JPH07174937A - Ceramic capillary for optical fiber juncture and its production connection - Google Patents

Ceramic capillary for optical fiber juncture and its production connection

Info

Publication number
JPH07174937A
JPH07174937A JP31982993A JP31982993A JPH07174937A JP H07174937 A JPH07174937 A JP H07174937A JP 31982993 A JP31982993 A JP 31982993A JP 31982993 A JP31982993 A JP 31982993A JP H07174937 A JPH07174937 A JP H07174937A
Authority
JP
Japan
Prior art keywords
straight pipe
diameter straight
pipe portion
pipe part
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31982993A
Other languages
Japanese (ja)
Inventor
Makoto Hayakawa
信 早川
Osamu Kobayashi
修 小林
Mamoru Sakurai
衛 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP31982993A priority Critical patent/JPH07174937A/en
Publication of JPH07174937A publication Critical patent/JPH07174937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a capillary which permits omission of reboring of a small-diameter straight pipe part, lessens bending of the small-diameter straight pipe part and sufficiently withstands thermal shock by specifying the total length of the small-diameter straight pipe part and tapered pipe part of the fired body of the ceramic capillary and producing by an injection molding. CONSTITUTION:This ceramic capillary 1 is mounted at the front end of an optical fiber 10 and has a large-diameter straight pipe part 2 for housing a coated fiber 11, the small-diameter straight pipe part 3 for housing the fiber 12 and the tapered pipe part 4 for smoothly connecting the large-diameter straight pipe part 2 and the small- diameter straight pipe part 3. The sum L1 of the length L3 of the small-diameter straight pipe part 3 and the length L4 of the tapered pipe part 4 is set at 6.0 mm<=L1<=8.5mm. This ceramic capillary 1 is produced by an injection molding method. The degree of freedom in determining the length and shape of the tapered pipe part 4 is increased if the straight pipe part is included in the tapered pipe part 4. Further, the firm adhesion of the capillary 1 and the coated fiber 11 by the tapered pipe part 4 is possible and the length L3 of the small-diameter straight pipe part 3 is made shorter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ接続部に使用
されるセラミックキャピラリ及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capillary used in an optical fiber connecting portion and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光ファイバコネクタ用キャピラリの製造
方法は、例えば特公平1−45042号公報の技術が知
られている。図9は従来のキャピラリの断面図であり、
上記公報の第2図に相当し、セラミックキャピラリ10
0は、ステンレス若しくはプラスチック製フランジ10
1に接合され、セラミックキャピラリ100に十分に長
い微小穴102(小径直管部に相当)があけられ、フラ
ンジに大きな穴103(大径直管部に相当)があけられ
ている。そして上記公報によれば、下孔をあけたセラミ
ックス成形体を焼成し、その焼成体の下孔をワイヤ及び
ダイヤモンドペーストで研磨する。
2. Description of the Related Art As a method for manufacturing a capillary for an optical fiber connector, for example, a technique disclosed in Japanese Patent Publication No. 1-45042 is known. FIG. 9 is a cross-sectional view of a conventional capillary,
Corresponding to FIG. 2 of the above publication, the ceramic capillary 10
0 is a flange 10 made of stainless steel or plastic
1, a ceramic capillary 100 is provided with a sufficiently long minute hole 102 (corresponding to a small diameter straight pipe portion), and a large hole 103 (corresponding to a large diameter straight pipe portion) is formed in a flange. Then, according to the above publication, the ceramic molded body having the prepared hole is fired, and the prepared hole of the fired body is polished with a wire and a diamond paste.

【0003】[0003]

【発明が解決しようとする課題】上記技術がセラミック
キャピラリの一般的な製造方法であるが、次の〜の
欠点を有している。 下穴を再加工するために、加工工程が増し、加工時間
と加工費が増加する。 上記公報では明記していないが、成形法は押出成形法
および射出成形法があり、押出成形法は対称な円筒形状
のものしか生産できないので、ファイバ挿入のためのテ
ーパ部は焼成後に切削加工にて形成する必要がある。そ
のために加工コストが嵩むと共に、細孔部とテーパ部と
の交差部にエッジが立ちやすく、ファイバ折損の恐れが
ある。 そこで、形状が自在で大量生産に向いた射出成形法が望
ましい。
The above-mentioned technique is a general method for manufacturing a ceramic capillary, but it has the following disadvantages. Since the prepared hole is reprocessed, the number of processing steps is increased and the processing time and cost are increased. Although not specified in the above publication, there are extrusion molding methods and injection molding methods as molding methods, and since extrusion molding methods can only produce symmetrical cylindrical shapes, the taper portion for fiber insertion is cut after firing. Need to be formed. Therefore, the processing cost is increased, and an edge is easily formed at the intersection of the fine hole portion and the tapered portion, which may cause fiber breakage. Therefore, an injection molding method having a flexible shape and suitable for mass production is desirable.

【0004】図10は従来の射出成形型の1例の断面図
であり、例えば第1型111にキャピラリ用のキャビテ
ィ112が刻設され、また第2型113に円錐部114
およびピン115が突設され且つゲート116,116
が設けられていて、第1型111に第2型113を型合
わせし、この際にピン115の先端を第1型111の凹
部111aに差込み、この状態でゲート116,116
を介してバインダを含むセラミック粉末(図示せず)を
キャビティ112に高圧で射出する。
FIG. 10 is a cross-sectional view of an example of a conventional injection molding die. For example, a cavity 112 for a capillary is engraved in a first die 111, and a conical portion 114 is provided in a second die 113.
And a pin 115 is projected and gates 116, 116
Is provided, the second mold 113 is matched with the first mold 111, and at this time, the tip of the pin 115 is inserted into the concave portion 111a of the first mold 111.
A ceramic powder (not shown) containing a binder is injected into the cavity 112 at high pressure via the.

