JPH07172909A - Carbon-containing refractory - Google Patents

Carbon-containing refractory

Info

Publication number
JPH07172909A
JPH07172909A JP5343839A JP34383993A JPH07172909A JP H07172909 A JPH07172909 A JP H07172909A JP 5343839 A JP5343839 A JP 5343839A JP 34383993 A JP34383993 A JP 34383993A JP H07172909 A JPH07172909 A JP H07172909A
Authority
JP
Japan
Prior art keywords
refractory
oxidation
carbon
carbonaceous material
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5343839A
Other languages
Japanese (ja)
Inventor
Ichiro Tsuchiya
一郎 土屋
Hirotaka Shintani
宏隆 新谷
Takuzou Mafune
倬三 馬舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP5343839A priority Critical patent/JPH07172909A/en
Publication of JPH07172909A publication Critical patent/JPH07172909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon-contg. refractory retaining its excellent resistance to spalling and corrosion and improved in oxidation resistance. CONSTITUTION:This carbon-contg. refractory is obtained by incorporating 0.5-10wt.% of aluminum borocarbide in a refractory material comprising 65-95wt.% of a refractory aggregate and 5-35wt.% of a carbonaceous material. Incorporation of the aluminum borocarbide causes its reaction with the oxygen in the atmosphere on the surface of the refractory during its use to produce alumina and boron oxides which melt at about 450 deg.C and cover the refractory surface, thus preventing the oxidation of the carbonaceous material from relatively low to higher temperatures. Furthermore, reaction between the alumina and the boron oxide raises the viscosity of the melt, the surface of the carbonaceous material is covered with this melt more firmly esp. at >=1300 deg.C, thus preventing the oxidation of the carbonaceous material; besides, the surface of the carbonaceous material is covered with a compound produced by reaction between an excess of the boron oxide and the various components of the refractory to effect prevention of the oxidative burn-off of the carbonaceous material, thus obtaining the objective carbon-contg. refractory retaining its resistance to corrosion and spalling and improved in oxidation resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素含有耐火物に関
し、特に耐食性及び耐スポ−リング性を低下せせること
なく、耐酸化性を高められるようにした炭素含有耐火物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-containing refractory material, and more particularly to a carbon-containing refractory material having enhanced oxidation resistance without deteriorating corrosion resistance and spooling resistance.

【0002】[0002]

【従来の技術】炭素質原料は、耐火骨材として一般に用
いられているアルミナ、マグネシア等よりも融点および
熱伝導率が高く、かつ線膨張率が低く、スラグ等に濡れ
難い上、耐熱スポ−リング性に優れ、また過度の焼結を
防ぐ性質を有している。
2. Description of the Related Art Carbonaceous raw materials have higher melting points and thermal conductivity than alumina and magnesia which are generally used as refractory aggregates, and have a low linear expansion coefficient. It has excellent ringability and has the property of preventing excessive sintering.

【0003】この性質は、他の耐火骨材の短所を補完す
ることになるため、他の耐火骨材に加えて炭素質原料を
添加して炭素含有耐火物を得ることが従来から行われ、
この炭素含有耐火物は製鋼用、製銑用等の冶金用耐火物
として広く使用されている。
Since this property complements the shortcomings of other refractory aggregates, carbon-containing refractory materials have been conventionally obtained by adding carbonaceous raw materials in addition to other refractory aggregates.
This carbon-containing refractory material is widely used as a refractory material for metallurgy such as steelmaking and pig-making.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、黒鉛等
の炭素質原料は、空気等の酸化性雰囲気の下で極めて容
易に酸化されて消失し、この消失とともに、その長所も
失われるという問題がある。
However, a carbonaceous raw material such as graphite is extremely easily oxidized and disappears in an oxidizing atmosphere such as air, and along with this disappearance, its advantage is also lost. .

