JPH07172882A - Method for reforming steel slag - Google Patents

Method for reforming steel slag

Info

Publication number
JPH07172882A
JPH07172882A JP5324701A JP32470193A JPH07172882A JP H07172882 A JPH07172882 A JP H07172882A JP 5324701 A JP5324701 A JP 5324701A JP 32470193 A JP32470193 A JP 32470193A JP H07172882 A JPH07172882 A JP H07172882A
Authority
JP
Japan
Prior art keywords
slag
gypsum
sulfuric acid
cao
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5324701A
Other languages
Japanese (ja)
Inventor
Keiichiro Isomura
敬一郎 磯村
Eizo Maeda
榮造 前田
Tsutomu Nozaki
努 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5324701A priority Critical patent/JPH07172882A/en
Publication of JPH07172882A publication Critical patent/JPH07172882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To reform a steel slag having a high content of free calcium oxide and to remarkably improve the reutilization rate by allowing the slag to react with sulfuric acid to form gypsum, separating the gypsum from the sulfuric acid soln. and drying the gypsum. CONSTITUTION:A steel slag is allowed to react with a sulfuric acid soln. to form gypsum, then the gypsum is separated from the soln. and dried to obtain a gypsum powder, and the slag is reformed. Blast-furnace slag, steelmaking slag, electric furnace slag, etc., are utilized in this method. The amt. of formed gysum is increased as the CaO content increases, and the purity of the gypsum is enhanced. Consequently, steelmaking slag having a high content of CaO is appropriately used. The slag is previously crushed and regulated in size to accelerate the reaction. The grain size is preferably controlled to <=1mm or appropriately to <=0.5mm. Since the reaction occurs from the surface, the large- diameter slag may be left unreacted at its core.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄所の製錬工程から
発生する鉄鋼スラグの改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming steel slag generated from a smelting process in an iron mill.

【0002】[0002]

【従来の技術】高炉スラグや製鋼スラグに代表される鉄
鋼スラグの再利用は古くから試みられている。高炉スラ
グに関しては、当初は徐冷スラグを土地造成用および路
盤材に利用する程度であったが、徐々に水砕スラグのセ
メント原料への用途開発が進み、現状では圧倒的な割合
を占めるに至っている。これは高炉スラグの化学成分が
ポルトランドセメントに近いことや優れた潜在水硬性を
有効に利用しており、現在、高炉スラグの利用率は10
0%である。
2. Description of the Related Art Reuse of steel slag represented by blast furnace slag and steelmaking slag has been tried for a long time. With regard to blast furnace slag, initially it was only to use slowly cooled slag for land preparation and roadbed materials, but gradually the application development of water granulated slag as a raw material for cement has progressed, and at present, it accounts for an overwhelming proportion. Has arrived. This is because the chemical composition of blast furnace slag is close to that of Portland cement and the excellent latent hydraulic property is effectively used. Currently, the utilization rate of blast furnace slag is 10%.
It is 0%.

【0003】一方、製鋼スラグは製錬に副原料として用
いる、生石灰が滓化されない、いわゆる遊離酸化カルシ
ウム(free CaO)を含むために再利用化を抑制
している。すなわち遊離酸化カルシウムが大気中の水と
反応して水和すると体積が約2倍に膨張し、スラグの崩
壊につながるからである。現状では、比較的崩壊に対し
て安定な低塩基度(CaO/SiO2 )3〜4のものを
大気中で3〜6カ月エージングした後に、道路用材等へ
適用されているが、利用率としては60〜70%程度に
留まっている。この製鋼スラグの低い利用率は、近年の
地球環境問題にも係り、今後再利用の促進が望まれてい
る。これに対しては水蒸気加速エージングによる迅速な
改質技術開発等が試みられている。
On the other hand, steelmaking slag suppresses the reuse because it contains so-called free calcium oxide (free CaO), which is used as an auxiliary material for smelting and does not slag quicklime. That is, when free calcium oxide reacts with water in the atmosphere and is hydrated, the volume expands about twice and leads to the collapse of slag. At present, it is applied to road materials after aging low-basicity (CaO / SiO 2 ) 3-4, which is relatively stable against disintegration, in the atmosphere for 3-6 months. Is about 60 to 70%. The low utilization rate of this steelmaking slag is related to recent global environmental problems, and promotion of reuse is desired in the future. In response to this, attempts have been made to develop rapid reforming technology by steam aging.