【0005】このときに、ピン115に僅かではあるが
不均一な側圧が作用して曲り、成形体の下穴の直線性が
悪化することがある。ピン115の曲げやたわみは、ピ
ン115の長さが長いほど増加し、ピン115が直径の
大きいほど減少する。そこでピンは太いほどよいが、従
来例では削り代を確保するためにピンを小径に設定する
必要があり、ピンは曲りやすくなる。成形毎にピンに過
大な繰返し曲げ応力が発生するため、ピンの折損に至る
寿命は短くなる。また、射出成形にて成形、焼成したキ
ャピラリでも、従来例では内径加工を施すために、細孔
部とテーパ部にエッジが立ちやすくファイバ挿入時に折
損するおそれがあった。そのため、図9のキャピラリ1
00を射出成形法で製造することは押出成形法と比較し
て、コスト上及び性能上有利とはならない。
At this time, a slight but non-uniform lateral pressure acts on the pin 115 to bend the pin 115, which may deteriorate the linearity of the prepared hole. The bending or bending of the pin 115 increases as the length of the pin 115 increases, and decreases as the diameter of the pin 115 increases. Therefore, the thicker the pin, the better, but in the conventional example, it is necessary to set the pin to a small diameter in order to secure a cutting allowance, and the pin is easily bent. Since excessive repetitive bending stress is generated in the pin during each molding, the life of the pin leading to breakage is shortened. Further, even in a capillary molded and fired by injection molding, in the conventional example, since the inner diameter is processed, the pores and the taper portion are likely to have edges, which may be broken when the fiber is inserted. Therefore, the capillary 1 of FIG.
The production of 00 by the injection molding method is not advantageous in cost and performance as compared with the extrusion molding method.

【0006】また、上記公報の第2図では、太いファ
イバ芯線をフランジでのみで支えるが、この様な構造で
は熱冷衝撃(加熱と冷却と衝撃とを繰返し加えるこ
と。)に十分耐えるとはいえない。具体例を以下に説明
する。図11は従来のフェルールを用いて作製した光フ
ァイバ接続部の接続損失を示すグラフであり、横軸は熱
冷衝撃サイクル数、縦軸は接続損失を示す。上記グラフ
の作成条件は次の通りである。 キャピラリ; キャピラリの材質;ZrO2(イットリア部分安定化;
23のZrO2に対する割合は5.3wt%) 焼成体の外径;2.499±0.0005mm 焼成体の長さ;10.5mm 小径直管部の長さ;10.0mm 小径直管部の径;125.5〜126.0μm 先端部の加工法;PC研磨(球面加工) 熱冷衝撃サイクル; 常温→75℃で100mm高さから落下→75℃で30
分保持→常温→−40度で100mm高さから落下→−
40℃で30分保持→常温を1サイクルとする。
Also, in FIG. 2 of the above publication, the thick fiber core wire is supported only by the flange, but such a structure does not sufficiently withstand thermal cold shock (heating and cooling and shock are repeatedly applied). I can't say. A specific example will be described below. FIG. 11 is a graph showing the splice loss of an optical fiber splicing part produced using a conventional ferrule, in which the abscissa shows the number of thermal cold shock cycles and the ordinate shows the splice loss. The conditions for creating the above graph are as follows. Capillary; Capillary material; ZrO 2 (Yttria partial stabilization;
The ratio of Y 2 O 3 to ZrO 2 is 5.3 wt%) Outer diameter of fired body: 2.499 ± 0.0005 mm Length of fired body: 10.5 mm Length of small diameter straight pipe section: 10.0 mm Straightness of small diameter Diameter of tube part: 125.5-126.0 μm Processing method of tip part; PC polishing (spherical surface processing) Thermal-cold shock cycle; Room temperature → 75 ° C 100 mm drop → 75 ° C 30
Hold for minutes → Room temperature → Drop from a height of 100 mm at −40 degrees → −
Hold at 40 ° C for 30 minutes → normal temperature as one cycle.

【0007】このクラスの接続損失の管理値(許容値)
は±0.2dBである。10サンプルについて100サ
イクルの試験をしたところ、8サンプルは良好であった
が、2サンプルは20サイクルを越えると接続損失がマ
イナス側に増加し始め、30サイクルで管理値を越えて
しまった。即ち、n=10とサンプル数は少ないが、2
0%もの不良が認められ、ファイバ芯線をフランジで保
持する従来のコネクタは、極めて信頼性に乏しい構造で
あると言える。
Control value (allowable value) of connection loss in this class
Is ± 0.2 dB. When 10 cycles of 100 samples were tested, 8 samples were good, but 2 samples showed that the connection loss began to increase to the negative side after 20 cycles and exceeded the control value at 30 cycles. That is, n = 10 and the number of samples is small, but 2
It can be said that the conventional connector in which a defect of 0% is recognized and the fiber core wire is held by the flange has extremely poor reliability.

【0008】そこで本発明の目的は、小径直管部の再孔
加工を省くこと、小径直管部の曲りを小さくすること、
および熱冷衝撃に十分に耐えるセラミックキャピラリ及
びそれを製造する方法を提供することにある。
Therefore, an object of the present invention is to eliminate the re-hole machining of the small diameter straight pipe portion and to reduce the bending of the small diameter straight pipe portion,
Another object of the present invention is to provide a ceramic capillary that sufficiently withstands thermal shock and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するべく
本発明では、ファイバ芯線を納めるための大径直管部
と、ファイバ素線を納めるための小径直管部と、これら
大径直管部と小径直管部とを滑らかにつなぐテーパ管部
とを備え、焼成処理されたセラミックキャピラリにおい
て、このセラミックキャピラリは、小径直管部の長さと
テーパ管部の長さとの和を6mm〜8.5mmの範囲と
したことを特徴とする。また、前記テーパ管部は少なく
とも1個の直管部を含むものであってもよい。
In order to achieve the above object, the present invention provides a large-diameter straight pipe portion for accommodating a fiber core wire, a small-diameter straight pipe portion for accommodating a fiber element wire, and these large-diameter straight pipe portions. In a ceramic capillary that is provided with a taper pipe part that smoothly connects a small diameter straight pipe part, and this ceramic capillary has a sum of the length of the small diameter straight pipe part and the length of the taper pipe part of 6 mm to 8.5 mm. It is characterized by having a range of. Further, the tapered pipe portion may include at least one straight pipe portion.

