JPH07173547A - Treatment of dust - Google Patents

Treatment of dust

Info

Publication number
JPH07173547A
JPH07173547A JP34325993A JP34325993A JPH07173547A JP H07173547 A JPH07173547 A JP H07173547A JP 34325993 A JP34325993 A JP 34325993A JP 34325993 A JP34325993 A JP 34325993A JP H07173547 A JPH07173547 A JP H07173547A
Authority
JP
Japan
Prior art keywords
dust
gas
heat
reducing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34325993A
Other languages
Japanese (ja)
Inventor
Michiaki Sakakibara
路晤 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34325993A priority Critical patent/JPH07173547A/en
Publication of JPH07173547A publication Critical patent/JPH07173547A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To remove zinc oxide from the dust with the low consumption of heat by reducing the iron oxide in the dust with COG at a low temp. and utilizing the reaction heat difference due to the reoxidation and the carbon deposited by the decomposition of the COG. CONSTITUTION:The dust contg. zinc oxide is reduced with hydrogen at 500-700 deg.C in a reactor 2 with COG as a reducing gas and then oxidized with air in another reactor 6. The dust is heated to 1000-1150 deg.C by the oxidation heat, the C deposited from the COG is partially burned to produce CO, which reduces the zinc oxide in the dust, and the zinc oxide is removed. Consequently, the heat consumption is reduced by 20-30% as compared with that of the conventional method, and >=90% of zinc is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属精練にて発生する
ダストに含まれている亜鉛の分離除去方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and removing zinc contained in dust generated by metal refining.

【0002】[0002]

【従来の技術】鉄鋼製造等の金属精練時においては、副
次産物としてダストが発生する。鉄鋼製造を例にとって
みると、そこで発生するダストの成分は、表1に示すよ
うに多量の鉄酸化物を含んでおり、製鉄資源として有用
なものである。
2. Description of the Related Art Dust is generated as a by-product during metal refining in steel production. Taking steel manufacturing as an example, the components of the dust generated therein include a large amount of iron oxides as shown in Table 1, and are useful as ironmaking resources.

【0003】[0003]

【表1】 [Table 1]

【0004】しかし、このダストには亜鉛化合物が含ま
れており、製鉄原料として使用する際の障害となってい
る。これらのダストをリサイクルして利用する場合、一
般には焼結或いは高炉に装入する。例えば、焼結工程で
は、鉱石粉その他と混合して焼成する過程で、一旦蒸発
した亜鉛が冷却される際に焼結装置のグレートバー或い
は排気ダクトに付着凝固し、通気流路を塞ぐ等の障害を
起こす。又高炉へ装入した場合には、炉内の壁に付着堆
積し、高炉内のガス流れを乱したり、棚吊りと称する原
料の正常な移動を阻害するなど、高炉の安定操業を乱す
最大の要因の一つになっている。
However, this dust contains a zinc compound, which is an obstacle when it is used as a raw material for iron making. When these dusts are recycled and used, they are generally sintered or charged into a blast furnace. For example, in the sintering process, in the process of mixing with ore powder or the like and firing, when evaporated zinc is cooled, it adheres to the great bar or exhaust duct of the sintering device and solidifies to block the ventilation passage. Cause trouble. Also, when charged into the blast furnace, it deposits and deposits on the walls inside the furnace, disturbing the gas flow in the blast furnace and hindering the normal movement of raw materials called hanging, which disturbs the stable operation of the blast furnace. Has become one of the factors.

