配光の点光源を仮定
し、前記点光源により被照射範囲に与えられる仮想照度
分布を、照度は距離の2乗に逆比例するという物理法則
の下で計算し、被照射範囲の各位置毎に前記仮想照度を
一番多く与えた幾何位置の投光照明器具群が照明諸元を
与えるごとく投光照明器具群全体の配光を構成する、処
理手続きを持つことを特徴とする請求項1記載の投光照
明器具照射方向自動設計装置。
2. The whole light distribution deriving unit of the floodlighting lighting fixture group is assumed to be a point source of perfect spherical light distribution having virtual luminous intensity at the geometric position of the floodlighting lighting fixture group input to the floodlighting lighting design condition input unit. Then, the virtual illuminance distribution given to the illuminated range by the point light source is calculated under the physical law that the illuminance is inversely proportional to the square of the distance, and the virtual illuminance is calculated to be the best for each position in the illuminated range. 2. The projection lighting equipment irradiation according to claim 1, wherein the projection lighting equipment group having a large number of geometrical positions has a processing procedure for configuring the light distribution of the entire projection lighting equipment group so as to provide the illumination specifications. Direction automatic design device.
【請求項3】投光照明器具群全体配光導出部は、 投光照明設計条件入力部に入力された投光照明器具群の
幾何位置に仮想光度を持つ完全球面配光の点光源を仮定
し、前記点光源により被照射範囲に与えられる仮想照度
分布を、照度は距離の2乗に逆比例するという物理法則
の2乗を−4乗から4乗までの間で変化させて計算し、
被照射範囲の各位置毎の目標照明諸元を、前記仮想照度
の比率で各投光照明器具群毎に分割して与えるごとく投
光照明器具群全体の配光を構成する、処理手続きを持つ
ことを特徴とする請求項1記載の投光照明器具照射方向
自動設計装置。
3. The total light distribution deriving unit of the floodlighting fixture group is assumed to be a point source of perfect spherical light distribution having virtual luminous intensity at the geometric position of the floodlighting fixture group input to the floodlighting design condition input unit. Then, the virtual illuminance distribution given to the irradiated area by the point light source is calculated by changing the square of the physical law that the illuminance is inversely proportional to the square of the distance from −4 to 4
There is a processing procedure for configuring the light distribution of the entire floodlighting luminaire group so that the target illumination specifications for each position in the illuminated range are divided and given to each floodlighting luminaire group at the ratio of the virtual illuminance. 2. The apparatus for automatically designing the irradiation direction of a floodlighting luminaire according to claim 1.
【請求項4】照明器具群全体配光導出部は、 投光照明設計条件入力部に入力された投光照明器具群の
幾何位置に仮想光度を持つ完全球面配光の点光源を仮定
し、前記点光源により被照射範囲に与えられる仮想照度
分布を、照度は距離の2乗に逆比例するという物理法則
の下で計算し、照射範囲の各位置毎の目標照明諸元を目
的関数に、前記仮想照度を制限関数に設定し、各々の投
光照明器具群全体の配光を構成する、処理手続きを持つ
ことを特徴とする請求項1記載の投光照明器具照射方向
自動設計装置。
4. The luminaire group overall light distribution deriving unit assumes a point source of perfect spherical light distribution having virtual luminosity at the geometric position of the illuminating lighting fixture group input to the illuminating lighting design condition input unit, The virtual illuminance distribution given to the illuminated range by the point light source is calculated under the physical law that the illuminance is inversely proportional to the square of the distance, and the target illumination specifications for each position of the illuminated range are used as the objective function. 2. The apparatus for automatically designing the irradiation direction of floodlighting equipment according to claim 1, further comprising a processing procedure for setting the virtual illuminance to a limiting function and configuring light distribution for each floodlighting equipment group.
【請求項5】投光照明器具群全体配光導出部は、請求項
2記載の投光照明器具群全体配光導出部と請求項4記載
の投光照明器具群全体配光導出部とを同時に有し、前記
二つの投光照明器具群全体配光導出部の投光照明器具群
全体の配光を任意の比率で合成した結果を最終的な投光
照明器具群全体の配光として構成する、処理手続きを持
つことを特徴とする請求項1記載の投光照明器具照射方
向自動設計装置。
5. The floodlighting luminaire group overall light distribution deriving unit comprises the floodlighting luminaire group overall light distribution deriving unit according to claim 2 and the floodlighting luminaire group overall light distribution deriving unit according to claim 4. At the same time, the result of combining the light distributions of the entire floodlighting lighting fixture groups of the two floodlighting lighting fixtures group total light distribution deriving units at a desired ratio is configured as the final light distribution of the floodlighting lighting fixture group. The floodlight fixture irradiation direction automatic designing apparatus according to claim 1, further comprising a processing procedure.
【請求項6】投光照明器具群全体配光導出部で得られた
中間結果を出力する中間結果出力部を有し、投光照明器
具照射方向の自動設計を行う際に、前記投光照明器具群