【0010】[0010]

【作用】上記セラミックキャピラリを射出成形法で製造
する。この方法によれば、射出成形時に形成した小径直
管部を焼成後に再孔加工しないで済む。
The above-mentioned ceramic capillary is manufactured by the injection molding method. According to this method, it is not necessary to re-hole the small diameter straight pipe portion formed during injection molding after firing.

【0011】[0011]

【実施例】本発明の実施例を添付図面に基づいて以下に
説明する。図1は本発明方法で製造されたセラミックキ
ャピラリの断面図であり、セラミックキャピラリ1は、
光ファイバ10の先端に取付けられるものであって、フ
ァイバ芯線11を納めるための大径直管部2と、ファイ
バ素線12を納めるための小径直管部3と、これら大径
直管部2と小径直管部3とを滑らかにつなぐテーパ管部
4とを備えた構造であって、このセラミックキャピラリ
1(焼成体)は、小径直管部3の長さをL3、テーパ管
部4の長さをL4、L3+L4をLtとした場合に、次
の関係としたことを特徴とする。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view of a ceramic capillary manufactured by the method of the present invention.
A large-diameter straight pipe part 2 for accommodating the fiber core wire 11, a small-diameter straight pipe part 3 for accommodating the fiber element wire 12, which is attached to the tip of the optical fiber 10, and these large-diameter straight pipe part 2 and small The ceramic capillary 1 (fired body) has a structure including a taper pipe portion 4 that smoothly connects the diameter pipe portion 3, and the ceramic capillary 1 (fired body) has a length of the small diameter pipe portion 3 of L3 and a length of the taper pipe portion 4. Where L4 is L4 and L3 + L4 is Lt, the following relationship is characterized.

【0012】大径直管部2の内径;1.0〜1.2mm
(焼成後) 小径直管部3の内径;125.5〜126.0μm(焼
成後) 小径直管部3の内径;約176μm(成形体) 小径直管とテーパ管部の合計長さ;6.0≦Lt≦8.
5mm(焼成後)
Inner diameter of large-diameter straight pipe portion 2; 1.0 to 1.2 mm
(After firing) Inner diameter of small-diameter straight pipe portion 3; 125.5-126.0 μm (after firing) Inner diameter of small-diameter straight pipe portion 3; about 176 μm (molded body) Total length of small-diameter straight pipe and tapered pipe portion; 6 .0 ≦ Lt ≦ 8.
5 mm (after firing)

【0013】上記のセラミックキャピラリ1は、型プレ
ス成形法でも製造可能であるが、本発明では射出成形法
で製造する。その際に、176μmのピンを成形型内に
介在する。成形体は焼成をすると収縮するのでピンの径
は小径直管部3の最終径125.5〜126.0μmが
得られるように太いピンを採用する。射出成形法ではピ
ンに偏荷重が作用することがある。
The above-mentioned ceramic capillary 1 can be manufactured by a die press molding method, but in the present invention, it is manufactured by an injection molding method. At that time, a 176 μm pin is interposed in the mold. Since the molded body shrinks when fired, a thick pin is used so that the final diameter of the small-diameter straight pipe portion 3 is 125.5 to 126.0 μm. In the injection molding method, an eccentric load may act on the pin.

【0014】図2はピンのたわみを求めるモデル図であ
り、ピン5に偏荷重が等分布荷重wで作用し、ピン5の
一端が固定で他端が単純支持されたモデルであり、最大
たわみymaxと最大傾斜αmaxは次の式と式(機械工
学便覧改訂第5版第47頁参照)で与えられる。
FIG. 2 is a model diagram for obtaining the deflection of the pin. In this model, an eccentric load acts on the pin 5 with an evenly distributed load w, one end of the pin 5 is fixed, and the other end is simply supported. ymax and the maximum inclination αmax are given by the following equations and equations (see the Mechanical Engineering Handbook, Revised 5th Edition, page 47).

【0015】[0015]

【数1】 [Equation 1]

【0016】比較例:完成品の小径直管部の径を126
μm、削りしろを見込んだ焼成品の細孔の径を100μ
mとした場合、焼成前の成形体の小径直管部3の径は1
35〜141μmである。そこでピン5の外径を138
μmとし、小径直管部3の長さを14.5mmとして、
製造した射出成形の最大たわみは27μmであった。こ
のデータと上記式から分布荷重wを求めることがで
き、同時に式により最大傾斜αmaxを求めることがで
きた。
Comparative Example: The diameter of the small diameter straight pipe part of the finished product is 126
μm, the pore size of the fired product is 100 μ
When m, the diameter of the small diameter straight pipe part 3 of the molded body before firing is 1
It is 35-141 micrometers. Therefore, the outer diameter of the pin 5 is 138
μm and the length of the small diameter straight pipe portion 3 is 14.5 mm,
The maximum deflection of the manufactured injection molding was 27 μm. The distributed load w could be obtained from this data and the above equation, and at the same time, the maximum inclination αmax could be obtained from the equation.