【0005】このため、ダストを焼結や高炉にリサイク
ルする場合には、ダスト中の亜鉛の除去処理が必須とな
っており、従来から種々の研究がおこなわれてその処理
方法の発明がなされてきた。代表的なものとしてロータ
リーキルンを用いたダスト中の亜鉛の還元蒸発法があげ
られる。このロータリーキルン法では、キルンの一端か
ら脱亜鉛しようとするダストとコークス粉等炭材を個々
に或いは混練ペレット状にして装入し、他端に設けたバ
ーナーにより吹き込んだ燃料を燃焼させて、ダストを加
熱しながら同時に炭材をガス化させてCOとなし、炉内
を還元性雰囲気にして亜鉛の還元蒸発を行なう。こうし
て亜鉛をダストから離脱させた後、キルン出口を酸化性
ガス雰囲気にして蒸発した亜鉛を再酸化し、ZnOとし
て除去しているのが一般的である。
Therefore, in the case of sintering the dust or recycling it to the blast furnace, it is essential to remove zinc in the dust, and various researches have been conducted so far to invent the treatment method. It was A typical example is a reduction evaporation method of zinc in dust using a rotary kiln. In this rotary kiln method, dust to be dezinced and carbonaceous materials such as coke powder are charged individually or in the form of kneading pellets from one end of the kiln, and the fuel blown by a burner provided at the other end is burned to generate dust. At the same time, while heating, the carbonaceous material is gasified to form CO, and the inside of the furnace is made into a reducing atmosphere to reduce and evaporate zinc. After the zinc is separated from the dust in this manner, the kiln outlet is generally placed in an oxidizing gas atmosphere to re-oxidize the evaporated zinc and remove it as ZnO.

【0006】従来の発明では、このためのキルン内の雰
囲気製造法やダストと炭材との配合等に工夫がこらされ
ている。例えば、特公昭57−10170号公報では、
還元材の配合と雰囲気調整、特公昭57−44737号
公報あるいは、特公昭61−54094号公報では炭材
の配合及び還元雰囲気帯と酸化雰囲気帯の形成に工夫を
している。
[0006] In the conventional invention, the device for producing the atmosphere in the kiln, the mixture of the dust and the carbonaceous material, etc. have been devised for this purpose. For example, in Japanese Patent Publication No. 57-10170,
In the composition of the reducing material and the atmosphere adjustment, in JP-B-57-44737 or JP-B-61-54094, the composition of the carbon material and the formation of the reducing atmosphere zone and the oxidizing atmosphere zone are devised.

【0007】しかしながら、これらの発明では、いずれ
も必要とされる還元材としての石炭或いはコークス、及
び必要とされる熱源としての燃料を全て外部から投入し
ている。この場合、炭材の部分燃焼によって発生するC
Oガスが還元雰囲気を形成している。その際、キルン内
を常に還元性雰囲気に保つ為に過剰のコークス或いは石
炭が投入されており、無駄なエネルギーを消費してい
る。特に、近年関心の深いエネルギー節約、CO2 排出
量削減等の要請にそぐわなくなってきており、これに対
して、還元剤としての炭材の有効活用を図る試みもなさ
れてきた。例えば、特公昭55−51014号公報、特
開昭48−42909号公報、あるいは特開昭60−8
6219号公報では、高炉ダストである2次灰とその他
のダストとを配合し、2次灰中に含まれる炭素のみを還
元材としてコークス等外部からの還元材の削減をはかっ
ているが。しかし、加熱源に関しては、バーナーによる
燃料の燃焼熱に依存している。
However, in these inventions, all of the required coal or coke as a reducing agent and the required fuel as a heat source are charged from the outside. In this case, C generated by partial combustion of carbonaceous material
O gas forms a reducing atmosphere. At that time, excessive coke or coal is added in order to constantly maintain a reducing atmosphere in the kiln, and wasteful energy is consumed. In particular, in recent years, demands for energy saving, CO 2 emission reduction, etc., which are of great interest, have fallen behind, and in response to this, attempts have been made to effectively utilize carbonaceous materials as reducing agents. For example, JP-B-55-51014, JP-A-48-42909, or JP-A-60-8.
In the 6219 publication, secondary ash that is blast furnace dust is mixed with other dust, and only carbon contained in the secondary ash is used as a reducing agent to reduce the reducing agent from the outside such as coke. However, the heat source depends on the heat of combustion of the fuel by the burner.