【0005】従来、この炭素質原料の酸化消失を防止す
る方法としては、次の3つの方法が提案されている。第
1の方法は、炭素よりも酸化親和力の大きいアルミニウ
ム、珪素、マグネシウム等の金属粉末や炭化硼素(B4
C)、炭化珪素(SiC)等の炭化物を添加する方法で
ある(特開昭54−163913号公報、特開昭59−
107962号公報、特公昭60−59184号公報、
特公昭60−59191号公報、特公昭61−303号
公報、特公昭61−882号公報等)。
Conventionally, the following three methods have been proposed as methods for preventing the disappearance of the carbonaceous raw material by oxidation. The first method is to use a metal powder such as aluminum, silicon, or magnesium having a higher oxidation affinity than carbon or boron carbide (B 4
C), silicon carbide (SiC) and other carbides are added (JP-A-54-163913, JP-A-59-59).
No. 107962, Japanese Patent Publication No. 60-59184,
Japanese Patent Publication No. 60-59191, Japanese Patent Publication No. 61-303, Japanese Patent Publication No. 61-882, etc.).

【0006】第2の方法は、6硼化珪素(SiB6 )を
添加して、耐火物使用時に生成するB2 3 −SiO2
系ガラス相並びにB2 3 と耐火骨材が反応して生成す
る高粘性融液によって、炭素質原料に皮膜を形成する方
法である(特開昭60−176970号公報)。
The second method is to add silicon hexaboride (SiB 6 ) to form B 2 O 3 --SiO 2 produced when a refractory material is used.
This is a method of forming a film on a carbonaceous raw material by a high-viscosity melt produced by the reaction of a glass-based glass phase and B 2 O 3 with a refractory aggregate (JP-A-60-176970).

【0007】第3の方法は、珪酸塩、硼酸塩等を添加し
て、炭素質原料の表面にガラス質皮膜を形成させる方法
である。
The third method is to add a silicate, a borate or the like to form a glassy film on the surface of the carbonaceous raw material.

【0008】しかしながら、上記の第1の方法では酸化
防止効果が低く、また第2の方法でも炭素質原料の皮膜
の粘性が不十分で、皮膜が形成される前に溶損あるいは
摩耗によって損傷されることが多く、十分な効果が得ら
れない。
However, the above-mentioned first method has a low antioxidation effect, and the second method also has an insufficient viscosity of the carbonaceous raw material film and is damaged by melting or abrasion before the film is formed. However, it is not possible to obtain a sufficient effect.

【0009】さらに、第3の方法では、有効に酸化防止
効果が得られる温度域が限定されており、しかも十分な
耐酸化性を得るために添加量を増大すれば、耐火材料の
耐食性及び耐スポ−リング性が低下するという問題が生
じる。
Further, in the third method, the temperature range in which the antioxidant effect is effectively obtained is limited, and if the addition amount is increased in order to obtain sufficient oxidation resistance, the corrosion resistance and corrosion resistance of the refractory material can be improved. There is a problem that the sporting property is deteriorated.

【0010】[0010]

【課題を解決するための手段】本発明は、上記のような
点に鑑みたもので、上記の課題を解決するために、耐火
骨材65〜95重量%と炭素質原料5〜35重量%を含
有する耐火材料に、硼炭化アルミニウムを0.5〜10重
量%添加したことを特徴とする炭素含有耐火物を提供す
るにある。
The present invention has been made in view of the above points, and in order to solve the above problems, refractory aggregates of 65 to 95% by weight and carbonaceous raw materials of 5 to 35% by weight. The present invention provides a refractory material containing carbon, characterized in that 0.5 to 10% by weight of aluminum borocarbide is added to the refractory material containing.