全体配光導出部で得られた中間結果が途中出力可能であ
ることを特徴とする請求項1〜5のいずれかに記載の投
光照明器具照射方向自動設計装置。
6. A floodlighting apparatus group having an intermediate result output section for outputting an intermediate result obtained by a light distribution deriving section as a whole, wherein the floodlighting apparatus is used when automatically designing an irradiation direction of the floodlighting apparatus. 6. The projection direction lighting device irradiation direction automatic designing device according to any one of claims 1 to 5, wherein the intermediate result obtained by the entire light distribution and deriving unit of the device group can be output on the way.
【請求項7】照射方向決定部は、 前記投光照明器具群全体配光導出部で得られた投光照明
器具群全体の配光の最大光度点の位置に、前記使用投光
照明器具配光入力部で入力された使用投光照明器具の配
光の最大光度点を重ね合わせ、これを初期配光とし、前
記投光照明器具群全体の配光で得られた照明結果と、前
記初期配光で得られた照明結果との差分を最も多く与え
た位置に、再び使用投光照明器具配光入力部で入力され
た使用投光照明器具の配光の最大光度点を重ね合わせ、
これを新たな初期配光とする手続きを、前記差分が最小
化されるまで繰り返すことにより、投光照明器具群全体
の配光を、投光照明器具個々の配光で近似することを特
徴とする請求項1〜6のいれかに記載の投光照明器具照
射方向自動設計装置。
7. The irradiation direction determining unit is arranged such that, at the position of the maximum luminous intensity point of the light distribution of the entire floodlighting fixture group obtained by the floodlighting fixture group overall light distribution deriving unit, the used floodlighting fixture distribution is set. The maximum luminous intensity points of the light distribution of the flood-lighting luminaire used, which are input by the light input unit, are overlapped, and this is used as the initial light distribution, and the lighting result obtained by the light distribution of the entire flood-lighting luminaire group and the initial light distribution. The maximum luminous intensity point of the light distribution of the used floodlighting luminaire input again at the position of the used floodlighting luminaire light distribution input unit is superimposed on the position where the difference with the illumination result obtained by the light distribution is given most,
By repeating the procedure of setting this as a new initial light distribution until the difference is minimized, the light distribution of the entire floodlight lighting fixture group is approximated by the light distribution of each floodlight lighting fixture. The floodlighting fixture irradiation direction automatic designing device according to any one of claims 1 to 6.
【請求項8】照射方向決定部は、 前記使用投光照明器具配光入力部で入力された、投光照
明器具を任意の個数かつ任意の方向に照射して投光照明
器具全体配光導出部で得られた投光照明器具群全体の配
光を上回る初期光度配光を得て後、前記投光照明器具群
全体の配光と前記初期光度配光による被照射範囲の照明
結果の差分を算出し、前記初期配光を構成した投光照明
器の内、最も差分を大きく与えた投光照明器具を消去
し、これにより得られた配光を新たな初期配光とし、前
記投光照明器具群全体の配光と前記新たな初期配光によ
る被照射範囲の照明結果の差分を算出し、前記初期配光
を構成した投光照明器具の内、最も差分を大きく与えた
投光照明器具を消去する手続きを差分が最小化されるま
で繰り返すことにより、投光照明器具群全体の配光を、
投光照明器具個々の配光で近似することを特徴とする請
求項1〜6のいずれかに記載の投光照明器具照射方向自
動設計装置。
8. The irradiation direction determining unit irradiates the floodlighting illuminator in any number and in any direction, which is input by the use floodlighting illuminator light distribution input unit, and irradiates the entire floodlighting illuminator. After obtaining an initial luminous intensity distribution exceeding the luminous intensity distribution of the entire floodlighting luminaire group obtained in the section, the difference between the luminous intensity distribution of the entire floodlighting luminaire group and the illumination result of the illuminated range by the initial luminous intensity distribution. Of the floodlighting illuminators forming the initial light distribution, the floodlighting luminaire having the largest difference is deleted, and the light distribution thus obtained is set as a new initial light distribution, A floodlight that gives the largest difference among the floodlights that form the initial light distribution by calculating the difference between the light distribution of the entire lighting fixture group and the illumination result of the irradiation range by the new initial light distribution. By repeating the procedure of deleting the fixtures until the difference is minimized, Light distribution of the body,
The illumination direction automatic designing apparatus according to any one of claims 1 to 6, wherein the light distribution of each of the floodlighting luminaires is approximated.
【請求項9】照射方向決定部が、 使用投光照明器具配光入力部で入力された、投光照明器
具の配光のビーム角を検出し、ビーム光軸中心の被照射
範囲に対しての入射角が深い場合に、使用投光照明器具
配光入力部で入力されたビーム角の広い広角配光の照明
器具を照射し、ビーム光軸中心の被照射範囲に対しての
入射角が浅い場合に、使用投光照明器具配光入力部で入
力されたビーム角の狭い狭角配光の照明器具を照射する
ごとく、使用投光照明器具のビーム角が狭角化するほど
ビーム光軸中心の被照射範囲に対しての入射角を浅く設
定する処理手続をもつことを特徴とする請求項7、又は
8記載の投光照明器具照射方向自動設計装置。