【0008】一方、ダスト中の亜鉛化合物を還元蒸発除
去する為には、適当な還元ガスと、ダストを反応温度レ
ベルに昇温して保持することが必要である。従来は、前
述の如くCOガスを還元ガスとし、燃料の燃焼熱を熱源
として使用している。その際の温度は一般に1100〜
1300℃の範囲であって、熱量消費単位は250万〜
300万kcal/t−ダストと極めて大きい。例え
ば、還元反応温度1100℃のときの所要熱量を表1に
示す製鋼ダストについて試算してみると、およそ25万
kcal/tであり、前記消費熱量のわずか10%程度
が有効に使われているに過ぎない。試算例の内訳をみる
と、ダスト顕熱約90%、反応熱10%の割合となっ
て、大部分はダスト顕熱に消費されている。したがっ
て、ダスト処理時の熱エネルギー消費原単位の削減をは
かるために、ダストの昇温法についての新工夫が要望さ
れている。
On the other hand, in order to reduce and evaporate and remove the zinc compound in the dust, it is necessary to increase the temperature of the appropriate reducing gas and the dust to the reaction temperature level and maintain the temperature. Conventionally, as described above, CO gas is used as the reducing gas and the combustion heat of the fuel is used as the heat source. The temperature at that time is generally 1100 to
It is in the range of 1300 ° C, and the unit of heat consumption is 2.5 million-
Extremely large at 3 million kcal / t-dust. For example, when the required heat quantity at the reduction reaction temperature of 1100 ° C. is calculated for the steelmaking dust shown in Table 1, it is about 250,000 kcal / t, and only about 10% of the consumed heat quantity is effectively used. Nothing more than. Looking at the breakdown of the trial calculation example, the sensible heat of dust is about 90% and the reaction heat is 10%, and most of it is consumed by the sensible heat of dust. Therefore, in order to reduce the unit consumption of heat energy during dust processing, new devises regarding the temperature raising method of dust are desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、ダストの昇
熱に新しい概念を取入れることによって、より少ない熱
エネルギー消費量でダストの脱亜鉛処理を行なうもので
ある。
DISCLOSURE OF THE INVENTION The present invention introduces a new concept for raising the temperature of dust to dezincify dust with less heat energy consumption.

【0010】[0010]

【課題を解決するための手段】本発明のダスト処理方法
は、鉄鋼製造等の金属精練時に発生するダストの処理方
法であって、炭化水素及び水素を主成分とする還元ガス
を用いて、該ダスト中の鉄酸化物すなわち酸化鉄を50
0〜700℃の温度で50%以上還元させた後、例えば
空気もしくは酸素富化空気のような酸素含有ガスを用い
て、該ダストを再酸化させ、その際に発生する熱により
少なくとも900℃以上、望ましくは1000〜115
0℃に昇温し、同時に、前記の還元反応時に炭化水素が
分解して生成した炭素を部分燃焼させて得られるCOガ
スにより、ダスト雰囲気をCOガス還元雰囲気とし、前
記温度条件かつ該雰囲気下でダスト中に含まれる亜鉛化
合物を還元し蒸発させて除去することを特徴とする。
A method for treating dust according to the present invention is a method for treating dust generated during metal refining such as in steel production, in which a reducing gas containing hydrocarbon and hydrogen as main components is used. 50 iron oxides in the dust
After reducing by 50% or more at a temperature of 0 to 700 ° C., the dust is reoxidized by using an oxygen-containing gas such as air or oxygen-enriched air, and at least 900 ° C. or more by heat generated at that time. , Preferably 1000-115
The temperature was raised to 0 ° C., and at the same time, the dust atmosphere was made into a CO gas reducing atmosphere by the CO gas obtained by partially burning the carbon generated by the decomposition of hydrocarbons in the reduction reaction, under the above temperature conditions and under the atmosphere. It is characterized in that the zinc compound contained in the dust is reduced and evaporated to be removed.