【0011】[0011]

【作用】本発明では、耐火骨材、炭素質原料を含有する
耐火材料に硼炭化アルミニウムを所定量添加することに
よって、使用時に耐火物表面で硼炭化アルミニウムが雰
囲気中の酸素と反応してアルミナおよび酸化硼素を生成
し、この酸化硼素が約450℃で溶融して耐火物表面を
被覆して、比較的低温から炭素質原料の酸化を防止でき
る。
In the present invention, by adding a predetermined amount of aluminum borocarbide to the refractory material containing the refractory aggregate and the carbonaceous raw material, the aluminum borocarbide reacts with oxygen in the atmosphere on the surface of the refractory during use, and alumina Also, boron oxide is produced, and this boron oxide melts at about 450 ° C. to coat the surface of the refractory material and prevent oxidation of the carbonaceous raw material even at a relatively low temperature.

【0012】また、上記アルミナと酸化硼素が反応して
融液を高粘性化するので、高温、特に1300℃以上に
おいて、より強固に炭素質原料の表面を被覆して酸化を
防止し、さらに余剰の酸化硼素と耐火物中の諸成分との
反応によって生成する化合物が炭素質材料の表面を被覆
して酸化消失を防止し、耐用性を高められる。
Further, since the above-mentioned alumina and boron oxide react to make the melt highly viscous, the surface of the carbonaceous raw material is more strongly coated at a high temperature, particularly at 1300 ° C. or higher to prevent the oxidation, and the surplus is further increased. The compound produced by the reaction of the boron oxide with the components in the refractory covers the surface of the carbonaceous material to prevent the disappearance of the oxidation, thereby improving the durability.

【0013】本発明の炭素含有耐火物は、耐火骨材65
〜95重量%と炭素質原料5〜35重量%を含有する耐
火材料に、硼炭化アルミニウムを0.5〜10重量%添加
したことを特徴としている。
The carbon-containing refractory material of the present invention is a refractory aggregate 65.
It is characterized in that 0.5 to 10% by weight of aluminum borocarbide is added to a refractory material containing ˜95% by weight and 5 to 35% by weight of carbonaceous raw material.

【0014】上記耐火骨材は、通常の耐火骨材を使用す
ればよく、例えばマグネシア、ドロマイト、スピネル、
ジルコン、ジルコニア、アルミナ、シリカ、ムライト等
の酸化物、炭化珪素等の炭化物、窒化珪素等の窒化物等
の非酸化物を挙げることができる。
As the above-mentioned refractory aggregate, a usual refractory aggregate may be used. For example, magnesia, dolomite, spinel,
Examples thereof include oxides such as zircon, zirconia, alumina, silica, and mullite, carbides such as silicon carbide, and non-oxides such as nitrides such as silicon nitride.

【0015】耐火骨材の粒径は、特に制限されず、例え
ば通常に使用される5mm以下程度のものを使用すればよ
い。耐火骨材の配合量は、上記耐火材料の65〜95重
量%程度とすることが好ましい。耐火骨材の配合量が、
上記耐火材料の65重量%を下回ると耐食性が低下する
ので好ましくなく、95重量%を上回ると炭素質原料の
添加の効果がなくなるので好ましくない。
The particle size of the refractory aggregate is not particularly limited, and for example, a commonly used particle of about 5 mm or less may be used. The content of the refractory aggregate is preferably about 65 to 95% by weight of the refractory material. The amount of refractory aggregate compounded is
If the amount of the refractory material is less than 65% by weight, the corrosion resistance is deteriorated, and if it exceeds 95% by weight, the effect of adding the carbonaceous raw material is lost, which is not preferable.

【0016】炭素質原料としては、通常に使用されるも
のを使用することができ、例えば鱗状黒鉛、土状黒鉛等
の天然黒鉛、人造黒鉛、カ−ボンブラック、石油コ−ク
ス等の非晶質炭素物質等を使用することができる。
As the carbonaceous raw material, those usually used can be used. For example, natural graphite such as scaly graphite and earth-like graphite, artificial graphite, carbon black, and amorphous such as petroleum coke. Carbonaceous substances and the like can be used.