9. An irradiation direction determining unit detects a beam angle of the light distribution of the floodlighting illuminator, which is input by a light-projecting illuminator light distribution input unit to be used, with respect to an irradiation range at the center of the beam optical axis. When the angle of incidence of the beam is deep, the lighting device with wide-angle light distribution with a wide beam angle input from the used floodlight lighting device light distribution input section irradiates the incident angle with respect to the irradiation range at the center of the beam optical axis. When the lighting angle of the narrow-angle light distribution with a narrow beam angle input at the light distribution input part of the flood-lighting device to be used is radiated, the beam optical axis becomes narrower as the beam angle of the flood-lighting device to be used becomes narrower. 9. The projection direction lighting equipment irradiation direction automatic designing apparatus according to claim 7, further comprising a processing procedure for setting a shallow incident angle with respect to a central irradiation area.
【請求項10】投光照明器具群全体配光導出部の出力を
使用投光照明器具配光入力部で入力された投光照明器具
個々の配光で近似する照射方向決定部からの出力を合成
し、投光照明器具照射方向設計を行った後の被照射範囲
の照明結果を算出し、投光照明器具照射方向設計を行っ
た後の被照射範囲の照明結果と、照明諸元との差分の
内、最も過剰に差分を与えた投光照明器具の照射方向を
削除し、投光照明照射方向設計を行った後の被照射範囲
の照明結果と照明諸元との差を最小化する、二次処理部
を有し、投光照明器具群全体の配光を目標照明要件から
逆算した後、投光照明器具個々の配光で投光照明器具群
全体の配光を近似し、さらに、個々の投光照明器具群全
体の配光の近似結果を合成した後の被照射範囲の照明結
果と照明諸元の比較処理から投光照明照射方向設計をよ
り最適化することを特徴とする請求項1〜9のいずれか
に記載の投光照明器具照射方向自動設計装置。
10. An output from an irradiation direction determining unit which is approximated by the light distribution of each of the floodlighting fixtures input by the floodlighting fixture light distribution input unit is used. The lighting result of the irradiation range after the combination is calculated and the irradiation result of the irradiation range after the projection direction of the projection lighting fixture is designed is calculated. Among the differences, the irradiation direction of the floodlighting luminaire that gives the most excessive difference is deleted, and the difference between the illumination result of the irradiation range and the illumination specifications after designing the irradiation direction is minimized. , Having a secondary processing unit, after the light distribution of the entire floodlighting fixture group is back-calculated from the target lighting requirement, the light distribution of the entire floodlighting fixture group is approximated by the light distribution of each floodlighting fixture, and , Comparison of illumination results and illumination specifications of the illuminated area after synthesizing approximate results of light distribution of individual floodlighting fixture groups Floodlight fixtures irradiation direction automatic designing apparatus according to any one of claims 1 to 9, characterized in that further optimize the floodlights radiation direction designed from sense.
【請求項11】投光照明器具群全体配光導出部の出力を
使用投光照明器具配光入力部で入力された投光照明器具
個々の配光で近似する照射方向決定部からの出力を合成
し、投光照明器具照射方向設計を行った後の被照射範囲
の照明結果を算出し、投光照明器具照射方向設計を行っ
た後の被照射範囲の照明結果と、照明諸元との差分の
内、最も過小に差分が大きい被照射範囲の位置に投光照
明器具の照射方向を追加し、投光照明照射方向設計を行
った後の被照射範囲の照明結果と照明諸元との差を最小
化する、二次処理部を有し、投光照明器具群全体の配光
を目標照明要件から逆算した後、投光照明器具個々の配
光で投光照明器具群全体の配光を近似し、さらに、個々
の投光照明器具群全体の配光の近似結果を合成した後の
被照射範囲の照明結果と照明諸元の比較処理から投光照
明照射方向設計をより最適化することを特徴とする請求
項1〜9のいずれかに記載の投光照明器具照射方向自動
設計装置。
11. An output from an irradiation direction determining unit that approximates the light distribution of each of the floodlighting fixtures input by the floodlighting fixture light distribution input unit is used. The lighting result of the irradiation range after the combination is calculated and the irradiation result of the irradiation range after the projection direction of the projection lighting fixture is designed is calculated. Of the differences, the irradiation direction of the floodlighting luminaire is added to the position of the irradiation range where the difference is the smallest and the lighting result and the lighting specifications of the irradiation range after the projection lighting irradiation direction design are performed. A secondary processing unit that minimizes the difference is provided, and the light distribution of the entire floodlighting luminaire group is calculated back from the target lighting requirement, and then the light distribution of the entire floodlighting luminaire group is performed by the individual light distribution of the floodlighting luminaire. And then combine the approximate results of the light distributions of the individual floodlighting fixture groups, and then combine the illumination results in the illuminated area. A floodlight fixture irradiation direction automatic designing apparatus according to any one of claims 1 to 9, characterized in that further optimize the floodlights radiation direction designed from the lighting specifications of comparison processing.