【0017】実施例:完成品の小径直管部の径を126
μm、削りしろを見込まない焼成品の小径直管部の径を
126μmとした場合、焼成前の成形体の小径直管部3
の径は173〜182μmである。そこでピン5の外径
を176μmとして断面二次モーメントIを与え、小径
直管部3の長さを4.1,8.3,12.4,14.5
mm(焼成後に3,6,9,10.5mmになる。)と
しLを与え、上記分布荷重wを準用することで、式か
ら実施例の最大たわみを計算し、式から実施例の最大
傾斜(たわみ角)を計算し、図3、図4で表わした。
Example: The diameter of the small diameter straight pipe portion of the finished product is set to 126.
μm, if the diameter of the small-diameter straight pipe part of the fired product that does not allow for the cutting margin is 126 μm, the small-diameter straight pipe part 3 of the molded product before firing
Has a diameter of 173 to 182 μm. Therefore, the second moment of area I is given by setting the outer diameter of the pin 5 to 176 μm, and the length of the small diameter straight pipe portion 3 is 4.1, 8.3, 12.4, 14.5.
mm (3,6,9,10.5 mm after firing) is given and L is applied mutatis mutandis, the maximum deflection of the example is calculated from the formula, and the maximum inclination of the example is calculated from the formula. The (deflection angle) was calculated and shown in FIGS.

【0018】図3はキャピラリ焼成体の小径直管部の長
さと最大たわみの関係を示すグラフであり、このグラフ
によればキャピラリ焼成体の小径直管部3の長さが小さ
くなると指数関数的にたわみyが小さくなることが分
る。なお、比較例は△で付記した。図4はキャピラリ焼
成体の小径直管部の長さと最大傾斜の関係を示すグラフ
であり、このグラフによればキャピラリ焼成体の小径直
管部3の長さが小さくなると指数関数的に傾斜αが小さ
くなることが分る。この傾斜αの大小が、セラミックキ
ャピラリ1,1同士を突合せて接続した際の角度ずれに
直接関係する。
FIG. 3 is a graph showing the relationship between the maximum deflection and the length of the small diameter straight pipe portion of the capillary fired body. According to this graph, it is exponential when the length of the small diameter straight pipe portion 3 of the capillary fired body decreases. It can be seen that the deflection y is small. The comparative examples are indicated by Δ. FIG. 4 is a graph showing the relationship between the length of the small-diameter straight pipe portion of the capillary fired body and the maximum inclination. According to this graph, when the length of the small-diameter straight pipe portion 3 of the capillary fired body decreases, the exponentially inclined α It turns out that becomes smaller. The magnitude of this inclination α is directly related to the angular displacement when the ceramic capillaries 1 and 1 are butted and connected to each other.

【0019】上記比較例はピンの径が0.138mmで
あり、ピンの寿命は平均20000(射出)回であっ
た。これに対して、実施例はピン径が0.176mmと
太いため20000(射出)回を越えても何ら問題なか
った。
In the above comparative example, the diameter of the pin was 0.138 mm, and the life of the pin was 20000 (injection) times on average. On the other hand, in the example, the pin diameter was as thick as 0.176 mm, and there was no problem even if it exceeded 20000 (injection) times.

【0020】更に、図3から次のことが明らかである。 小径直管部の長10.5mmの場合、最大たわみ10-2
mm=10μm 小径直管部の長6mmの場合、最大たわみ10-3mm=
1μm 小径直管部の長3mmの場合、最大たわみ10-4mm=
0.1μm 当然、ピンの長さを短くすることで小径直管部3のたわ
みは激減する。しかし、小径直管部3を限りなく短くす
ることは次の理由でできない。
Furthermore, the following is clear from FIG. When the length of the small diameter straight pipe is 10.5 mm, the maximum deflection is 10 -2.
mm = 10 μm When the length of the small diameter straight pipe is 6 mm, the maximum deflection is 10 -3 mm =
When the length of the straight pipe part with a small diameter of 1 μm is 3 mm, the maximum deflection is 10 -4 mm =
0.1 μm Naturally, the bending of the small diameter straight pipe portion 3 is drastically reduced by shortening the length of the pin. However, it is impossible to make the small diameter straight pipe portion 3 as short as possible for the following reason.

【0021】図5は小径直管部の長さとファイバの接着
強度との関係を示すグラフであり、横軸は小径直管部の
長さ、縦軸は接着強度を示す。ファイバを長手方向に引
いた時の接着強度は、小径直管部3の長さが長いほど大
きい。この点から、小径直管部3を余り短くすると寿命
が短くなる恐れがある。そこで、冷熱衝撃サイクル試験
を実施し、その限界を調べた。
FIG. 5 is a graph showing the relationship between the length of the small diameter straight pipe portion and the adhesive strength of the fiber. The horizontal axis represents the length of the small diameter straight pipe portion and the vertical axis represents the adhesive strength. The longer the length of the small diameter straight pipe part 3, the greater the adhesive strength when the fiber is pulled in the longitudinal direction. From this point, if the small diameter straight pipe portion 3 is made too short, the service life may be shortened. Therefore, a thermal shock cycle test was carried out and its limit was investigated.

【0022】図6は本実施例のフェルールを用いて作製
した光ファイバ接続部の接続損失を示すグラフであり、
横軸は熱冷衝撃サイクル数、縦軸は接続損失を示す。上
記グラフの作成条件は次の通りである。 実施例1のキャピラリ; キャピラリの材質;ZrO2(イットリア部分安定化;
23のZrO2に対する割合は5.3wt%) 焼成体の外径;2.499±0.0005mm 焼成体の長さ;10.5mm 小径直管部の長さL3;6mm 小径直管部の径;125.5〜128.5μm テーパ管部の長さL4;1mm Lt;7mm 先端部の加工法;PC研磨(球面加工)
FIG. 6 is a graph showing the splice loss of the optical fiber splicing part produced by using the ferrule of this embodiment.
The horizontal axis represents the number of thermal shock cycles and the vertical axis represents the connection loss. The conditions for creating the above graph are as follows. Capillary of Example 1; Capillary material; ZrO 2 (Yttria partial stabilization;
The ratio of Y 2 O 3 to ZrO 2 is 5.3 wt%) Outer diameter of fired body: 2.499 ± 0.0005 mm Length of fired body: 10.5 mm Length of small diameter straight pipe part L3: 6 mm Straight pipe of small diameter Diameter of part: 125.5 to 128.5 μm Length of tapered tube part L4; 1 mm Lt; 7 mm Processing method of tip part; PC polishing (spherical surface processing)