【0017】これらの中では、耐火骨材との混合や硼炭
化アルミニウムとの混合が最も容易な鱗状黒鉛を使用す
ることが推奨される。炭素質原料の粒径は、特に制限さ
れるものでなく、例えば通常に使用されている1mm以下
程度のものを使用することができる。
Of these, it is recommended to use scaly graphite which is the easiest to mix with the refractory aggregate and to mix with boroaluminum carbide. The particle size of the carbonaceous raw material is not particularly limited, and for example, a commonly used particle size of about 1 mm or less can be used.

【0018】炭素質原料の配合量は、炭素含有耐火物の
使用目的によって異なるが、上記耐火材料の5〜35重
量%とすることが好ましい。炭素質原料の配合量が、上
記耐火材料の5重量%を下回ると炭素質原料の添加の効
果がなくなるので好ましくなく、35重量%を上回ると
耐食性が低下するので好ましくない。
The blending amount of the carbonaceous raw material varies depending on the purpose of use of the carbon-containing refractory material, but is preferably 5 to 35% by weight of the refractory material. If the blending amount of the carbonaceous raw material is less than 5% by weight of the refractory material, the effect of addition of the carbonaceous raw material is lost, and if it exceeds 35% by weight, the corrosion resistance is deteriorated, which is not preferable.

【0019】硼炭化アルミニウムを添加すると、使用時
に耐火物表面で雰囲気中の酸素と反応して、4Alx
y z +(3x+3z+2y)O2 →2xAl2 3
2zB2 3 +4yCOのようにアルミナ、酸化硼素お
よびCOを生成する。
When aluminum borocarbide is added, it reacts with oxygen in the atmosphere on the surface of the refractory during use, and 4Al x C
y B z + (3x + 3z + 2y) O 2 → 2xAl 2 O 3 +
Alumina, boron oxide and CO are produced such as 2zB 2 O 3 + 4yCO.

【0020】この反応により、れんが中の炭素質原料の
燃焼が抑制されるとともに、酸化物生成時の体積膨張に
ともない組織が緻密化してガス拡散が抑制される。ま
た、酸化硼素は、約450℃で溶融して耐火物表面を被
覆するので、比較的低温から炭素質原料の酸化を防止で
きることになる。
By this reaction, the combustion of the carbonaceous raw material in the brick is suppressed, and the structure is densified due to the volume expansion at the time of oxide formation, and the gas diffusion is suppressed. Further, since boron oxide melts at about 450 ° C. and coats the surface of the refractory material, oxidation of the carbonaceous raw material can be prevented even at a relatively low temperature.

【0021】また、上記アルミナと酸化硼素が反応して
融液を高粘性化し、高温、特に1300℃以上において
より強固に炭素質原料の表面を被覆して酸化を防止す
る。
Further, the above-mentioned alumina reacts with boron oxide to make the melt highly viscous, and more strongly coats the surface of the carbonaceous raw material at high temperature, especially at 1300 ° C. or higher to prevent oxidation.

【0022】さらに、余剰の酸化硼素と耐火物中の諸成
分との反応によって生成する化合物が、炭素質原料の表
面を被覆して酸化消失を防止する。
Further, a compound formed by the reaction of excess boron oxide with various components in the refractory covers the surface of the carbonaceous raw material to prevent the disappearance of oxidation.

【0023】なお、このような効果は、上記の耐火材料
に金属アルミニウムならびに金属硼素または炭化硼素、
窒化硼素を複合添加した場合にも認められるが、この場
合、アルミニウム粒子と硼素系粒子とは耐火物内で互い
に独立して存在しており、酸素との反応形態としては、
まずアルミニウム粒子の優先酸化が生じて、続いて硼素
系粒子の酸化が進む形で進行する。
Such an effect is obtained by adding the above-mentioned refractory material to metallic aluminum and metallic boron or boron carbide,
It is also recognized when boron nitride is added in combination, but in this case, the aluminum particles and the boron-based particles are present independently of each other in the refractory, and as a reaction form with oxygen,
First, the preferential oxidation of the aluminum particles occurs, and then the oxidation of the boron-based particles proceeds.