【請求項12】被照射範囲と投光照明器具群の幾何位
置、および、設計目標証明諸元を入力する投光照明設計
条件入力部と、 前記投光照明設計条件入力部により入力された投光照明
器具群の幾何位置に仮想光度を持つ完全球面配光の点光
源を仮定し、前記点光源により被照射範囲に与えられる
仮想照度分布を関数として、照明諸元を満足する投光照
明器具群全体の配光を逆算する請求項2〜5のいずれか
に記載の投光照明器具群全体配光導出部と、 請求項6記載の中間結果出力部と、 請求項1記載の使用投光照明器具配光入力部と、 前記投光照明器具群全体配光導出部の出力を使用投光照
明器具配光入力部で入力された投光照明器具個々の配光
で近似する請求項7〜9のいずれかに記載の照射方向決
定部と、 個々の投光照明器具群全体の配光の近似結果を合成した
後の被照射範囲の照度分布と照明諸元の比較処理から投
光照明照射方向設計をより最適化する請求項10、又は
11に記載の二次処理部と、 請求項2〜5記載の投光照明器具群全体配光導出部のい
ずれの処理を行うかの処理手続き選択手段と、 請求項7、又は8記載の照射方向決定部のいずれの処理
を行うかの処理手続き選択手段と、 前記選択手段により選択された照射方向決定部の処理に
加え請求項9記載の照射方向決定部の処理を行うか否か
の処理手続き選択手段と、 請求項10、又は11記載の二次処理部のいずれの処理
を行うか否かの処理手続き選択手段とを備えたことを特
徴とする、処理手続きが可変可能な投光照明器具照射方
向自動設計装置。
12. A projection lighting design condition input section for inputting an irradiation range, a geometrical position of a projection lighting equipment group, and design target proof specifications, and a projection input by the projection lighting design condition input section. Assuming a point light source of perfect spherical light distribution having a virtual luminous intensity at the geometric position of the light lighting equipment group, and a virtual illumination distribution given to the illuminated range by the point light source as a function, a floodlight lighting equipment satisfying the illumination specifications. The light distribution deriving unit according to any one of claims 2 to 5 for calculating the light distribution of the entire group, the intermediate result output unit according to claim 6, and the used light projection according to claim 1. The lighting fixture light distribution input unit and the output of the entire floodlighting fixture group light distribution derivation unit are approximated by the light distribution of each floodlighting fixture input through the use floodlighting fixture light distribution input unit. 9. The irradiation direction determination unit according to any one of 9 and The secondary processing unit according to claim 10 or 11, which further optimizes the projection illumination irradiation direction design based on a process of comparing the illuminance distribution in the irradiation range and the illumination specifications after combining the approximate results of light. Item 2-5 Which processing is performed by the floodlighting fixture group overall light distribution deriving unit, and which processing is performed by the irradiation direction determination unit according to Claim 7 or 8. The processing procedure selection means, and the processing procedure selection means for determining whether or not to perform the processing of the irradiation direction determination unit according to claim 9 in addition to the processing of the irradiation direction determination unit selected by the selection means. An apparatus for automatically designing an irradiation direction of a floodlighting luminaire, which is capable of varying a processing procedure, comprising: a processing procedure selection unit that determines which processing of the secondary processing unit described above is to be performed.
【請求項13】既に投光照明器具の照射方向が決定され
ている結果を、照射方向決定部に入力する手段を有し、
新たに投光照明設計条件入力部により入力された投光照
明設計条件を満たすごとく、前記既に投光照明器具の照
射方向が決定されている結果を再処理することを特徴と
する請求項12記載の投光照明器具照射方向自動設計装
置。
13. A means for inputting to the irradiation direction determination section the result of the irradiation direction of the floodlighting fixture being already determined,
13. The result that the irradiation direction of the floodlighting fixture has already been determined is reprocessed as long as the floodlighting design condition newly input by the floodlighting design condition input unit is satisfied. Flood lighting equipment irradiation direction automatic design device.
JP5318588A 1993-12-17 1993-12-17 Automatically designing device for irradiation direction of floodlighting apparatus Pending JPH07175848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5318588A JPH07175848A (en) 1993-12-17 1993-12-17 Automatically designing device for irradiation direction of floodlighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5318588A JPH07175848A (en) 1993-12-17 1993-12-17 Automatically designing device for irradiation direction of floodlighting apparatus