【0023】熱冷衝撃サイクル; 常温→75℃で100mm高さから落下→75℃で30
分保持→常温→−40度で100mm高さから落下→−
40℃で30分保持→常温を1サイクルとする。 実施例は100サイクル終了後で、全10サンプルとも
に、接続損失は±0.2dB内であり良好であった。
Thermal-cold shock cycle; normal temperature → falls from 100 mm height at 75 ° C. → 30 at 75 ° C.
Hold for minutes → Room temperature → Drop from a height of 100 mm at −40 degrees → −
Hold at 40 ° C for 30 minutes → normal temperature as one cycle. In the example, after 100 cycles, all 10 samples had good connection loss within ± 0.2 dB.

【0024】図7は比較例のフェルールを用いて作製し
た光ファイバ接続部の接続損失を示すグラフであり、横
軸は熱冷衝撃サイクル数、縦軸は接続損失を示す。上記
グラフの作成条件は次の通りである。 比較例1のキャピラリ; キャピラリの材質;ZrO2(イットリア部分安定化;
23のZrO2に対する割合は5.3wt%) 焼成体の外径;2.499±0.0005mm 焼成体の長さ;10.5mm 小径直管部の長さL3;3mm 小径直管部の径;125.5〜126.0μm テーパ管部の長さL4;1mm Lt;4mm 先端部の加工法;PC研磨(球面加工)
FIG. 7 is a graph showing the splice loss of the optical fiber splicing part produced by using the ferrule of the comparative example, in which the horizontal axis represents the thermal shock cycle number and the vertical axis represents the splice loss. The conditions for creating the above graph are as follows. Capillary of Comparative Example 1; Capillary material; ZrO 2 (Yttria partial stabilization;
The ratio of Y 2 O 3 to ZrO 2 is 5.3 wt%) Outer diameter of fired body: 2.499 ± 0.0005 mm Length of fired body: 10.5 mm Length of small diameter straight pipe part L3; 3 mm Straight pipe of small diameter Diameter of part: 125.5-126.0 μm Length of taper tube part L4; 1 mm Lt; 4 mm Processing method of tip part; PC polishing (spherical surface processing)

【0025】熱冷衝撃サイクル; 常温→75℃で100mm高さから落下→75℃で30
分保持→常温→−40度で100mm高さから落下→−
40℃で30分保持→常温を1サイクルとする。 比較例は70サイクル終了後で、10サンプル中、4サ
ンプルは−0.2dBを越え、残り6サンプル中、1サ
ンプルも傾向としてはよくない。従って、Ltが4mm
以下では寿命の点で好ましくない。熱冷衝撃サイクル試
験を他の例にも試したのでその結果を表1に示す。
Thermal cold shock cycle; normal temperature → falls from 100 mm height at 75 ° C. → 30 at 75 ° C.
Hold for minutes → Room temperature → Drop from a height of 100 mm at −40 degrees → −
Hold at 40 ° C for 30 minutes → normal temperature as one cycle. In the comparative example, after 70 cycles, 4 samples out of −0.2 dB out of 10 samples, and 1 sample out of 6 remaining samples are not good. Therefore, Lt is 4mm
The following is not preferable in terms of life. The thermal cold shock cycle test was also tried on other examples, and the results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1はLtを4mmから10.5mmまで
変化させ、各々の接続損出を調べたもので、比較例2
(Lt=4mm)は30サイクルで既に0.3dBを越
えたので判定は×、比較例3(Lt=10.5mm)は
50サイクルで0.3dB以上なので判定は×である。
Table 1 is a table in which Lt was changed from 4 mm to 10.5 mm and the connection loss of each was examined. Comparative Example 2
Since (Lt = 4 mm) has already exceeded 0.3 dB in 30 cycles, the determination is x, and in Comparative Example 3 (Lt = 10.5 mm), the determination is x because it is 0.3 dB or more in 50 cycles.

【0028】実施例2,3(Lt=6mm)、実施例
4,5,6(Lt=7mm)および実施例7(Lt=
8.5mm)は良好であり、判定は○であった。更に、
ともにLt=7mmである実施例4(L3=1mm),
実施例5(L3=3mm),実施例6(L3=6mm)
のいずれも判定は○であることから、L3またはL4の
大小に左右されずにLtが6〜8.5mmであればよい
結果の得られることが分った。
Examples 2 and 3 (Lt = 6 mm), Examples 4, 5 and 6 (Lt = 7 mm) and Example 7 (Lt =
(8.5 mm) was good, and the judgment was ◯. Furthermore,
Example 4 in which both Lt = 7 mm (L3 = 1 mm),
Example 5 (L3 = 3 mm), Example 6 (L3 = 6 mm)
In each of the cases, since the judgment was ◯, it was found that good results can be obtained if Lt is 6 to 8.5 mm without being influenced by the size of L3 or L4.

【0029】上記接続損失が低レベルに留まる理由を推
定すると、次の二つが考えられる。第一にファイバとフ
ェルールが直接接着される部分が多いほど、接着強度が
大きく、なおかつ無機物同士の結合なので熱的サイクル
によって内部応力は発生するが熱劣化は生じにくい。従
って4mmでは接着強度が繰返し内部応力に抗するほど
大きくないために駄目であり、6mm以上でよい結果が
得られた。第二にフェルールが8.5mm以下では充分
な大径直管部を有するため、ファイバ芯線を確実に保持
することができ、耐衝撃構造となっていると考えられ
る。
Estimating the reason why the above connection loss remains at a low level, the following two can be considered. First, the more the portion where the fiber and the ferrule are directly adhered to each other, the higher the adhesive strength is, and since the inorganic substances are bonded to each other, internal stress is generated by the thermal cycle, but thermal deterioration is less likely to occur. Therefore, when the thickness is 4 mm, the adhesive strength is not so large as to resist the repeated internal stress, so that it is useless, and when 6 mm or more, a good result is obtained. Secondly, when the ferrule has a diameter of 8.5 mm or less, since it has a sufficient large-diameter straight pipe portion, the fiber core wire can be reliably held, and it is considered to have an impact resistant structure.