【0024】これに対して、本発明の硼炭化アルミニウ
ム添加の場合、アルミニウムと硼素の化合物として存在
することにより、酸素との反応が同時進行する。その結
果、炭素質原料の直接酸化が抑制されるとともに、アル
ミナ−酸化硼素系の反応が促進されて表面皮膜効果が高
められ、高い酸化防止効果を得ることができる。
On the other hand, in the case of adding the aluminum borocarbide of the present invention, the reaction with oxygen proceeds simultaneously because it exists as a compound of aluminum and boron. As a result, direct oxidation of the carbonaceous raw material is suppressed, the reaction of the alumina-boron oxide system is promoted, the surface film effect is enhanced, and a high antioxidant effect can be obtained.

【0025】したがって、添加量を少なくして耐食性を
低下させることなく、酸化防止効果を得ることができる
のである。
Therefore, the antioxidant effect can be obtained without reducing the corrosion resistance by reducing the addition amount.

【0026】硼炭化アルミニウムの配合量は、上記の耐
火材料100重量部に対して0.5〜10重量部とするこ
とが好ましい。0.5重量部を下回ると所期の効果が得ら
れないので好ましくなく、10重量部を越えるとB2
3 系ガラスの生成量が多くなり過ぎ、耐食性および耐ス
ポ−リング性が低下するので好ましくない。
The content of aluminum borocarbide is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the refractory material. Not preferable because the desired effect and less than 0.5 part by weight can not be obtained, exceeding 10 parts by weight B 2 O
It is not preferable because the amount of the 3 type glass produced is too large and the corrosion resistance and the sponging resistance are deteriorated.

【0027】硼炭化アルミニウムの粒径は、特に制限さ
れず、通常に使用される60メッシュ(0.25mm)以下
程度のものを使用することができるが、反応性を高める
ために200メッシュ(0.07mm)以下程度のものを使
用することが好ましい。
The particle size of the aluminum borocarbide is not particularly limited, and a generally used one having a particle size of about 60 mesh (0.25 mm) or less can be used, but it is 200 mesh (0 mesh for improving reactivity). It is preferable to use one having a diameter of about 0.07 mm or less.

【0028】上記硼炭化アルミニウム(Alx
y z )は、そのx:y:z=5〜45:3〜40:2
0〜90のものが上記した化学反応から適切である。
The above aluminum borocarbide (Al x C
y B z), the x: y: z = 5~45: 3~40: 2
Those of 0 to 90 are suitable from the above chemical reaction.

【0029】本発明の炭素含有耐火物をこれらの成分か
ら作る方法は、特に制限されるものではなく、例えば上
記のように粒度及び成分を調整された耐火材料と硼炭化
アルミニウムを上記の配合割合で調合し、タ−ル、ピッ
チ、フェノ−ルレジン等の残留炭素量の多い有機樹脂等
の結合材のいずれか1種または2種以上を加えて混練
後、加圧成形する。
The method for producing the carbon-containing refractory of the present invention from these components is not particularly limited, and for example, a refractory material whose particle size and components are adjusted as described above and aluminum borocarbide are blended in the above blending ratio. The mixture is mixed with one or two or more binders such as tar, pitch, phenol resin and the like having a large amount of residual carbon, and the mixture is kneaded, followed by pressure molding.

【0030】この後、25〜200℃で乾燥あるいは熱
処理することによって不焼成耐火物としての炭素含有耐
火物を得ることができ、また700〜1500℃程度の
還元雰囲気の下で焼成することによって焼成耐火物とし
ての炭素含有耐火物を得ることができる。
Thereafter, a carbon-containing refractory as an unfired refractory can be obtained by drying or heat treatment at 25 to 200 ° C., and firing by firing in a reducing atmosphere at about 700 to 1500 ° C. A carbon-containing refractory as a refractory can be obtained.

【0031】[0031]

【実施例】次ペ−ジの表1のように本発明品1、2、
3、4、比較品1、2、3を表に示す成分で調合し、レ
ゾ−ル型フェノ−ルレジン3重量部を添加して混練後、
1000Kgf/cm2 の圧力で40mm×40mm×40mmの立
方体形状に加圧成形し、この後180℃にて5時間熱処
理して、それぞれ不焼成耐火物としての炭素含有耐火物
を得た。
EXAMPLES As shown in Table 1 on the next page, the products of the present invention 1, 2,
3, 4 and Comparative Products 1, 2, and 3 were mixed with the components shown in the table, and after 3 parts by weight of a resole type phenol resin was added and kneaded,
It was pressure-molded at a pressure of 1000 Kgf / cm 2 into a 40 mm × 40 mm × 40 mm cubic shape, and then heat-treated at 180 ° C. for 5 hours to obtain carbon-containing refractories as unfired refractories.

【0032】得られた耐火物を試料として、次の条件の
下に耐酸化性および耐酸化摩耗性試験を行った。これら
の結果は表1に示されている。
Using the obtained refractory material as a sample, oxidation resistance and oxidation wear resistance tests were conducted under the following conditions. The results are shown in Table 1.

【0033】耐酸化性試験では、上記試料を電気炉に入
れ、大気中1300℃で10時間加熱処理し、処理後の
重量減少率(%)を求めた。
In the oxidation resistance test, the above sample was placed in an electric furnace and heat-treated at 1300 ° C. for 10 hours in the atmosphere, and the weight loss rate (%) after the treatment was determined.

【0034】耐酸化摩耗試験では、上記各試料を直径3
00mm、長さ300mmの耐火物製円筒状容器に入れ、1
5r.p.m で回転させながら1300℃で30分間加熱処
理し、処理後の重量減少率(%)を求めた。
In the oxidative wear resistance test, each of the above samples was tested to have a diameter of 3
Put in a cylindrical container made of refractory of 00 mm and length of 300 mm, 1
Heat treatment was carried out at 1300 ° C. for 30 minutes while rotating at 5 rpm, and the weight reduction rate (%) after the treatment was determined.

【0035】表1から明らかなように、本発明品1、
2、3、4は、比較品1、2、3に対して各試験におけ
る重量減少率が小さいことから、炭素質原料の酸化消失
量が小さく、きわめて耐酸化性が優れていることが分か
る。
As is clear from Table 1, the product 1 of the present invention,
Since the weight reduction ratios of Nos. 2, 3, and 4 in each test were smaller than those of Comparative products Nos. 1, 2, and 3, it was found that the amount of carbonaceous raw material lost by oxidation was small and the oxidation resistance was extremely excellent.

【0036】また、きわめて優れた耐酸化性を有する上
記の各発明品によれば、炭素質原料の好ましい性質が十
分に発揮され、耐酸化摩耗性、耐スポ−リング性等の耐
用性においても著しい向上が認められた。
Further, according to each of the above-mentioned invention products having extremely excellent oxidation resistance, the preferable properties of the carbonaceous raw material are sufficiently exhibited, and the durability such as oxidation wear resistance, spalling resistance and the like is also improved. A remarkable improvement was recognized.

【0037】表1 比較表Table 1 Comparison table

【表1】 [Table 1]

【0038】本発明は、上記した実施例に限られるもの
ではなく、本発明の趣旨を逸脱しない範囲で様々な態様
の実施が可能であることはいうまでもない。
It is needless to say that the present invention is not limited to the above-mentioned embodiments, and various embodiments can be carried out without departing from the spirit of the present invention.

【0039】[0039]

【発明の効果】以上のように本発明にあっては、使用時
に耐火物表面で硼炭化アルミニウムが雰囲気中の酸素と
反応してアルミナおよび酸化硼素を生成し、この酸化硼
素が約450℃で溶融して耐火物表面を被覆するので、
比較的低温から炭素質原料の酸化を防止できる。
As described above, according to the present invention, at the time of use, aluminum borocarbide reacts with oxygen in the atmosphere on the surface of the refractory to form alumina and boron oxide. As it melts and coats the refractory surface,
Oxidation of the carbonaceous raw material can be prevented even at a relatively low temperature.

【0039】また、上記アルミナと酸化硼素が反応して
融液を高粘性化するので、高温、特に1300℃以上に
おいてより強固に炭素質原料の表面を被覆して酸化が防
止され、さらに余剰の酸化硼素と耐火物中の諸成分との
反応によって生成する化合物が炭素質材料の表面を被覆
して酸化消失を防止するので、耐食性および耐スポ−リ
ング性を低下させることなく、耐酸化性を高められるも
のである。
Further, since the above-mentioned alumina and boron oxide react to make the melt highly viscous, the surface of the carbonaceous raw material is more strongly coated at a high temperature, especially at 1300 ° C. or higher to prevent the oxidation, and the surplus is further increased. The compound formed by the reaction between boron oxide and various components in the refractory covers the surface of the carbonaceous material and prevents the oxidation disappearance, so that the corrosion resistance and the sponging resistance are not deteriorated and the oxidation resistance is improved. It can be raised.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 耐火骨材65〜95重量%と炭素質原料
5〜35重量%を含有する耐火材料に、硼炭化アルミニ
ウムを0.5〜10重量%添加したことを特徴とする炭素
含有耐火物。
1. A carbon-containing refractory material comprising 0.5 to 10% by weight of aluminum borocarbide added to a refractory material containing 65 to 95% by weight of a refractory aggregate and 5 to 35% by weight of a carbonaceous raw material. object.
JP5343839A 1993-12-16 1993-12-16 Carbon-containing refractory Pending JPH07172909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5343839A JPH07172909A (en) 1993-12-16 1993-12-16 Carbon-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5343839A JPH07172909A (en) 1993-12-16 1993-12-16 Carbon-containing refractory

Publications (1)

Publication Number Publication Date
JPH07172909A true JPH07172909A (en) 1995-07-11

Family

ID=18364639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5343839A Pending JPH07172909A (en) 1993-12-16 1993-12-16 Carbon-containing refractory

Country Status (1)

Country Link
JP (1) JPH07172909A (en)

Similar Documents

Publication Publication Date Title
EP0793629B1 (en) Novel materials consisting of refractory grains bonded by a titanium nitride-containing aluminium nitride or sialon matrix
US4605635A (en) Carbon-containing refractory
JPS6119584B2 (en)
JPH07172909A (en) Carbon-containing refractory
JPH01286950A (en) Carbon-containing refractory
JPH11322405A (en) Low carbon refractory and its production
JP2771613B2 (en) Carbon containing refractories
JP2950622B2 (en) Carbon containing refractories
JPS63285168A (en) Carbon containing refractories
JPH01305849A (en) Magnesia-carbon brick
JP2574529B2 (en) Carbon containing refractories
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JP2868809B2 (en) Magnesia carbon brick
JP2687214B2 (en) Carbon containing refractories
JPH05170519A (en) Magnesia-carbonaceous refractory
JP2947390B2 (en) Carbon containing refractories
JPS63134571A (en) Zrb2-graphite-containing refractories
JP2765458B2 (en) Magnesia-carbon refractories
JPH09328364A (en) Material for molten metal use
JPH05319902A (en) Carbon-containing basic refractory
JP2000327401A (en) Plate for slide gate
JP2701901B2 (en) Carbon containing refractories
JPH05319898A (en) Carbon containing refractory
JPH10251055A (en) Alumina-magnesia-carbon refractory material for heath of electric furnace
JP2961029B2 (en) Method for producing carbon-containing refractories