【0011】[0011]

【作用】本発明は、ガス種の違いによる鉄の酸化−還元
エネルギー差を利用するものである。すなわち、ダスト
中には表1で示すように酸化鉄が多量に含まれている。
この酸化鉄を水素ガスを還元ガスとして低温還元した
後、酸素にて再酸化させる。酸化鉄の水素還元は吸熱反
応で、その反応熱は下記の式(1)、(2)に示すよう
に、それぞれ6,500kcal/kmol、22,8
00kcal/kmolである。一方、酸素による酸化
反応は発熱反応で、その反応熱は下記の式(3)に示さ
れるように、64,300kcal/kmolとなって
いる。本発明は、この反応熱の差異を利用して、ダスト
を反応に必要な高温にしようとするものである。更に再
酸化の進行過程で炭素を存在せしめ、これを部分燃焼さ
せることによってCOとなす。これが還元材として作用
し、ダスト中の亜鉛化合物を還元蒸発させて、ガスとと
もに排出する。
The present invention utilizes the difference in iron oxidation-reduction energy due to the difference in gas species. That is, as shown in Table 1, the dust contains a large amount of iron oxide.
This iron oxide is reduced at low temperature using hydrogen gas as a reducing gas, and then reoxidized with oxygen. The reduction of iron oxide with hydrogen is an endothermic reaction, and the reaction heats are 6,500 kcal / kmol and 22,8, respectively, as shown in the following formulas (1) and (2).
It is 00 kcal / kmol. On the other hand, the oxidation reaction by oxygen is an exothermic reaction, and the heat of reaction is 64,300 kcal / kmol as shown in the following formula (3). The present invention utilizes this difference in heat of reaction to raise the dust to the high temperature required for the reaction. Further, carbon is made to exist in the process of reoxidation, and this is partially burned to form CO. This acts as a reducing agent, reduces and evaporates the zinc compound in the dust, and discharges it together with the gas.

【0012】 FeO+H2 =Fe+H2 O−6,500kcal/kmol ・・・(1) Fe23 +3H2 =2Fe+3H2 O−22,800kcal/kmol ・・・(2) Fe+O2 /2=FeO+64,300kcal/kmol ・・・(3)[0012] FeO + H 2 = Fe + H 2 O-6,500kcal / kmol ··· (1) Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O-22,800kcal / kmol ··· (2) Fe + O 2/2 = FeO + 64, 300 kcal / kmol (3)

【0013】以下、本発明をさらに具体的に説明する。
図1に本発明を実施するためのプロセスフローを示す。
原料ダストをホッパー1から還元用反応容器2に入れ、
そこに水素及び炭化水素を主成分とする還元反応用ガス
を送ガス管4にて供給し、反応温度500〜700℃に
てダスト中の酸化鉄を還元する。この還元に供給するガ
スは水素ガスだけでも差し支えない。しかし、炭化水素
は、分解時に水素ガスを発生するため、水素源として活
用出来ると同時に、低温にて分解生成させた炭素がここ
でダストと良く混合され、次工程における亜鉛還元時の
還元材として極めて有効に利用できることから添加され
る。この還元ガスは、水素と炭化水素を適度に調合して
製造しても良いが、コスト面を考慮して、コークス製造
時のコークス炉ガス(以下単にCOGと記す)をそのま
ま利用する事が好ましい。還元用反応容器2から排出さ
れるガスは、なお余剰の水素を含んでいるので、除塵装
置5を経由して還元ガス本管3に戻し、循環利用させ
る。
The present invention will be described in more detail below.
FIG. 1 shows a process flow for carrying out the present invention.
Put the raw material dust from the hopper 1 into the reduction reaction container 2,
A reduction reaction gas containing hydrogen and hydrocarbons as main components is supplied thereto through the gas supply pipe 4, and iron oxide in the dust is reduced at a reaction temperature of 500 to 700 ° C. The gas supplied for this reduction may be only hydrogen gas. However, since hydrocarbons generate hydrogen gas during decomposition, they can be used as a hydrogen source, and at the same time, carbon that is decomposed and produced at low temperature is mixed well with dust here, and as a reducing agent during zinc reduction in the next step. It is added because it can be used very effectively. This reducing gas may be produced by appropriately mixing hydrogen and hydrocarbon, but in view of cost, it is preferable to use the coke oven gas (hereinafter simply referred to as COG) at the time of producing coke as it is. . Since the gas discharged from the reducing reaction container 2 still contains excess hydrogen, it is returned to the reducing gas main pipe 3 via the dust removing device 5 and is recycled.