【0004】しかしながら、これら鉄鋼スラグの再利用
はいずれもスラグ自体の再利用であり、スラグの構成成
分を別の物質に改質し、再利用されている例はない。
However, the reuse of these steel slags is the reuse of the slag itself, and there is no example in which the constituent components of the slag are modified to another substance and reused.

【0005】[0005]

【発明が解決しようとする課題】製鋼スラグが発生する
転炉製錬においては、最近、ドロマイト等を添加して耐
火物の寿命を延ばすための高塩基度精錬や精錬技術の進
歩により高塩基度精錬が行われるようになり、遊離酸化
カルシウムの含有量は増加傾向にあって、膨張崩壊しや
すくなるとい問題がある。本発明は製鋼スラグを硫酸溶
液に浸漬等せしめて、主成分であるCaO(free
CaO、2CaO・SiO2 、3CaO・SiO2 、2
CaO・Fe23 等の鉱物におけるCaO成分)を反
応させてCaSO4 ・2H2 O(石膏)を生成せしめる
技術を提供することを目的としており、本発明によれば
遊離酸化カルシウムの量に関係なく全てCaSO4 ・2
2Oとなるため、従来の膨張崩壊による再利用抑制の
問題がなくなるのみならず、CaO量が多いほど、Ca
SO4 ・2H2 Oの生成量も増加することになる。
In converter smelting in which steelmaking slag is generated, high basicity smelting or refining technology for extending the life of refractory by adding dolomite or the like has recently been developed. Since refining is started, the content of free calcium oxide tends to increase, and there is a problem that expansion and collapse easily occur. In the present invention, the steelmaking slag is immersed in a sulfuric acid solution or the like, and the main component CaO (free)
CaO, 2CaO · SiO 2 , 3CaO · SiO 2 , 2
It is an object of the present invention to provide a technique for producing CaSO 4 .2H 2 O (gypsum) by reacting CaO components in minerals such as CaO · Fe 2 O 3 and the like. all regardless of CaSO 4 · 2
Since it becomes H 2 O, not only does the conventional problem of suppressing reuse by expansion and collapse disappear, but the more CaO, the more Ca
The amount of SO 4 .2H 2 O produced will also increase.

【0006】[0006]

【課題を解決するための手段】本発明は、鉄鋼スラグを
硫酸溶液中に浸漬等の方法によって反応させて石膏を生
成させた後、硫酸溶液と分離、水洗乾燥して石膏粉末を
得ることを特徴とする鉄鋼スラグの改質方法である。
According to the present invention, gypsum is obtained by reacting iron and steel slag in a sulfuric acid solution by a method such as immersion to form gypsum, and then separating the sulfuric acid solution, washing with water and drying. It is a characteristic method for modifying steel slag.

【0007】[0007]

【作用】本発明の鉄鋼スラグの改質方法では、鉄鋼スラ
グとして高炉スラグ、製鋼スラグ、電気炉スラグ等を利
用することができる。特にCaO成分が多いほど、石膏
生成量が多く、また石膏の純度も高くなる。このため、
CaO成分の多い製鋼スラグは好適である。
In the method for modifying iron and steel slag of the present invention, blast furnace slag, steelmaking slag, electric furnace slag and the like can be used as the iron and steel slag. In particular, the more the CaO component is, the more the gypsum is produced, and the higher the purity of the gypsum is. For this reason,
Steelmaking slag containing a large amount of CaO is suitable.

【0008】製鋼スラグの中にはCaO、2CaO・S
iO2 が多量に含有され、これと硫酸との反応が以下の
ようになると推定される。 CaO+H2 SO4 +H2 O → CaSO4 ・2H2
O 2CaO・SiO2 +2H2 SO4 +2H2 O→ 2C
aSO4 ・2H2 O+2SiO2 生成する石膏は白色粉末として生成する。SiO2 はゾ
ル状物として生成する。生成したSiO2 を分離するこ
とで石膏が得られる。
CaO, 2CaO ・ S are contained in the steelmaking slag.
It is presumed that a large amount of iO 2 is contained and the reaction between this and sulfuric acid is as follows. CaO + H 2 SO 4 + H 2 O → CaSO 4・ 2H 2
O 2 CaO ・ SiO 2 + 2H 2 SO 4 + 2H 2 O → 2C
aSO 4 · 2H 2 O + 2SiO 2 The gypsum produced is produced as a white powder. SiO 2 is produced as a sol. Gypsum is obtained by separating the generated SiO 2 .