【0030】従って、光ファイバの接着強度は、小径直
管部の長さL3とテーパ管部の長さL4との和Ltに関
係すると言え、このLtが6.0〜8.5mmの範囲で
あれば、熱冷衝撃試験に耐え得るセラミックキャピラリ
を提供できる。また、テーパ管部を長めにとることによ
り、小径直管部を短くしても熱冷衝撃に耐え得る構造
で、なおかつ射出成形工程時の孔の変形が小さく、成形
ピンの寿命も長くなる。
Therefore, it can be said that the adhesive strength of the optical fiber is related to the sum Lt of the length L3 of the small diameter straight pipe portion and the length L4 of the taper pipe portion, and this Lt is in the range of 6.0 to 8.5 mm. If so, it is possible to provide a ceramic capillary capable of withstanding a thermal shock test. Further, by making the tapered pipe part longer, the structure is such that it can withstand the thermal shock even if the small diameter straight pipe part is shortened, the deformation of the hole during the injection molding process is small, and the life of the molding pin is extended.

【0031】図8は本発明のセラミックキャピラリの別
実施例の断面図であり、このセラミックキャピラリ21
は、小径直管部23、テーパ管部24(テーパ管部24
は第1テーパ管部25、直管部26および第2テーパ管
部27からなる。)、大径直管部22が順に設けられた
ものであり、小径直管部23、テーパ管部24が接着強
度の向上に寄与し、しかも小径直管部23を十分に短く
することができる。即ち、テーパ管部24は小径管部2
3と大径管部22をテーパ部分(この例では25,2
7)を含むテーパ管部であればよく、その中に1個又は
それ以上の直管部を含むことは差支えない。
FIG. 8 is a sectional view of another embodiment of the ceramic capillary of the present invention.
Is a small diameter straight pipe portion 23, a taper pipe portion 24 (taper pipe portion 24
Is composed of a first taper pipe part 25, a straight pipe part 26 and a second taper pipe part 27. ), The large-diameter straight pipe portion 22 is provided in order, the small-diameter straight pipe portion 23 and the taper pipe portion 24 contribute to the improvement of the adhesive strength, and the small-diameter straight pipe portion 23 can be sufficiently shortened. That is, the tapered pipe portion 24 is the small diameter pipe portion 2
3 and the large-diameter pipe portion 22 are tapered portions (in this example, 25, 2
It suffices that the taper pipe portion including 7) be included, and that one or more straight pipe portions be included therein.

【0032】上記説明の通り、本発明方法によれば射出
成形法でセラミックキャピラリを大量生産することがで
き、小径直管部の曲りが小さいので焼結後の孔加工を省
略することができる。
As described above, according to the method of the present invention, the ceramic capillaries can be mass-produced by the injection molding method, and since the small-diameter straight pipe portion has a small bending, it is possible to omit the hole processing after sintering.

【0033】尚、本発明方法はフランジとキャピラリを
一体成形したセラミックフェルール、プラスチックフェ
ルールはもとより、金属フランジや金属ケースにキャピ
ラリを挿入したフェルールにも適用できる。
The method of the present invention can be applied not only to a ceramic ferrule in which a flange and a capillary are integrally molded, a plastic ferrule, but also to a ferrule in which a capillary is inserted into a metal flange or a metal case.

【0034】[0034]

【発明の効果】以上に述べた通り本発明はセラミックキ
ャピラリ焼成体の小径直管部とテーパ管部との合計長さ
を6〜8.5mmの範囲にすることで、小径直管部の曲
りの小さい、熱冷衝撃に十分に耐えるセラミックキャピ
ラリを得ることができる。
As described above, according to the present invention, the bending of the small-diameter straight pipe portion is achieved by setting the total length of the small-diameter straight pipe portion and the taper pipe portion of the ceramic capillary fired body within the range of 6 to 8.5 mm. It is possible to obtain a ceramic capillary having a small size and sufficiently resistant to thermal shock.

【0035】また、テーパ管部に少なくとも1個の直管
部を含めるようにすれば、テーパ管部の長さや形状決定
の自由度が増し、更にテーパ管部にてキャピラリとファ
イバ芯線とを強固に接着できるので、小径直管部の長さ
をより短くすることができる。
Further, if at least one straight pipe portion is included in the taper pipe portion, the degree of freedom in determining the length and shape of the taper pipe portion increases, and the taper pipe portion further strengthens the capillary and the fiber core wire. Since it can be adhered to, the length of the small diameter straight pipe portion can be further shortened.

【0036】更に、射出成形法で製造すればセラミック
キャピラリを量産でき、しかも小径直管部の再孔加工を
要しないので製造コストを大幅に下げることができる。
Furthermore, if the injection molding method is used, the ceramic capillaries can be mass-produced, and since the re-hole processing of the small diameter straight pipe portion is not required, the manufacturing cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で製造されたセラミックキャピラリ
の断面図
FIG. 1 is a cross-sectional view of a ceramic capillary manufactured by the method of the present invention.

【図2】ピンのたわみを求めるモデル図FIG. 2 is a model diagram for obtaining the deflection of a pin.

【図3】キャピラリ焼成体の小径直管部の長さと最大た
わみの関係を示すグラフ
FIG. 3 is a graph showing the relationship between the maximum deflection and the length of the small diameter straight pipe portion of the capillary fired body.