【0014】こうして、還元されたダストは次工程の反
応容器6に移送され、ここで空気等の酸素含有ガスによ
り酸化されて還元鉄は再び酸化鉄に戻る。反応容器6内
には被酸化材として還元鉄と還元反応時に炭化水素が分
解して生成した炭素が存在する。一般に還元鉄の酸化反
応の方が炭素の酸化反応より低温で起こるが、本発明で
は主としてこの時発生する還元鉄の酸化反応熱によりダ
ストは昇温する。しかし、過度の昇温によってダストが
融着し大塊化するのを防止するため、ダスト温度が10
00〜1150℃になるように、反応容器6のダスト出
側に設置した温度検出端7にてダスト温度を検出し、信
号処理調節装置8を経て空気配管18に設けられた制御
弁9により酸化用空気量を調節し、酸化反応を制御す
る。反応の進行によりダストが昇温するにつれて、炭素
の存在下で下記の式(4)〜(7)の諸反応が引続き起
こり、ダスト中のZn化合物が還元される。
Thus, the reduced dust is transferred to the reaction vessel 6 in the next step, where it is oxidized by an oxygen-containing gas such as air and the reduced iron returns to iron oxide again. The reaction vessel 6 contains reduced iron as a material to be oxidized and carbon produced by decomposition of hydrocarbon during the reduction reaction. Generally, the oxidation reaction of reduced iron occurs at a lower temperature than the oxidation reaction of carbon, but in the present invention, the dust heats up mainly due to the heat of oxidation reaction of reduced iron generated at this time. However, in order to prevent dust from fusing and agglomerating due to excessive temperature rise, the dust temperature is set to 10
The temperature detection end 7 installed on the dust outlet side of the reaction vessel 6 detects the dust temperature so that the temperature becomes 00 to 1150 ° C., and the oxidation is performed by the control valve 9 provided in the air pipe 18 through the signal processing adjustment device 8. The amount of air used is regulated to control the oxidation reaction. As the temperature of the dust rises as the reaction proceeds, the reactions of the following formulas (4) to (7) continue to occur in the presence of carbon, and the Zn compound in the dust is reduced.

【0015】 C+O2 /2=CO+29,400kcal/kmol ・・・(4) C+O2 =CO2 +67,000kcal/kmol ・・・(5) ZnO+CO=Zn+CO2 −15,560kcal/kmol・・・(6) CO2 +C=2CO−8,600kcal/kmol ・・・(7)[0015] C + O 2/2 = CO + 29,400kcal / kmol ··· (4) C + O 2 = CO 2 + 67,000kcal / kmol ··· (5) ZnO + CO = Zn + CO 2 -15,560kcal / kmol ··· (6 ) CO 2 + C = 2CO-8, 600 kcal / kmol (7)

【0016】金属亜鉛は融点が約420℃、沸点が90
7℃であるので、900℃以上では気化蒸発が進行して
ダストより離脱し、排気ガスとともに反応容器6より排
出される。こうして反応容器6より排出されたガスは、
ガス処理装置10において空気配管17により吹き込ま
れる空気と混合され、そこに含まれている金属亜鉛ガス
は酸化されて酸化亜鉛となる。その後、酸化亜鉛を含む
ガスは冷却装置11で冷却され、集塵装置12にて分離
捕集されたのち、残りのガスは煙突13より大気放散さ
れる。
Metallic zinc has a melting point of about 420 ° C. and a boiling point of 90.
Since the temperature is 7 ° C., the vaporization and evaporation proceed at 900 ° C. or higher to be separated from the dust and discharged from the reaction container 6 together with the exhaust gas. The gas discharged from the reaction vessel 6 in this way is
In the gas treatment device 10, the air blown through the air pipe 17 is mixed with the metal zinc gas contained therein to be oxidized into zinc oxide. Thereafter, the gas containing zinc oxide is cooled by the cooling device 11, separated and collected by the dust collecting device 12, and the remaining gas is diffused to the atmosphere through the chimney 13.