【0009】反応を促進させるために鉄鋼スラグを予め
粉砕し、整粒しておくとよい。粒度は1mm以下が望ま
しく、また0.5mm以下が好適である。これは反応が
表面から起こるため、粒径の大きいものでは中心部が未
反応で残る可能性が高くなるためである。反応は、硫酸
水溶液中にスラグを浸漬するかあるいはスラグ粉末を分
散させる等の方法により行う。浸漬する場合は撹拌する
ことによって均一な反応を継続させることができる。ま
た硫酸水溶液との反応は浸漬のほか、硫酸水溶液を噴霧
する等の方法によってもよい。
In order to accelerate the reaction, the iron and steel slag is preferably crushed and sized in advance. The particle size is preferably 1 mm or less, and more preferably 0.5 mm or less. This is because the reaction takes place from the surface, so that with a large particle size, there is a high possibility that the central portion will remain unreacted. The reaction is carried out by a method such as immersing the slag in an aqueous sulfuric acid solution or dispersing the slag powder. When soaking, a uniform reaction can be continued by stirring. The reaction with the aqueous sulfuric acid solution may be carried out by dipping or spraying an aqueous sulfuric acid solution.

【0010】反応に必要な硫酸の量は、浸漬法の場合ス
ラグ中のCaO量が全て反応するに必要なH2 SO4
量を1としたとき0.8以上1以下が好ましい。0.8
未満では未反応物が多く残留し、石膏の利用が困難にな
る。1を越えて過剰に加えると、残留H2 SO4 の処理
の問題が発生するが、反応自体は問題なく進む。噴霧法
による場合は、硫酸水溶液を循環使用することが可能で
あり、浸漬法のように硫酸量の上限,下限を限定する必
要はない。
The amount of sulfuric acid required for the reaction is preferably 0.8 or more and 1 or less when the amount of H 2 SO 4 required for all the CaO amount in the slag to react in the dipping method is 1. 0.8
If it is less than this, a large amount of unreacted material remains, making it difficult to use gypsum. If added in excess of 1, the problem of processing residual H 2 SO 4 occurs, but the reaction itself proceeds without problems. In the case of the spraying method, it is possible to circulate and use the sulfuric acid aqueous solution, and it is not necessary to limit the upper and lower limits of the sulfuric acid amount as in the dipping method.

【0011】硫酸水溶液の濃度については特に限定する
ものではないが、稀硫酸では反応速度が遅くなる傾向に
ある。好ましくは1規定以上の硫酸水溶液である。反応
温度は、高いほど、反応速度は大きくなる。10℃以下
では反応が進みにくく、好ましくない。反応後、生成し
た石膏を分離回収する。分離回収方法は特に限定するも
のではないが、例えば次のような方法を利用することが
できる。濾過により石膏は濾滓として、またゾル状Si
2 及び溶液は濾液中に分離される。
The concentration of the aqueous sulfuric acid solution is not particularly limited, but the reaction rate tends to be slow with dilute sulfuric acid. It is preferably a 1 N or more aqueous sulfuric acid solution. The higher the reaction temperature, the higher the reaction rate. If the temperature is 10 ° C or lower, the reaction is difficult to proceed, which is not preferable. After the reaction, the produced gypsum is separated and collected. The separation and recovery method is not particularly limited, but the following method can be used, for example. Gypsum as a slag by filtration and sol-like Si
O 2 and the solution are separated in the filtrate.

【0012】分離された石膏粉末は洗浄後、乾燥する。
洗浄は十分に行うべきである。不十分だとH2 SO4
残留し好ましくない。乾燥方法は特に限定されない。石
膏は加熱温度条件によっては脱水することがあり、製品
によって乾燥温度が異なる。もし2水石膏を得ようとし
たら45℃以上では脱水するため、好ましくない。一
方、半水石膏を得ようとしたら45℃以上で乾燥する必
要がある。
The separated gypsum powder is washed and then dried.
Washing should be thorough. If it is insufficient, H 2 SO 4 remains, which is not preferable. The drying method is not particularly limited. Gypsum may be dehydrated depending on the heating temperature conditions, and the drying temperature varies depending on the product. If you try to obtain gypsum dihydrate, it dehydrates at 45 ° C or higher, which is not preferable. On the other hand, to obtain hemihydrate gypsum, it is necessary to dry it at 45 ° C. or higher.