【図4】キャピラリ焼成体の小径直管部の長さと最大傾
斜の関係を示すグラフ
FIG. 4 is a graph showing the relationship between the maximum inclination and the length of the small diameter straight pipe portion of the capillary fired body.

【図5】小径直管部の長さとファイバの接着強度との関
係を示すグラフ
FIG. 5 is a graph showing the relationship between the length of a small diameter straight pipe section and the adhesive strength of a fiber.

【図6】本実施例のフェルールを用いて作製した光ファ
イバ接続部の接続損失を示すグラフ
FIG. 6 is a graph showing the connection loss of the optical fiber connection section produced using the ferrule of this example.

【図7】比較例のフェルールを用いて作製した光ファイ
バ接続部の接続損失を示すグラフ
FIG. 7 is a graph showing the connection loss of an optical fiber connection section produced using the ferrule of the comparative example.

【図8】本発明のセラミックキャピラリの別実施例の断
面図
FIG. 8 is a sectional view of another embodiment of the ceramic capillary of the present invention.

【図9】従来のキャピラリの断面図FIG. 9 is a sectional view of a conventional capillary.

【図10】従来の射出成形型の1例の断面図FIG. 10 is a sectional view of an example of a conventional injection mold.

【図11】従来のフェルールを用いて作製した光ファイ
バ接続部の接続損失を示すグラフ
FIG. 11 is a graph showing the splice loss of an optical fiber splicing part produced using a conventional ferrule.

【符号の説明】[Explanation of symbols]

1,21…セラミックキャピラリ、2,22…大径直管
部、3,23…小径直管部、4,24…テーパ管部、1
0…光ファイバ、11…ファイバ芯線、12…ファイバ
素線、26…直管部、L3…小径直管部の長さ、L4…
テーパ管部の長さ、Lt…L3とL4の和。
1, 21 ... Ceramic capillaries, 2, 22 ... Large diameter straight pipe portion, 3, 23 ... Small diameter straight pipe portion, 4, 24 ... Tapered pipe portion, 1
0 ... Optical fiber, 11 ... Fiber core wire, 12 ... Fiber element wire, 26 ... Straight pipe part, L3 ... Length of small diameter straight pipe part, L4 ...
Length of taper tube part, Lt ... Sum of L3 and L4.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの先端に取付けられるもので
あって、ファイバ芯線を納めるための大径直管部と、フ
ァイバ素線を納めるための小径直管部と、これら大径直
管部と小径直管部とを滑らかにつなぐテーパ管部とを備
え、焼成処理されたセラミックキャピラリにおいて、こ
のセラミックキャピラリは、前記小径直管部の長さと前
記テーパ管部の長さとの和が6mm〜8.5mmの範囲
であることを特徴とした光ファイバ接続部用セラミック
キャピラリ。
1. A large-diameter straight pipe part for accommodating a fiber core wire, which is attached to the tip of an optical fiber, a small-diameter straight pipe part for accommodating a fiber element wire, and these large-diameter straight pipe part and small-diameter straight pipe part. In a ceramic capillary that is provided with a taper pipe portion that smoothly connects the pipe portion, and the ceramic capillary is fired, the sum of the length of the small diameter straight pipe portion and the length of the taper pipe portion is 6 mm to 8.5 mm. A ceramic capillary for an optical fiber connecting portion, characterized in that
【請求項2】 前記テーパ管部は、少なくとも1個の直
管部を含むことを特徴とした請求項1記載の光ファイバ
接続部用セラミックキャピラリ。
2. The ceramic capillary for an optical fiber connecting section according to claim 1, wherein the tapered tube section includes at least one straight tube section.
【請求項3】 光ファイバの先端に取付けられるもので
あって、ファイバ芯線を納めるための大径直管部と、フ
ァイバ素線を納めるための小径直管部と、これら大径直
管部と小径直管部とを滑らかにつなぐテーパ管部とを備
えたセラミックキャピラリの製造方法において、このセ
ラミックキャピラリは、焼成後の小径直管部の長さとテ
ーパ管部の長さとの和が6mm〜8.5mmの範囲であ
ることを条件に射出成形法で製造され、射出成形時に形
成された小径直管部を焼成後に再孔加工しないことを特
徴とした光ファイバ接続部用セラミックキャピラリの製
造方法。
3. A large-diameter straight pipe portion for accommodating a fiber core wire, which is attached to the end of an optical fiber, a small-diameter straight pipe portion for housing a fiber element wire, and these large-diameter straight pipe portion and small-diameter straight pipe portion. In the method of manufacturing a ceramic capillary including a taper pipe portion that smoothly connects the pipe portion, in the ceramic capillary, the sum of the length of the small diameter straight pipe portion and the length of the taper pipe portion after firing is 6 mm to 8.5 mm. The method for producing a ceramic capillary for an optical fiber connecting portion, characterized in that the small diameter straight pipe portion formed at the time of injection molding is not re-perforated after being fired by the injection molding method.
JP31982993A 1993-12-20 1993-12-20 Ceramic capillary for optical fiber juncture and its production connection Pending JPH07174937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31982993A JPH07174937A (en) 1993-12-20 1993-12-20 Ceramic capillary for optical fiber juncture and its production connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31982993A JPH07174937A (en) 1993-12-20 1993-12-20 Ceramic capillary for optical fiber juncture and its production connection

Publications (1)

Publication Number Publication Date
JPH07174937A true JPH07174937A (en) 1995-07-14

Family

ID=18114683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31982993A Pending JPH07174937A (en) 1993-12-20 1993-12-20 Ceramic capillary for optical fiber juncture and its production connection

Country Status (1)