【0017】一方、反応容器6にて脱亜鉛処理されたダ
ストは高温状態にあり、反応容器6を出た後、冷却兼熱
交換器14にてエアブロアー15から空気配管16を通
して送られる空気と熱交換して冷却され、処理済みダス
ト20として製鉄原料に再利用される。またここで得ら
れた熱交換エアは熱風19として、必要に応じ反応容器
6の還元ダスト酸化用空気としても用いることができ
る。
On the other hand, the dezincified dust in the reaction vessel 6 is in a high temperature state, and after leaving the reaction vessel 6, the air sent from the air blower 15 through the air pipe 16 in the cooling and heat exchanger 14 is removed. It is cooled by heat exchange and reused as the processed dust 20 as a raw material for iron making. Further, the heat exchange air obtained here can be used as the hot air 19 and, if necessary, as the air for oxidizing the reduced dust in the reaction vessel 6.

【0018】[0018]

【実施例】【Example】

(実施例1)表1に示す組成を有する高炉ダストを図1
に示すプロセスの還元用反応容器2に15kg/hrの
速度で供給し、COGを還元ガスとして還元反応温度5
50℃にて1時間処理し、続いて酸化反応容器6で温度
を1000℃に制御しながら空気を吹き込み、1時間処
理して表2の結果を得た。総消費熱量原単位190万k
cal/tという従来法に較べて極めて少ない熱原単位
にてダスト中の脱亜鉛率93%を得た。
(Example 1) FIG. 1 shows blast furnace dust having the composition shown in Table 1.
Is supplied at a rate of 15 kg / hr to the reduction reaction container 2 of the process shown in FIG.
The treatment was carried out at 50 ° C. for 1 hour, then air was blown into the oxidation reaction vessel 6 while controlling the temperature at 1000 ° C., and the treatment was carried out for 1 hour to obtain the results shown in Table 2. Total heat consumption intensity 1.9 million k
A dezincification rate of 93% was obtained in the dust with a cal / t which is extremely smaller than that of the conventional method.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例2)表1に示す組成を有する電気
炉ダストを図1に示すプロセスの還元用反応容器2に1
0kg/hrの速度で供給し、COGを還元ガスとして
還元反応温度700℃にて0.5時間処理し、続いて酸
化反応容器6で温度を1100℃に制御しながら空気を
吹き込み、1時間処理して表3の結果を得た。総消費熱
量原単位198万kcal/tとなり、従来法に較べて
50〜100kcal/t削減され、且つダスト中の脱
亜鉛率95%という高率であった。
Example 2 Electric furnace dust having the composition shown in Table 1 was placed in a reducing reaction vessel 2 of the process shown in FIG.
It is supplied at a rate of 0 kg / hr, treated with COG as a reducing gas at a reduction reaction temperature of 700 ° C. for 0.5 hour, and then blown with air while controlling the temperature in the oxidation reaction vessel 6 to 1100 ° C. for 1 hour. The results shown in Table 3 were obtained. The basic unit of total heat consumption was 198,000 kcal / t, which was reduced by 50 to 100 kcal / t as compared with the conventional method, and the dezincification rate in dust was as high as 95%.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】脱亜鉛処理に際して、本発明の方法を実
施することにより、従来に比べて20〜30%の消費熱
量原単位を削減して脱亜鉛率90%以上を達成すること
ができ、その省エネルギー効果は大きい。
By carrying out the method of the present invention in the dezincing treatment, it is possible to achieve a dezincification rate of 90% or more by reducing the unit consumption of heat by 20 to 30% as compared with the conventional method. The energy saving effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのプロセスフローを示すFIG. 1 shows a process flow for implementing the present invention.