【0013】[0013]

【実施例】【Example】

[実施例1]現場より採取した塩基度(CaO/SiO
2 )5の転炉スラグの化学組成(wt%)を表1に示
す。この転炉スラグを500μmアンダーに粉砕・整粒
し、スラグ粒子200gを準備した。また、硫酸は10
Nになるように濃度調整し1500cc準備した。実験
フローを図1に示す。硫酸をウォーターバスにて80℃
に温調した後、テフロン撹拌子により撹拌しながらスラ
グ粒子を投入し撹拌を3時間継続した。硫酸溶液は緑白
色となった。アスピレータにより吸引濾過を行った。濾
過は数分程度で終了し、濾液は淡い緑色となり、濾過物
として白色粉末が得られた。この粉末を水洗後、乾燥機
を用いて40℃で72時間乾燥後、X線回折と化学定量
分析を行った。その結果、X線回折ではピークは全てC
aSO4 ・2H2 Oであり、石膏が生成していることが
わかった。また、化学定量分析の結果、CaSO4 ・2
2 O成分が95.2wt%、SiO2 成分が2.8w
t%で、他成分の合計は2.0wt%であった。得られ
た石膏粉末は平均粒径約8.2μmであった。
[Example 1] Basicity (CaO / SiO2) collected from the site
2 ) Table 1 shows the chemical composition (wt%) of the converter slag of No. 5). This converter slag was crushed and sized to 500 μm under to prepare 200 g of slag particles. Also, sulfuric acid is 10
The concentration was adjusted so as to be N, and 1500 cc was prepared. The experimental flow is shown in FIG. Sulfuric acid in water bath at 80 ℃
After the temperature was adjusted to 1, the slag particles were added while stirring with a Teflon stirrer, and stirring was continued for 3 hours. The sulfuric acid solution turned greenish white. Suction filtration was performed with an aspirator. Filtration was completed in about several minutes, the filtrate became pale green, and a white powder was obtained as a filtered product. This powder was washed with water, dried at 40 ° C. for 72 hours using a dryer, and then subjected to X-ray diffraction and chemical quantitative analysis. As a result, all peaks are C in X-ray diffraction.
It was aSO 4 .2H 2 O, and it was found that gypsum was produced. As a result of chemical quantitative analysis, CaSO 4 · 2
H 2 O component is 95.2 wt%, SiO 2 component is 2.8 w
At t%, the total of other components was 2.0 wt%. The gypsum powder obtained had an average particle size of about 8.2 μm.

【0014】[実施例2]現場より採取した塩基度約
3.5の転炉スラグの化学組成(wt%)を表2に示
す。この転炉スラグを実施例1と全く同じ条件で実験を
行った。その結果、実施例1と同様な白色粉末を得るこ
とができ、同様にX線回折、化学定量分析を行った。そ
の結果、X線回折のピークは全てCaSO4 ・2H2
であり、石膏が生成していることがわかったまた、化学
定量分析の結果、CaSO4 ・2H2 O成分が94.3
wt%、SiO2 成分が3.6wt%で、他成分の合計
は2.1wt%であった。得られた石膏粉末は平均粒径
約9.2μmであった。
Example 2 Table 2 shows the chemical composition (wt%) of a converter slag having a basicity of about 3.5, which was collected from the site. This converter slag was tested under exactly the same conditions as in Example 1. As a result, a white powder similar to that in Example 1 could be obtained, and similarly subjected to X-ray diffraction and chemical quantitative analysis. As a result, all X-ray diffraction peaks were CaSO 4 .2H 2 O.
It was found that gypsum was produced. As a result of the chemical quantitative analysis, the CaSO 4 .2H 2 O component was 94.3.
wt%, SiO 2 component was 3.6 wt%, and the total of other components was 2.1 wt%. The gypsum powder obtained had an average particle size of about 9.2 μm.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明により、製鋼スラグを硫酸と反応
させることにより、スラグの主成分であるCaOをCa
SO4 ・2H2 Oに改質することができ、純度90%以
上の石膏粉末が得られた。この改質反応は、塩基度に関
係なくCaOをCaSO4 ・2H2 Oに改質できること
から、従来のように遊離酸化カルシウムのために再利用
が抑制されることもなく、むしろ高塩基度の方が石膏生
産量が増加する。従って、製鋼スラグの再利用率を顕著
に向上できる。また、本発明の改質反応は、製鋼スラグ
のみならずCaO成分が含まれる全ての鉄鋼スラグ、例
えば、高炉スラグやステンレススラグ等へも適用でき
る。
According to the present invention, by reacting steelmaking slag with sulfuric acid, CaO, which is the main component of the slag, is reduced to Ca.
Gypsum powder having a purity of 90% or more was obtained which could be modified to SO 4 .2H 2 O. In this reforming reaction, CaO can be reformed to CaSO 4 .2H 2 O regardless of the basicity, so that the reuse is not suppressed due to the free calcium oxide as in the conventional case, but rather the high basicity is achieved. The gypsum production will increase. Therefore, the reuse rate of the steelmaking slag can be significantly improved. Further, the reforming reaction of the present invention can be applied not only to steelmaking slag but also to all steel slags containing CaO components, such as blast furnace slag and stainless slag.