Country Link
JP (1) JPH07174937A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794446A2 (en) * 1996-03-08 1997-09-10 Ykk Corporation Ferrule for optical fiber connector and method for production thereof
JP2000028853A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Optical connector
US6158900A (en) * 1996-12-26 2000-12-12 Ykk Corporation Ferrule for optical fiber connector and method for production thereof
KR100347913B1 (en) * 2000-04-06 2002-08-09 (주)이탑스테크놀로지 Jig for inside diameter processing of ferrule and Method thereof
US6627008B1 (en) 1999-05-06 2003-09-30 Ykk Corporation Grooved substrates for multifiber optical connectors and for alignment of multiple optical fibers and method for production thereof
US7195400B2 (en) 2000-01-06 2007-03-27 Fujikura Ltd. Optical connector and assembling method for the same
US7341383B2 (en) 2006-08-01 2008-03-11 Adc Telecommunications, Inc. Dual inner diameter ferrule device and method
RU2510057C1 (en) * 2012-09-10 2014-03-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of making ceramic connector for connecting optical fibres
US8989541B2 (en) 2006-08-01 2015-03-24 Adc Telecommunications, Inc. Cable and dual inner diameter ferrule device with smooth internal contours and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794446A2 (en) * 1996-03-08 1997-09-10 Ykk Corporation Ferrule for optical fiber connector and method for production thereof
EP0794446A3 (en) * 1996-03-08 1998-07-29 Ykk Corporation Ferrule for optical fiber connector and method for production thereof
US5862280A (en) * 1996-03-08 1999-01-19 Ykk Corporation Ferrule for use with an optical fiber connector and method for production thereof
US5989106A (en) * 1996-03-08 1999-11-23 Ykk Corporation Ferrule for use with an optical fiber connector and method for production thereof
US6158900A (en) * 1996-12-26 2000-12-12 Ykk Corporation Ferrule for optical fiber connector and method for production thereof
JP2000028853A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Optical connector
US6627008B1 (en) 1999-05-06 2003-09-30 Ykk Corporation Grooved substrates for multifiber optical connectors and for alignment of multiple optical fibers and method for production thereof
US7195400B2 (en) 2000-01-06 2007-03-27 Fujikura Ltd. Optical connector and assembling method for the same
KR100347913B1 (en) * 2000-04-06 2002-08-09 (주)이탑스테크놀로지 Jig for inside diameter processing of ferrule and Method thereof
US7452137B2 (en) 2006-08-01 2008-11-18 Adc Telecommunications, Inc. Dual inner diameter ferrule device and method
US10107971B2 (en) 2006-08-01 2018-10-23 Commscope Technologies Llc Dual inner diameter ferrule device and method
US11467353B2 (en) 2006-08-01 2022-10-11 Commscope Technologies Llc Cable and dual inner diameter ferrule device with smooth internal contours and method
US8989541B2 (en) 2006-08-01 2015-03-24 Adc Telecommunications, Inc. Cable and dual inner diameter ferrule device with smooth internal contours and method
US9348095B2 (en) 2006-08-01 2016-05-24 Commscope Technologies Llc Cable and dual inner diameter ferrule device with smooth internal contours and method
US9477047B2 (en) 2006-08-01 2016-10-25 Commscope Technologies Llc Dual inner diameter ferrule device and method
US9835806B2 (en) 2006-08-01 2017-12-05 Commscope Technologies Llc Fiber optic cable and ferrule with smooth internal contours and method of terminating fiber with the ferrule
US7341383B2 (en) 2006-08-01 2008-03-11 Adc Telecommunications, Inc. Dual inner diameter ferrule device and method
US10295757B2 (en) 2006-08-01 2019-05-21 Commscope Technologies Llc Fiber optic ferrule with smooth internal contours and method of terminating fiber with the ferrule
US10634856B2 (en) 2006-08-01 2020-04-28 Commscope Technologies Llc Dual inner diameter ferrule device and method
US10942317B2 (en) 2006-08-01 2021-03-09 Commscope Technologies Llc Fiber optic ferrule with smooth internal contours
US10976503B2 (en) 2006-08-01 2021-04-13 Commscope Technologies Llc Dual inner diameter ferrule device and method
US11397296B2 (en) 2006-08-01 2022-07-26 Commscope Technologies Llc Dual inner diameter ferrule device and method
RU2510057C1 (en) * 2012-09-10 2014-03-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of making ceramic connector for connecting optical fibres

Similar Documents

Publication Publication Date Title
US10942317B2 (en) Fiber optic ferrule with smooth internal contours
US5615291A (en) Capillary for optical fiber connectors and method of manufacturing the same
EP0794446A2 (en) Ferrule for optical fiber connector and method for production thereof
JPH07174937A (en) Ceramic capillary for optical fiber juncture and its production connection
JP2921462B2 (en) Optical connector
JP2000502817A (en) Ferrule for connector
JPH0740965Y2 (en) Capillary for optical fiber connector
WO2003100493A1 (en) Ferrule mold and ferrule
JP2002169056A (en) Ferrule for optical fiber and its manufacturing method
JPS61138216A (en) Semiconductor laser module
JPH081687U (en) Optical fiber connector member
JPH0264606A (en) Method of aligning optical fiber in optical guide terminal and optical guide terminal manufactured through said method
JPH0843688A (en) Sleeve for optical connector
JP2003307647A (en) Optical fiber ferrule, its machining method and pigtail for optical module using the same
JP3245310B2 (en) Split sleeve for optical connector and processing method thereof
JP4493138B2 (en) Ferrule for optical connector and processing method thereof
JP2001240468A (en) Sintered body of zirconia for light connector and process for producing the same
JP2002250839A (en) Ferrule for optical fiber connector and method of its manufacturing
JPH0769498B2 (en) Fuel
JP2003004978A (en) Optical fiber ferrule and its manufacturing method
JPH06118278A (en) Optical fiber ferrule and its inner face polishing method
JPH11218643A (en) Connecting member for optical fiber and its manufacture
JPH0915450A (en) Ferrule for optical connector
JPH05333238A (en) Optical fiber connector
JPH09127368A (en) Fixation structure of ferrule for optical connector