【符号の説明】[Explanation of symbols]

1 ダストホッパー 2 還元用反応容器 3 還元ガス本管 4 送ガス管 5 除塵装置 6 反応容器 7 温度検出端 8 信号処理調節装置 9 制御弁 10 ガス処理装置 11 冷却装置 12 集塵装置 13 煙突 14 冷却兼熱交換器 15 エアブロアー 16 空気配管 17 空気配管 18 空気配管 19 熱風 20 処理済みダスト 1 Dust hopper 2 Reaction container for reduction 3 Reduction gas main pipe 4 Gas feed pipe 5 Dust removal device 6 Reaction container 7 Temperature detection end 8 Signal processing adjustment device 9 Control valve 10 Gas processing device 11 Cooling device 12 Dust collector 13 Chimney 14 Cooling Combined heat exchanger 15 Air blower 16 Air piping 17 Air piping 18 Air piping 19 Hot air 20 Treated dust

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属精練時に発生するダストの処理方法
であって、炭化水素及び水素を主成分とする還元ガスを
用いて、該ダスト中の鉄酸化物を還元させた後、酸素含
有ガスを用いて、該ダストを再酸化させ、その際に発生
する熱により少なくとも900℃以上に昇温し、同時
に、前記の還元反応時に炭化水素が分解して生成した炭
素を部分燃焼させて得られるCOガスにより、ダスト雰
囲気をCOガス還元雰囲気とし、前記温度条件かつ該雰
囲気下でダスト中に含まれる亜鉛化合物を還元蒸発させ
ることを特徴とするダスト処理方法。
1. A method for treating dust generated during metal refining, wherein an iron oxide in the dust is reduced using a reducing gas containing hydrocarbon and hydrogen as main components, and then an oxygen-containing gas is added. CO obtained by re-oxidizing the dust by using it and raising the temperature to at least 900 ° C. or higher by the heat generated at that time, and at the same time, partially burning the carbon produced by the decomposition of hydrocarbon during the reduction reaction. A dust treatment method characterized in that a dust atmosphere is made into a CO gas reducing atmosphere by a gas, and a zinc compound contained in the dust is reduced and evaporated under the above temperature conditions and the atmosphere.
JP34325993A 1993-12-17 1993-12-17 Treatment of dust Withdrawn JPH07173547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34325993A JPH07173547A (en) 1993-12-17 1993-12-17 Treatment of dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34325993A JPH07173547A (en) 1993-12-17 1993-12-17 Treatment of dust

Publications (1)

Publication Number Publication Date
JPH07173547A true JPH07173547A (en) 1995-07-11

Family

ID=18360148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34325993A Withdrawn JPH07173547A (en) 1993-12-17 1993-12-17 Treatment of dust

Country Status (1)

Country Link
JP (1) JPH07173547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077446A (en) * 2019-12-17 2021-06-25 주식회사 포스코 Method of manufacturing coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077446A (en) * 2019-12-17 2021-06-25 주식회사 포스코 Method of manufacturing coke

Similar Documents

Publication Publication Date Title
EP0174641B1 (en) A process for recovering valuable metals from an iron dust containing a higher content of zinc
US7513929B2 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
KR0158210B1 (en) Process for recovering valvable metals from a dust containing zinc.
AU2003261814B2 (en) Method for producing titanium oxide containing slag
AU2007204927B2 (en) Use of an induction furnace for the production of iron from ore
JPS6227138B2 (en)
JP3513832B2 (en) Operating method of movable hearth furnace and movable hearth furnace
US5728193A (en) Process for recovering metals from iron oxide bearing masses
US7160353B2 (en) Process for producing molten iron
AU747819B2 (en) Method for heat-treating recyclings containing oil and iron oxide
WO2009114155A2 (en) Feed material compostion and handling in a channel induction furnace
US6136059A (en) Process for reducing the electric steelworks dusts and facility for implementing it
US7785389B2 (en) Feed material composition and handling in a channel induction furnace
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
JP2002522642A (en) Heat treatment method of residue material containing heavy metal and iron oxide
JPH07216464A (en) Weltz reprocessing of material containing zinc, lead and iron oxide
JPH07173547A (en) Treatment of dust
RU2541239C1 (en) Processing method of iron-containing materials in two-zone furnace
SK5962001A3 (en) Method for the heat treatment of residues containing heavy metals
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JPH07118768A (en) Treatment of dust
JPH101707A (en) Equipment for recovering zinc in dust
JP2004315852A (en) Method for reducing metal oxide in rotary hearth type reduction furnace
JP4184453B2 (en) Pig iron manufacturing method to treat waste
JP2837282B2 (en) Production method of chromium-containing hot metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306