【0018】本発明の改質プロセスにおけるスラグ粒
度、硫酸濃度、温度スラグと硫酸の接触のさせ方等の改
質条件は特に限定されるものではなく、石膏に改質でき
る範囲で制御すればよい。
In the reforming process of the present invention, the reforming conditions such as the slag particle size, the sulfuric acid concentration, and the method of contacting the temperature slag with sulfuric acid are not particularly limited, and may be controlled within the range that can be reformed to gypsum. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の実験フローシートである。FIG. 1 is an experimental flow sheet of an example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄鋼スラグを硫酸溶液と反応させて石膏
を生成させた後、硫酸溶液と分離、乾燥して石膏粉末を
得ることを特徴とする鉄鋼スラグの改質方法。
1. A method for reforming steel slag, which comprises reacting steel slag with a sulfuric acid solution to produce gypsum, separating the gypsum from the sulfuric acid solution and drying the gypsum powder.
JP5324701A 1993-12-22 1993-12-22 Method for reforming steel slag Pending JPH07172882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5324701A JPH07172882A (en) 1993-12-22 1993-12-22 Method for reforming steel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5324701A JPH07172882A (en) 1993-12-22 1993-12-22 Method for reforming steel slag

Publications (1)

Publication Number Publication Date
JPH07172882A true JPH07172882A (en) 1995-07-11

Family

ID=18168754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5324701A Pending JPH07172882A (en) 1993-12-22 1993-12-22 Method for reforming steel slag

Country Status (1)

Country Link
JP (1) JPH07172882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199789A (en) * 2015-04-10 2016-12-01 新日鐵住金株式会社 Acid treatment method for steel slag
KR20210073082A (en) * 2019-12-10 2021-06-18 주식회사 포스코 Neutralized gypsum composition for cement, method for producing the neutralized gypsum for cement, and cement comprising the neutralized gypsum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199789A (en) * 2015-04-10 2016-12-01 新日鐵住金株式会社 Acid treatment method for steel slag
KR20210073082A (en) * 2019-12-10 2021-06-18 주식회사 포스코 Neutralized gypsum composition for cement, method for producing the neutralized gypsum for cement, and cement comprising the neutralized gypsum

Similar Documents

Publication Publication Date Title
JP2003306359A (en) Cement composition and hydrated hardened body
JP2001259570A (en) Treatment technique for stabilizing industrial waste containing fluorine
TWI682916B (en) Method of manufacturing binder material, cured mortar and cured mortar forming by thereof
CN113831033A (en) Desulfurized fly ash-steel slag composite gelled composition and desulfurized fly ash-steel slag composite gelled material
JP4865976B2 (en) Method for oxidizing steel slag and LD slag obtained thereby
JPH07172882A (en) Method for reforming steel slag
JP3091177B2 (en) Steelmaking reduction slag reforming method
JP2835467B2 (en) Method for producing alumina cement from electric furnace slag
US4398956A (en) Process for treating moist compositions containing pollution-causing substances
KR102530614B1 (en) Manufacturing method of gypsum by using biosulfur and oxidation reaction and uses of the gypsum
TWI675813B (en) Method of resourceful disposal for stabilizing materials with the property of expansion
JP7527651B2 (en) Deodorant and its manufacturing method
JPS6219798B2 (en)
JPS6158239B2 (en)
TW201341340A (en) Far-infrared emitting material and method of making the same
JPH07178394A (en) Treatment of spent acid
JPH09286611A (en) Production of high purity silica for sealing material
KR100874739B1 (en) Method for manufacturing iron sulfate and gypsum using deoiled dust
JPS5832680A (en) Method of strengthening water-containing soft ground by use of blast furnace slag modified with sulfuric acid
US4276269A (en) Process of hydrometallurgical treatment for eliminating impurities from a solution containing dissolved metals
KR100328065B1 (en) Stabilization method of converter slag
US321093A (en) Neutral sizing material for paper-makers use
US351211A (en) Conrad semper
JPH07188657A (en) Material and method for soil improvement
IE46818B1 (en) Process of hydrometallurgical treatment for eliminating impurities from a solution containing dissolved metals

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021217