Publications (1)

Publication Number Publication Date
JPH07175848A true JPH07175848A (en) 1995-07-14

Family

ID=18100821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5318588A Pending JPH07175848A (en) 1993-12-17 1993-12-17 Automatically designing device for irradiation direction of floodlighting apparatus

Country Status (1)

Country Link
JP (1) JPH07175848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049445A (en) * 2008-08-21 2010-03-04 Panasonic Electric Works Co Ltd Optimum illuminator operation device and optimum illuminator operation method
JP2020042964A (en) * 2018-09-10 2020-03-19 パナソニックIpマネジメント株式会社 Lighting system for stadium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049445A (en) * 2008-08-21 2010-03-04 Panasonic Electric Works Co Ltd Optimum illuminator operation device and optimum illuminator operation method
JP2020042964A (en) * 2018-09-10 2020-03-19 パナソニックIpマネジメント株式会社 Lighting system for stadium

Similar Documents

Publication Publication Date Title
US8356916B2 (en) Method, system and apparatus for highly controlled light distribution from light fixture using multiple light sources (LEDS)
US10077885B2 (en) Iris diaphragm system
CN108770140B (en) Multi-source lighting device with variable focal length ratio
CN103234173B (en) Design method for high-diffuse-reflection-rate free-form surface for achieving even-illumination
US6565233B1 (en) Color, size and distribution module for projected light
CN101858557B (en) Secondary optical lens of LED street lamp and design method thereof
EP2986900B1 (en) Lighting fixture of the wall washer type
JPH07175848A (en) Automatically designing device for irradiation direction of floodlighting apparatus
CN110602843A (en) Intelligent stage lighting cloud control method
CN112539400A (en) Design method of diffuse transmission free-form curved surface based on collimating lens array
EP3603342B1 (en) Lighting system and method
US12038169B2 (en) Light emitting device for creating dynamic natural lighting effects
CN108523471A (en) A kind of medicine frame and its method for indicating drug slot
KR101643978B1 (en) Lens optical system for light distribution control of square
WO2021093669A1 (en) Lighting device and lighting system
CN117940809A (en) Lighting system
RU64731U1 (en) LIGHT DIFFUSER FOR LIGHTING DEVICE
Stupple et al. Luminance pattern simulation: design of an artificial BRE average sky
Nick et al. Design and Development of a Dynamic Lighting System
Liu et al. Fast double free-form LED lens design for tiny rectangular light field with high efficiency
JPH04138605A (en) Method for forecasting range of deteriorated glare

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees