JPH07172949A - Sintered material of inorganic fiber and its production - Google Patents

Sintered material of inorganic fiber and its production

Info

Publication number
JPH07172949A
JPH07172949A JP5321793A JP32179393A JPH07172949A JP H07172949 A JPH07172949 A JP H07172949A JP 5321793 A JP5321793 A JP 5321793A JP 32179393 A JP32179393 A JP 32179393A JP H07172949 A JPH07172949 A JP H07172949A
Authority
JP
Japan
Prior art keywords
inorganic
amorphous
sintered body
substance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5321793A
Other languages
Japanese (ja)
Other versions
JP3006746B2 (en
Inventor
Toshihiro Ishikawa
敏弘 石川
Shinji Kajii
紳二 梶井
Kenji Matsunaga
賢二 松永
Yasuhiko Kamitoku
泰彦 神徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5321793A priority Critical patent/JP3006746B2/en
Publication of JPH07172949A publication Critical patent/JPH07172949A/en
Application granted granted Critical
Publication of JP3006746B2 publication Critical patent/JP3006746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the subject sintered material excellent in fracture toughness over the whole temperature range by preparing a sintered material composed of inorganic fibers and an inorganic substance filling gaps between the fibers and having a carbon layer in the boundary layer and further coating the uppermost surface with a layer of an oxide of the inorganic substance. CONSTITUTION:This sintered material is a sintered inorganic fiber composed of inorganic fibers made of (A) an amorphous material comprising Si, M (Ti or Zr), C and O, (B) an aggregate comprising a crystalline ultrafine particle of beta-SiC, MC, a solid solution of beta-SiC and MC and/or MC1-X. (X is >=0 or <1) and amorphous SiO2 and M03 or (C) a mixture of the component (A) and the aggregate (B) and an inorganic substance component composed of (D) an amorphous substance comprising Si, M and O, (E) a crystalline aggregate comprising crystalline SiO2 and MO2 or (F) a mixture of (D) and (E) as inorganic materials and filling gaps between the fibers. This sintered material has an amorphous (or crystalline) carbon layer of 1 to 200nm thickness on the boundary between the inorganic fiber and the inorganic substance component and an oxide layer composed of (D), (E) or (F) and having 20 to 500mum thickness on the uppermost surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い強度及び靱性値を
有し、さらに広範囲の温度域において優れた耐酸化性を
示す無機繊維焼結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic fiber sintered body having high strength and toughness, and further showing excellent oxidation resistance in a wide temperature range, and a method for producing the same.

【0002】[0002]

【従来の技術】特開平5−43338号公報には、下記
(1)、(2)又は(3)から構成される無機質繊維
と、この無機質繊維の界面に存在する下記(4)、
(5)又は(6)から構成される無機物質とからなる無
機繊維焼結体が開示されている。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 5-43338 discloses an inorganic fiber composed of the following (1), (2) or (3) and the following (4) existing at the interface of the inorganic fiber:
An inorganic fiber sintered body composed of an inorganic substance composed of (5) or (6) is disclosed.

【0003】(1)実質的にSi、M、C及びOからな
る非晶質物質。 (2)実質的にβ−SiC、MC、β−SiCとMCと
の固溶体及び/又はMC 1-x の結晶質超微粒子、並びに
非晶質のSiO2 とMO2 とからなる集合体。 (3)上記(1)の非晶質物質と上記(2)の集合体と
の混合物。 (4)実質的にSi、M及びOからなる非晶質物質。 (5)結晶質のSiO2 とMO2 とからなる結晶集合
体。 (6)上記(4)の非晶質物質と上記(5)の結晶集合
体との混合物。(式中、MはTi又はZrを示し、xは
0以上1未満の数である。)
(1) Substantially consisting of Si, M, C and O
An amorphous substance. (2) Substantially β-SiC, MC, β-SiC and MC
Solid solution and / or MC 1-xCrystalline ultrafine particles of
Amorphous SiO2And MO2An aggregate consisting of. (3) The amorphous substance of (1) above and the aggregate of (2) above
Mixture of. (4) An amorphous substance consisting essentially of Si, M and O. (5) crystalline SiO2And MO2Crystal set consisting of and
body. (6) The amorphous substance of (4) above and the crystal aggregate of (5) above
Mixture with the body. (In the formula, M represents Ti or Zr, and x represents
It is a number of 0 or more and less than 1. )

【0004】さらに、上記公報には、その焼結体の製法
として、内面層と表面層とからなる無機繊維であって、
内面層が、上記(1)、(2)又は(3)で構成され、
表面層が上記(4)、(5)、又は(6)で構成されて
いる無機繊維の積層物を、1400〜1900℃で温度
範囲で加熱焼結する方法が開示されている。
Further, in the above publication, as a method for producing the sintered body, an inorganic fiber comprising an inner surface layer and a surface layer,
The inner layer is composed of the above (1), (2) or (3),
A method is disclosed in which a laminate of inorganic fibers whose surface layer is composed of (4), (5), or (6) is heated and sintered at a temperature range of 1400 to 1900 ° C.

【0005】上記公報に記載の焼結体は、無機質繊維の
界面に存在する酸化物層が無機質繊維と非常に良好な親
和性を有し、破壊の伝搬が速やかに進行するため高い力
学的特性を示す。他方、上記焼結体は脆い(brittle)破
壊パタ−ンを示しがちであり、より割れにくく高い破壊
エネルギ−、即ち高破壊靱性を有する焼結体としては改
良の余地がある。
In the sintered body described in the above publication, the oxide layer existing at the interface of the inorganic fibers has a very good affinity with the inorganic fibers, and the propagation of fracture proceeds rapidly, so that the mechanical properties are high. Indicates. On the other hand, the above-mentioned sintered body tends to show a brittle fracture pattern, and there is room for improvement as a sintered body which is more resistant to cracking and has high fracture energy, that is, high fracture toughness.

【0006】本発明者は上記公報に記載の焼結体に比較
してより高い破壊靱性を示す焼結体及びその製法を特願
平5−253550号として提案した。提案された焼結
体は、前記(1)、(2)又は(3)から構成される無
機質繊維と、この無機質繊維の界面に存在する、前記
(4)、(5)又は(6)から構成される無機物質とか
らなる無機繊維焼結体であって、(1)〜(3)の無機
質繊維と(4)〜(6)の無機物質との境界層として1
〜200nmの非晶質及び/又は結晶質の炭素からなる
層が存在している。
The present inventor has proposed as a Japanese Patent Application No. 5-253550 a sintered body having higher fracture toughness as compared with the sintered body described in the above publication and a method for producing the same. The proposed sintered body is composed of the inorganic fiber composed of the above (1), (2) or (3) and the above (4), (5) or (6) existing at the interface of the inorganic fiber. An inorganic fiber sintered body composed of a constituent inorganic substance, which is 1 as a boundary layer between the inorganic fibers (1) to (3) and the inorganic substances (4) to (6).
There is a layer of ~ 200 nm of amorphous and / or crystalline carbon.

【0007】また、提案された製法は、内面層と表面層
とからなる無機繊維であって、内面層が、前記(1)、
(2)又は(3)で構成され、表面層が、前記(4)、
(5)又は(6)で構成されている無機繊維の積層物
を、不活性ガス中、50〜1000kg/cm2 の圧力
下、室温から1400℃まで昇温する第一工程、140
0〜1750℃の範囲の温度まで昇温して同温度で30
分〜10時間保持する第二工程、及び上記保持温度から
1900℃の範囲の温度まで昇温して加熱焼結する第三
工程からなる。
Further, the proposed method is an inorganic fiber comprising an inner surface layer and a surface layer, wherein the inner surface layer has the above-mentioned (1),
(2) or (3), wherein the surface layer is (4),
The first step of heating the laminate of the inorganic fibers composed of (5) or (6) from room temperature to 1400 ° C. under a pressure of 50 to 1000 kg / cm 2 in an inert gas, 140
The temperature is raised to a temperature in the range of 0 to 1750 ° C.,
It consists of a second step of holding for 10 minutes to 10 hours, and a third step of heating and sintering the temperature from the holding temperature to a temperature in the range of 1900 ° C.

【0008】提案された焼結体は、無機質物質とマトリ
ックスである酸化物層との界面に存在する炭素層が、両
者の結合を適度に弱める働きをしているため、破壊が非
線形的に進行し、高い破壊エネルギ−、換言すると高破
壊靱性を示す。
In the proposed sintered body, the carbon layer existing at the interface between the inorganic substance and the oxide layer serving as the matrix functions to appropriately weaken the bond between the two, so that the fracture progresses in a non-linear manner. However, it exhibits high fracture energy, in other words, high fracture toughness.

【0009】[0009]

【発明が解決しようとする課題】本発明者のさらなる研
究の結果、提案の焼結体は空気中では室温〜500℃の
温度領域及び1000〜1500℃の温度領域において
は優れた力学的特性を示す一方で、上記焼結体が500
〜1000℃の中温領域に長時間保持されたときには、
焼結体の表面において保護膜としての酸化層が生成する
に先立って、炭素の引き抜けが起こるために、実用上無
視できない程度の強度低下が起こることが判明した。
As a result of further research by the present inventor, the proposed sintered body exhibits excellent mechanical properties in the temperature range of room temperature to 500 ° C. and 1000 to 1500 ° C. in air. On the other hand, the above sintered body is 500
When held in the medium temperature range of ~ 1000 ° C for a long time,
It was found that the carbon is pulled out before the oxide layer as the protective film is formed on the surface of the sintered body, so that the strength is reduced to a degree that cannot be ignored in practical use.

【0010】[0010]

【課題を解決するための技術的手段】本発明の目的は、
本発明者が先に提案した焼結体の中温領域での酸化劣化
という解決すべき課題を解消し、室温から高温の全温度
領域にわたって優れた破壊靱性を有する無機繊維焼結体
を提供することにある。本発明の別の目的は、そのよう
な優れた破壊靱性を示す無機繊維焼結体の製造方法を提
供することにある。
The technical object of the present invention is to:
To solve the problem to be solved, that is, the oxidative deterioration in the medium temperature region of the sintered body previously proposed by the present inventors, and to provide an inorganic fiber sintered body having excellent fracture toughness over the entire temperature region from room temperature to high temperature. It is in. Another object of the present invention is to provide a method for producing an inorganic fiber sintered body that exhibits such excellent fracture toughness.

【0011】本発明によれば、下記の(a)、(b)又
は(c)から構成される無機質繊維と、この無機質繊維
の間隙を充填するように存在する下記の(d)、(e)
又は(f)から構成される無機物質であって、(a)〜
(c)の無機質繊維と(d)〜(f)の無機物質との境
界層として1〜200nmの非晶質及び/又は結晶質の
炭素からなる層が存在しており、さらに最表面が上記の
(d)、(e)又は(f)の組成からなる20〜500
μmの厚さの酸化物層で覆われた、無機繊維焼結体が提
供される。
According to the present invention, the inorganic fiber composed of the following (a), (b) or (c) and the following (d) and (e) which are present so as to fill the gaps between the inorganic fibers. )
Or an inorganic substance composed of (f), which comprises (a) to
As a boundary layer between the inorganic fiber of (c) and the inorganic substance of (d) to (f), there is a layer of amorphous and / or crystalline carbon of 1 to 200 nm, and the outermost surface is 20-500 having the composition of (d), (e) or (f) of
Provided is an inorganic fiber sintered body covered with an oxide layer having a thickness of μm.

【0012】(a)実質的にSi、M、C及びOからな
る非晶質物質。 (b)実質的にβ−SiC、MC、β−SiCとMCと
の固溶体及び/又はMC 1-x の結晶質超微粒子、並びに
非晶質のSiO2 とMO2 とからなる集合体。 (c)上記(a)の非晶質物質と上記(b)の集合体と
の混合物。 (d)実質的にSi、M及びOからなる非晶質物質。 (e)結晶質のSiO2 とMO2 とからなる結晶集合
体。 (f)上記(d)の非晶質物質と上記(e)の結晶集合
体との混合物。(上記式において、MはTi又はZrを
示し、xは0以上1未満の数である。)
(A) Substantially consisting of Si, M, C and O
An amorphous substance. (B) Substantially β-SiC, MC, β-SiC and MC
Solid solution and / or MC 1-xCrystalline ultrafine particles of
Amorphous SiO2And MO2An aggregate consisting of. (C) The amorphous substance of (a) above and the aggregate of (b) above
Mixture of. (D) An amorphous substance consisting essentially of Si, M and O. (E) crystalline SiO2And MO2Crystal set consisting of and
body. (F) The amorphous substance of (d) above and the crystal aggregate of (e) above
Mixture with the body. (In the above formula, M is Ti or Zr
Here, x is a number of 0 or more and less than 1. )

【0013】さらに、本発明によれば、上記の(a)、
(b)又は(c)で構成される内面層と上記の(d)、
(e)又は(f)から構成される表面層とからなる無機
繊維の積層物を、不活性ガス中、50〜1000kg/
cm2 の圧力下、室温から1400℃まで昇温する第一
工程、1400〜1750℃の範囲の温度まで昇温し
て、同温度で30分〜10時間保持する第二工程、上記
保持温度から1900℃までの範囲の温度まで昇温して
加熱焼結する第三工程、第三工程で得られる焼結体を1
000〜1500℃の酸素含有ガス中で1〜100時間
酸化処理して、焼結体の最表面に前記の(d)、(e)
又は(f)の組成からなる20〜500μmの厚さの酸
化物層を形成させる第四工程からなる、無機繊維焼結体
の製造方法が提供される。
Further, according to the present invention, the above (a),
An inner surface layer composed of (b) or (c) and the above (d),
A layered product of inorganic fibers comprising a surface layer composed of (e) or (f) in an inert gas at 50 to 1000 kg /
Under the pressure of cm 2, a first step of raising the temperature from room temperature to 1400 ° C., a second step of raising the temperature to a temperature in the range of 1400 to 1750 ° C. and holding at the same temperature for 30 minutes to 10 hours, from the above holding temperature The sintered body obtained in the third step and the third step in which the temperature is raised to a temperature in the range of 1900 ° C.
Oxidation treatment is performed in an oxygen-containing gas at 000 to 1500 ° C. for 1 to 100 hours, and the above (d) and (e) are formed on the outermost surface of the sintered body.
Alternatively, there is provided a method for producing an inorganic fiber sintered body, which comprises a fourth step of forming an oxide layer having a composition of (f) and having a thickness of 20 to 500 μm.

【0014】最初に本発明の無機繊維焼結体を説明す
る。無機質繊維を構成する各元素の割合は、通常、S
i:30〜60重量%、M:0.5〜35重量%、好ま
しくは1〜10重量%、C:25〜40重量%、O:
0.01〜30重量%である。無機質繊維の相当直径は
一般に5〜20μmである。
First, the inorganic fiber sintered body of the present invention will be described. The ratio of each element constituting the inorganic fiber is usually S
i: 30 to 60% by weight, M: 0.5 to 35% by weight, preferably 1 to 10% by weight, C: 25 to 40% by weight, O:
It is 0.01 to 30% by weight. The equivalent diameter of the inorganic fiber is generally 5 to 20 μm.

【0015】焼結体中の無機質繊維の表面には、1〜2
00nmの範囲の非晶質及び/又は結晶質の炭素が層状
に偏在している。この炭素は後述する製造方法における
加圧焼結の過程で無機質繊維の内部より偏析してきたも
のである。無機質繊維の表面における層状の炭素は、通
常、無機質繊維の内部に向かって濃度が減少する傾斜し
た組成分布を有しており、無機質繊維と一体で繊維の一
部として存在する。
On the surface of the inorganic fiber in the sintered body, 1-2
Amorphous and / or crystalline carbon in the range of 00 nm is unevenly distributed in layers. This carbon has been segregated from the inside of the inorganic fiber in the process of pressure sintering in the production method described later. The layered carbon on the surface of the inorganic fiber usually has a graded composition distribution in which the concentration decreases toward the inside of the inorganic fiber, and exists as a part of the fiber together with the inorganic fiber.

【0016】そして、この無機質繊維の間隙を充填する
ように、上記の(d)、(e)又は(f)が存在してい
る。また、場所によっては、無機質繊維と無機質繊維と
が、1〜200nmの範囲の非晶質及び/又は結晶質の
炭素を境界層として、相互に接触していてもよい、
The above-mentioned (d), (e) or (f) is present so as to fill the gaps of the inorganic fibers. Depending on the location, the inorganic fibers and the inorganic fibers may be in contact with each other with amorphous and / or crystalline carbon in the range of 1 to 200 nm as a boundary layer.

【0017】炭素層を表面に有する無機質繊維の間隙を
充填するように存在する無機質物質を構成する各元素の
割合は、通常、Si:20〜65重量%、M:0.3〜
40重量%、好ましくは1〜15重量%、O:30〜5
5重量%であり、場合によっては5重量%以下の炭素を
含むことがある。
The proportion of each element constituting the inorganic substance existing so as to fill the gaps of the inorganic fiber having the carbon layer on the surface is usually Si: 20 to 65% by weight, M: 0.3 to.
40% by weight, preferably 1 to 15% by weight, O: 30 to 5
It is 5% by weight and may contain 5% by weight or less of carbon in some cases.

【0018】本発明の無機繊維焼結体は、その最表面が
前記の(d)、(e)又は(f)の組成からなる20〜
500μmの厚さの酸化物層で覆われている。この酸化
物層は、例えば後述する製造方法における第四工程であ
る酸化処理によって形成される。酸化物層の内側では、
酸化処理前の組成及び構造を実質的に完全に保持してい
る。そして、この酸化物層は無機繊維焼結体の内部の保
護層として作用する。また、この酸化物層と焼結体内部
との境界部では、一般に、内部に向かって徐々に傾斜し
た組成分布を有している。
The inorganic fiber sintered body of the present invention has an outermost surface having a composition of (d), (e) or (f) above from 20 to 20.
It is covered with a 500 μm thick oxide layer. This oxide layer is formed by, for example, an oxidation treatment which is the fourth step in the manufacturing method described later. Inside the oxide layer,
The composition and structure before the oxidation treatment are substantially completely retained. Then, this oxide layer acts as a protective layer inside the inorganic fiber sintered body. The boundary between the oxide layer and the inside of the sintered body generally has a composition distribution that is gradually inclined toward the inside.

【0019】無機繊維焼結体の最表面に存在する酸化物
層を構成する各元素の割合は、通常、Si:20〜65
重量%、M:0.3〜40重量%、好ましくは1〜15
重量%、O:30〜55重量%であり、場合によっては
5重量%以下の炭素を含むことがあり、この炭素は部分
的にはβ−SiCの微結晶として存在することがある。
The ratio of each element constituting the oxide layer existing on the outermost surface of the inorganic fiber sintered body is usually Si: 20 to 65.
% By weight, M: 0.3-40% by weight, preferably 1-15
% By weight, O: 30 to 55% by weight, and in some cases 5% by weight or less of carbon may be contained, and this carbon may partially exist as microcrystals of β-SiC.

【0020】上記の酸化物層は、化学気相蒸着法(CV
D)などにより設けられた被覆相とは根本的に異なって
おり、厚さが非常に均一であり、かつ界面近傍の残留応
力を最小にすることが可能である。また、この酸化物層
は、前述したように、焼結体の内部を保護する層として
存在している。これにより、本発明の無機繊維焼結体
は、空気中、室温から1500℃までの幅広い温度域に
おいて優れた耐酸化性及び高い力学的特性を有してい
る。
The above oxide layer is formed by chemical vapor deposition (CV).
It is fundamentally different from the coating phase provided by D), etc., has a very uniform thickness, and it is possible to minimize residual stress in the vicinity of the interface. Further, this oxide layer exists as a layer for protecting the inside of the sintered body, as described above. As a result, the inorganic fiber sintered body of the present invention has excellent oxidation resistance and high mechanical properties in a wide temperature range from room temperature to 1500 ° C. in air.

【0021】つぎに、本発明の無機繊維焼結体の製造方
法を説明する。本発明で使用される原料の無機繊維は、
例えば特開昭62−289641号公報に記載の方法に
従って、前記の(a)、(b)又は(c)から構成され
る無機繊維を、酸化性雰囲気下に、例えば500〜16
00℃の範囲の温度で加熱することによって調製するこ
とができる。酸化性雰囲気の例としては、空気、純酸
素、オゾン、水蒸気、炭酸ガスが挙げられる。上記の
(a)、(b)又は(c)から構成される無機繊維は、
宇部興産(株)からチラノ繊維(登録商標)として市販
されている。
Next, a method for manufacturing the inorganic fiber sintered body of the present invention will be described. The raw inorganic fiber used in the present invention,
For example, according to the method described in JP-A-62-289641, the inorganic fiber composed of the above (a), (b) or (c) is exposed to an oxidizing atmosphere, for example, 500 to 16
It can be prepared by heating at a temperature in the range of 00 ° C. Examples of the oxidizing atmosphere include air, pure oxygen, ozone, water vapor, and carbon dioxide gas. The inorganic fiber composed of the above (a), (b) or (c) is
It is commercially available from Ube Industries, Ltd. as Tyranno fiber (registered trademark).

【0022】上述の加熱処理によって、無機繊維の表面
が酸化されて、前記の(d)、(e)又は(f)からな
る無機質物質で構成される表面層が形成される。即ち、
内面層が(a)、(b)又は(c)の無機物質で構成さ
れ、表面層が(d)、(e)又は(f)から構成される
無機繊維となる。
By the above heat treatment, the surface of the inorganic fiber is oxidized to form a surface layer composed of the inorganic substance (d), (e) or (f). That is,
The inner surface layer is an inorganic fiber composed of the inorganic substance (a), (b) or (c), and the surface layer is an inorganic fiber composed of (d), (e) or (f).

【0023】本発明で使用される無機繊維は、連続繊維
又は連続繊維を切断したチョップ状短繊維の形態である
ことができ、連続繊維から編織された各種織物の形態で
あってもよく、さらに連続繊維を一方向に引き揃えたシ
−ト状物の形態であってもよい。
The inorganic fibers used in the present invention may be in the form of continuous fibers or chopped short fibers obtained by cutting continuous fibers, and may be in the form of various woven fabrics woven from continuous fibers. It may be in the form of a sheet-like material in which continuous fibers are aligned in one direction.

【0024】本発明においては、上記の各種形態の無機
繊維の積層物を加熱焼結する。焼結法としては、積層物
を一次成形した後に不活性ガス雰囲気の加圧下で焼結す
る方法、あるいは成形と焼結を同時に行うホットプレス
法を採用することができる。
In the present invention, a laminate of the above-mentioned various types of inorganic fibers is heated and sintered. As the sintering method, it is possible to employ a method in which the laminate is primarily molded and then sintered under pressure in an inert gas atmosphere, or a hot pressing method in which molding and sintering are simultaneously performed.

【0025】一次成形と焼結を別々に行う方法におい
て、一次成形方法としては、金型プレス法、ラバ−プレ
ス法、押し出し成形法、シ−ト成形法を用いて、100
〜5000kg/cm2 の圧力で加圧してシ−ト状、棒
状、球状などの所定の形状のものを得る方法が挙げられ
る。ホットプレス法で焼結を行う場合には、離型剤とし
ての窒化ホウ素をスプレイした黒鉛製押し型に積層物を
入れ、50〜1000kg/cm2 の圧力で加圧し同時
に加熱して焼結体とすることができる。
In the method in which the primary molding and the sintering are carried out separately, as the primary molding method, a die pressing method, a rubber pressing method, an extrusion molding method, and a sheet molding method are used.
A method of obtaining a sheet having a predetermined shape such as a sheet shape, a rod shape, or a spherical shape by pressurizing at a pressure of up to 5000 kg / cm 2 . In the case of performing sintering by the hot pressing method, the laminate is put in a graphite pressing die sprayed with boron nitride as a release agent, pressed at a pressure of 50 to 1000 kg / cm 2 and simultaneously heated to give a sintered body. Can be

【0026】本発明においては、無機質繊維の表面に層
状の炭素を形成させるために、段階的な昇温を行うこと
が必要である。第一工程における1400℃までの昇温
方法については特別の制限はないが、100〜500℃
/時間の速度で昇温することが好ましい。
In the present invention, it is necessary to raise the temperature in stages in order to form layered carbon on the surface of the inorganic fiber. There is no particular limitation on the temperature raising method up to 1400 ° C. in the first step, but 100 to 500 ° C.
It is preferable to raise the temperature at a rate of / hour.

【0027】第二工程においては、1400〜1750
℃の範囲の温度まで昇温した後、その温度に30分〜1
0時間保持する。この間に無機質繊維の内部から非化学
量論的組成の炭素が表面に偏析し、同時に無機質繊維の
間を前記の(d)、(e)又は(f)から構成される無
機物質の酸化物相で充分に充填して、成形体中の空孔を
きわめて少なくすることができる。
In the second step, 1400 to 1750
After raising the temperature to the range of ℃, 30 minutes to 1
Hold for 0 hours. During this time, carbon of non-stoichiometric composition is segregated from the inside of the inorganic fibers to the surface, and at the same time, the oxide phase of the inorganic substance composed of the above (d), (e) or (f) between the inorganic fibers. Can be sufficiently filled with so that the number of voids in the molded body can be extremely reduced.

【0028】第二工程における加熱温度が1400℃よ
り低いと、炭素の偏析速度が極端に遅くなり効果的でな
い。加熱温度が1750℃を超えると、上記の酸化物相
が活性な溶融状態になり、析出する炭素層と反応して、
成形体中の空孔を通じてCOガスとして成形体から脱離
する。
If the heating temperature in the second step is lower than 1400 ° C., the segregation rate of carbon becomes extremely slow, which is not effective. When the heating temperature exceeds 1750 ° C., the above oxide phase becomes an active molten state and reacts with the deposited carbon layer,
It is desorbed from the molded body as CO gas through the holes in the molded body.

【0029】第三工程においては、続いて1900℃ま
での温度に昇温することにより、高破壊靱性を有する焼
結体が得られる。。第二工程における加熱処理を行った
成形体中には空孔が極めて少ないことから、第三工程に
おける1900℃までの温度への昇温過程においても、
無機繊維の表面に析出した炭素がCOガスとして脱離す
ることはない。
In the third step, the temperature is raised to 1900 ° C. to obtain a sintered body having high fracture toughness. . Since there are very few voids in the molded body that has been subjected to the heat treatment in the second step, even in the temperature raising process up to 1900 ° C. in the third step,
The carbon deposited on the surface of the inorganic fiber is not desorbed as CO gas.

【0030】第四工程においては、第三工程で得られる
焼結体を1000〜1500℃の酸素含有雰囲気中で1
〜100時間酸化処理する。この酸化処理によって、焼
結体の最表面に前述した(d)、(e)又は(f)の組
成からなる20〜500μmの厚さの酸化物層が形成さ
れる。そして、この酸化物層によって、本発明の無機繊
維焼結体は高破壊靱性を有すると共に、空気中での広範
囲の温度域の耐酸化性が大幅に改善される。
In the fourth step, the sintered body obtained in the third step was subjected to 1 at 1000 to 1500 ° C. in an oxygen-containing atmosphere.
Oxidize for ~ 100 hours. By this oxidation treatment, an oxide layer having a composition of (d), (e) or (f) described above and having a thickness of 20 to 500 μm is formed on the outermost surface of the sintered body. By this oxide layer, the inorganic fiber sintered body of the present invention has a high fracture toughness, and the oxidation resistance in a wide temperature range in air is significantly improved.

【0031】酸素含有雰囲気の具体例としては、空気、
空気あるいは酸素と窒素のような不活性ガスとの混合ガ
スが挙げられる。酸化処理温度が1000℃より低い
と、焼結体の最表面の酸化物層の形成に長時間を要し経
済的でなく、その温度が1500を超えると、アクティ
ブな(急激な)酸化反応が主として起こるため、SiO
ガスとしての脱離が急激に進行し、酸化物層が効果的に
生成しない。焼結体表面に酸化物層を効果的に生成させ
るためには、パッシブな(穏やかな)酸化反応が進行す
る上記の1000〜1500℃の温度範囲が必要であ
る。
Specific examples of the oxygen-containing atmosphere include air,
Examples thereof include air or a mixed gas of oxygen and an inert gas such as nitrogen. When the oxidation treatment temperature is lower than 1000 ° C, it takes a long time to form the oxide layer on the outermost surface of the sintered body, which is not economical, and when the temperature exceeds 1500, an active (rapid) oxidation reaction occurs. Since it mainly occurs, SiO
Desorption as a gas progresses rapidly and the oxide layer is not effectively generated. In order to effectively form the oxide layer on the surface of the sintered body, the above-mentioned temperature range of 1000 to 1500 ° C. in which the passive (mild) oxidation reaction proceeds is necessary.

【0032】[0032]

【実施例】以下に実施例及び比較例を示す。EXAMPLES Examples and comparative examples will be shown below.

【0033】実施例1 繊維径11μmのチラノ繊維(登録商標)を930℃の
空気中で4時間加熱処理して原料無機繊維を得た。繊維
表面には約150nmの均一な酸化層が形成されてい
た。
Example 1 Tyranno fiber (registered trademark) having a fiber diameter of 11 μm was heat-treated in air at 930 ° C. for 4 hours to obtain a raw inorganic fiber. A uniform oxide layer of about 150 nm was formed on the fiber surface.

【0034】この原料無機繊維からなり、1枚の厚さが
約170μmの一方向シ−ト100枚を、繊維方向を揃
えて積層してシ−ト状積層物を作成した。この積層物を
90×90mm角に切り、ホットプレスのカ−ボンダイ
ス中にセットして、アルゴン気流下に600kg/cm
2 の圧力をかけ200℃/時間の速度で1700℃まで
昇温し、1700℃で2時間保持した後、引き続き18
50℃まで200℃/時間の速度で昇温して焼結体を得
た。この焼結体中の無機質繊維の回りには、約32nm
の均一な炭素層が形成され、また無機質繊維の間は結晶
質のSiO2 を主体とする相で均一に充填されていた。
このSiO2 を主体とする相中にTi原子の存在が確認
された。
A sheet-like laminate was prepared by laminating 100 sheets of unidirectional sheets each made of this raw material inorganic fiber and having a thickness of about 170 μm in the same fiber direction. This laminate was cut into 90 × 90 mm square pieces, set in a carbon die of a hot press, and 600 kg / cm under an argon stream.
The pressure of 2 is applied, the temperature is raised to 1700 ° C. at a rate of 200 ° C./hour, and the temperature is maintained at 1700 ° C. for 2 hours.
The temperature was raised to 50 ° C at a rate of 200 ° C / hour to obtain a sintered body. About 32 nm around the inorganic fibers in this sintered body
A uniform carbon layer was formed, and the spaces between the inorganic fibers were uniformly filled with a phase mainly composed of crystalline SiO 2 .
The presence of Ti atoms was confirmed in the phase mainly composed of SiO 2 .

【0035】上記焼結体を、3mm×4mm×40mm
の曲げ試験片に切削加工した後、1300℃の空気中で
50時間酸化処理して、焼結体の表面に保護層としての
酸化層を生成させた。酸化層の厚さは約80μmであっ
た。
The above sintered body is 3 mm × 4 mm × 40 mm
After cutting the bending test piece of No. 1 to No. 3, it was oxidized in air at 1300 ° C. for 50 hours to form an oxide layer as a protective layer on the surface of the sintered body. The thickness of the oxide layer was about 80 μm.

【0036】得られた無機繊維焼結体の曲げ強度は室温
で53kg/mm2 であり、図1に示すようなFibrous
な(Brittle でない)非線形な破壊パタ−ンを示した。
この無機繊維焼結体を空気中、600℃、800℃及び
1500℃の各温度で100時間処理した後の曲げ強度
は室温で、それぞれ、50.7kg/mm2 、56.4
kg/mm2 及び50.9kg/mm2 であり、酸化処
理後にも焼結体の外観に変化はまったく認められなかっ
た。
The bending strength of the obtained inorganic fiber sintered body was 53 kg / mm 2 at room temperature, and Fibrous as shown in FIG.
It showed a non-linear break pattern (not Brittle).
The bending strength after treating this inorganic fiber sintered body in air at each temperature of 600 ° C., 800 ° C. and 1500 ° C. for 100 hours was 50.7 kg / mm 2 , 56.4, respectively.
a kg / mm 2 and 50.9 kg / mm 2, change in appearance of the sintered body even after the oxidation treatment was not observed at all.

【0037】比較例1 曲げ試験片の空気中での酸化処理をしなかった以外は実
施例1を繰り返して無機繊維焼結体を得た。この無機繊
維焼結体を800℃の空気中で100時間処理したとこ
ろ、著しい酸化を受け、原料繊維のシ−ト状積層物に由
来する層間に激しい剥離が認められ、曲げ強度の測定は
不可能であった。
Comparative Example 1 An inorganic fiber sintered body was obtained by repeating Example 1 except that the bending test piece was not oxidized in air. When this inorganic fiber sintered body was treated in air at 800 ° C. for 100 hours, it was significantly oxidized, and severe delamination was observed between the layers derived from the sheet-like laminate of the raw material fibers, and the bending strength was not measured. It was possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた無機繊維焼結体の室温曲げ
強度測定結果を示す図である。
FIG. 1 is a diagram showing a room temperature bending strength measurement result of an inorganic fiber sintered body obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神徳 泰彦 山口県宇部市大字小串1978番地の5 宇部 興産株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Shintoku 5 Ube Kosan Co., Ltd., 5 1978 Kogushi, Ube City, Yamaguchi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)実質的にSi、M、C及びOからな
る非晶質物質、(b)実質的にβ−SiC、MC、β−
SiCとMCとの固溶体及び/又はMC 1-x の結晶質超
微粒子、並びに非晶質のSiO2 とMO2 とからなる集
合体、又は(c)上記(a)の非晶質物質と上記(b)
の集合体との混合物から構成される無機質繊維と、この
無機質繊維間の間隙を充填するように存在する、(d)
実質的にSi、M及びOからなる非晶質物質、(e)結
晶質のSiO2 とMO2 とからなる結晶集合体、又は
(f)上記(d)の非晶質物質と上記(e)の結晶集合
体との混合物から構成される無機物質とからなる無機繊
維焼結体であって(上記式において、MはTi又はZr
を示し、xは0以上1未満の数である。)、(a)〜
(c)の無機質繊維と(d)〜(f)の無機物質との境
界層として1〜200nmの非晶質及び結晶質の炭素か
らなる層が存在しており、さらに最表面が前記の
(d)、(e)又は(f)の組成からなる20〜500
μmの厚さの酸化物層で被覆されていることを特徴とす
る、無機繊維焼結体。
1. (a) Substantially consisting of Si, M, C and O
Amorphous material, (b) substantially β-SiC, MC, β-
Solid solution of SiC and MC and / or MC 1-xSuper crystalline
Fine particles and amorphous SiO2And MO2Collection consisting of
Or (c) the amorphous substance of (a) above and (b) above
Inorganic fibers composed of a mixture with aggregates of
Exists so as to fill the gaps between the inorganic fibers, (d)
Amorphous substance consisting essentially of Si, M and O, (e) binding
Crystalline SiO2And MO2A crystal aggregate consisting of, or
(F) The amorphous substance of (d) above and the crystal aggregate of (e) above
Inorganic fiber composed of an inorganic substance composed of a mixture with the body
A sintered body (in the above formula, M is Ti or Zr
And x is a number of 0 or more and less than 1. ), (A) ~
The boundary between the inorganic fiber of (c) and the inorganic substance of (d) to (f)
1 to 200 nm of amorphous and crystalline carbon as a boundary layer
A layer consisting of
20 to 500 having the composition of (d), (e) or (f)
characterized by being coated with an oxide layer with a thickness of μm
Inorganic fiber sintered body.
【請求項2】内面層と表面層とからなる無機繊維であっ
て、内面層が(a)実質的にSi、M、C及びOからな
る非晶質物質、(b)実質的にβ−SiC、MC、β−
SiCとMCとの固溶体及び/又はMC 1-x の結晶質超
微粒子、並びに非晶質のSiO2 とMO2 とからなる集
合体、又は(c)上記(a)の非晶質物質と上記(b)
の集合体との混合物からなる無機室物質で構成され、表
面層が、(d)実質的にSi、M及びOからなる非晶質
物質、(e)結晶質のSiO2 とMO2 とからなる結晶
集合体、又は(f)上記(d)の非晶質物質と上記
(e)の結晶集合体との混合物からなる無機物質で構成
されている無機繊維(上記式において、MはTi又はZ
rを示し、xは0以上1未満の数である。)の積層物
を、不活性ガス中、50〜1000kg/cm2 の圧力
下、室温から1400℃まで昇温する第一工程、140
0〜1750℃の範囲の温度まで昇温して、同温度で3
0分〜10時間保持する第二工程、上記保持温度から1
900℃までの範囲の温度まで昇温して加熱焼結する第
三工程、第三工程で得られる焼結体を1000〜150
0℃の酸素含有ガス中で1〜100時間酸化処理して、
焼結体の最表面に前記(d)、(e)又は(f)の組成
からなる20〜500μmの厚さの酸化物層を形成させ
る第四工程からなることを特徴とする、無機繊維焼結体
の製造方法。
2. An inorganic fiber comprising an inner surface layer and a surface layer
And the inner surface layer (a) consists essentially of Si, M, C and O.
Amorphous material, (b) substantially β-SiC, MC, β-
Solid solution of SiC and MC and / or MC 1-xSuper crystalline
Fine particles and amorphous SiO2And MO2Collection consisting of
Or (c) the amorphous substance of (a) above and (b) above
Inorganic chamber material consisting of a mixture with aggregates of
The surface layer is (d) amorphous consisting essentially of Si, M and O
Substance, (e) crystalline SiO2And MO2Crystal consisting of
An aggregate, or (f) the amorphous substance of (d) above and the above
Consists of an inorganic substance consisting of a mixture with the crystal aggregate of (e)
Inorganic fibers (in the above formula, M is Ti or Z
r is shown, and x is a number of 0 or more and less than 1. ) Laminate
In an inert gas of 50 to 1000 kg / cm2Pressure of
The first step of raising the temperature from room temperature to 1400 ° C., 140
Raise to a temperature in the range of 0 to 1750 ° C and keep at the same temperature for 3
Second step of holding for 0 minutes to 10 hours, from the above holding temperature to 1
The temperature is raised to a temperature in the range of up to 900 ° C and sintered by heating.
The sintered body obtained in the third step and the third step is 1000 to 150
Oxidation treatment in an oxygen-containing gas at 0 ° C. for 1 to 100 hours,
The composition of (d), (e) or (f) on the outermost surface of the sintered body
Forming an oxide layer having a thickness of 20 to 500 μm
Inorganic fiber sintered body characterized by comprising a fourth step
Manufacturing method.
JP5321793A 1993-12-21 1993-12-21 Inorganic fiber sintered body and method for producing the same Expired - Lifetime JP3006746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321793A JP3006746B2 (en) 1993-12-21 1993-12-21 Inorganic fiber sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321793A JP3006746B2 (en) 1993-12-21 1993-12-21 Inorganic fiber sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07172949A true JPH07172949A (en) 1995-07-11
JP3006746B2 JP3006746B2 (en) 2000-02-07

Family

ID=18136486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321793A Expired - Lifetime JP3006746B2 (en) 1993-12-21 1993-12-21 Inorganic fiber sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3006746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072475A (en) * 1999-08-31 2001-03-21 Ube Ind Ltd Fastening structure element for high-temperature structure body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072475A (en) * 1999-08-31 2001-03-21 Ube Ind Ltd Fastening structure element for high-temperature structure body

Also Published As

Publication number Publication date
JP3006746B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
JP2018501172A (en) Reinforced composite material, manufacturing method, and article thereof
JPS6341862B2 (en)
JPH05339056A (en) Oxidation-resistant member composed of carbon-carbon composite having sic doped matrix and production thereof
EP1284251A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
WO1985000363A1 (en) Process for producing sintered silicon carbide
JPH08505355A (en) Thermostructural composite products and methods for their manufacture
US5312787A (en) Ceramics composite material and method of producing the same
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP2792595B2 (en) Inorganic fiber sintered body and method for producing the same
JPH07172949A (en) Sintered material of inorganic fiber and its production
JP3134729B2 (en) Fiber-bonded ceramics and manufacturing method thereof
JP2579854B2 (en) Inorganic fiber sintered body and method for producing the same
JP3598726B2 (en) SiC-based composite material with improved oxidation resistance and method for producing the same
US5190895A (en) Ceramics composite material
CA1077969A (en) Method for producing a composite consisting of continuous silicon carbide fibers and metallic silicon
Kajii et al. A new type of fiber-bonded-ceramic material synthesized from pre-oxidized Si-Ti-CO fiber
JPH07187787A (en) Production of composite material reinforced with carbon fiber
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPH0411664B2 (en)
JP4427914B2 (en) Interlayer direction reinforced inorganic fiber-bonded ceramics and method for producing the same
JPS63291880A (en) Production of fiber-reinforced ceramic sintered molded article
JPH054353B2 (en)
JPH0333065A (en) Production of silicon carbide based sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term