JPH07170973A - Selective recovery of microorganism - Google Patents

Selective recovery of microorganism

Info

Publication number
JPH07170973A
JPH07170973A JP31658193A JP31658193A JPH07170973A JP H07170973 A JPH07170973 A JP H07170973A JP 31658193 A JP31658193 A JP 31658193A JP 31658193 A JP31658193 A JP 31658193A JP H07170973 A JPH07170973 A JP H07170973A
Authority
JP
Japan
Prior art keywords
microorganisms
sample
selecting
filter
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31658193A
Other languages
Japanese (ja)
Other versions
JP3548211B2 (en
Inventor
Akira Kuriyama
朗 栗山
Tetsuya Yano
哲哉 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31658193A priority Critical patent/JP3548211B2/en
Priority to EP19940308364 priority patent/EP0653492B1/en
Priority to DE1994626008 priority patent/DE69426008T2/en
Publication of JPH07170973A publication Critical patent/JPH07170973A/en
Application granted granted Critical
Publication of JP3548211B2 publication Critical patent/JP3548211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To enable microorganisms living in soil, activated sludge, bottom mud to be selected and collected by fractionating and recovering the microorganisms according to their respective desities by the specific gravity ingredient centrifugation. CONSTITUTION:A suspension of soil, activated sludge or bottom mud is fed in on the uppermost part of the ultracentrifugation tube in which aqueous solutions of specific gravity changed stopwise or gradiently are piled up, to undergo centrifugal treatment. According to the specific gravity of the microorganism in the suspension, bands A, B, C or precipitation D are formed and the microorganisms separated in the target bands are selectively collected. The ingredient for specific gravity is adjusted by dissolving solutes such as sucrose, cesium chloride, Ficoll, etc., in various concentrations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数種の微生物を比重
勾配遠心により選別回収する方法に関する。また、本発
明は液相での電気泳動を利用して複数種の微生物を選別
回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selecting and collecting a plurality of types of microorganisms by gravity gradient centrifugation. The present invention also relates to a method for selectively collecting and recovering a plurality of types of microorganisms by utilizing liquid phase electrophoresis.

【0002】[0002]

【従来の技術】近年、遺伝子工学の発展と共に、従来の
化学的な方法とは異なる、微生物や酵素を使った有用物
質の生産や有害物質の分解の可能性が盛んに検討される
ようになってきた。また、既存の化学工学的な生産の長
所を保ちつつ遺伝子工学的な生産を行うために、高温・
低温・高アルカリ・高水圧といった特殊な環境の中で生
息し活動する微生物の研究も盛んになってきた。
2. Description of the Related Art In recent years, with the development of genetic engineering, the possibility of producing useful substances using microorganisms and enzymes and decomposing harmful substances, which is different from conventional chemical methods, has been actively investigated. Came. In addition, in order to carry out genetic engineering production while maintaining the advantages of existing chemical engineering production,
Research on microorganisms that inhabit and operate in special environments such as low temperature, high alkali, and high water pressure has also become popular.

【0003】土壌や下水・廃水処理槽の活性汚泥や川・
湖・海の底泥にはこのような有用な機能を有するが未だ
単離されていない微生物が多数棲息していると考えられ
ており、そのような微生物を単離し、その機能に関する
情報が書き込まれたDNAを抽出する技術が、遺伝子工
学の基礎的な研究のみならず、応用技術分野の更なる発
展に大変重要になってきた。
Activated sludge and rivers in soil, sewage and wastewater treatment tanks
It is considered that a large number of microorganisms that have such useful functions but have not yet been isolated inhabit the bottom mud of lakes and seas.Isolate such microorganisms and write information about their functions. The technology for extracting the obtained DNA has become very important not only for the basic research of genetic engineering but also for the further development of the applied technology field.

【0004】現在主に用いられている土壌などからの微
生物の獲得方法は、土壌等のサンプルの懸濁液を調製
し、それを必要に応じて希釈した後、目的とする微生物
の単離に合った成分を含む寒天培地上に塗布し、目的微
生物の増殖に合った環境に培地を数日間静置して培養
し、増殖してきた微生物のコロニーを選抜して、さらに
集積培養して濃度を高めてから遠心などで沈澱させて回
収する方法である。
The method of obtaining microorganisms from soil or the like, which is mainly used at present, is to prepare a suspension of a sample of soil or the like, dilute it as needed, and then isolate the desired microorganism. Apply on an agar medium containing the matched components, leave the medium for a few days in an environment suitable for the growth of the target microorganism and culture it, select the colonies of the grown microorganisms, and further accumulate culture to determine the concentration. This is a method in which the product is raised and then precipitated by centrifugation or the like and collected.

【0005】しかし、土壌中などに棲息する多種多様な
微生物のほとんどについてはその分離培養条件さえ不明
で、上述の方法で調製された懸濁液中の微生物の99〜
99.9%については、それらを寒天培地上で増殖させ
分離することは困難であると言われている。このため、
サンプルの懸濁液の中にいくら有用な微生物がいたとし
ても大部分は回収不可能である。また、比較的培養条件
を推定し易い廃水処理槽内の活性汚泥にしても、実際の
槽内の条件と実験室の培地内の条件の微妙な差のため
に、微生物種の比率が変わってしまう可能性が高く、活
性汚泥内の優先種を培地内の優先種として回収できない
可能性がある。
However, most of a wide variety of microorganisms living in soil or the like are not known even in the conditions for their separation and culturing, and 99 to 100% of the microorganisms in the suspension prepared by the above-mentioned method can be obtained.
For 99.9%, it is said that it is difficult to grow and separate them on an agar medium. For this reason,
Most useful microorganisms in the sample suspension are not recoverable. In addition, even if activated sludge in a wastewater treatment tank that is relatively easy to estimate culture conditions, the ratio of microbial species is changed due to a subtle difference between the actual conditions inside the tank and the conditions inside the laboratory medium. There is a high possibility that the priority species in activated sludge cannot be recovered as the priority species in the medium.

【0006】[0006]

【発明が解決しようとする課題】以上のべたような観点
から、土壌・活性汚泥・底泥などの懸濁液から直接微生
物を分離し回収できる方法が必要とされてきている。
From the above-mentioned viewpoints, there is a need for a method for directly separating and recovering microorganisms from a suspension of soil, activated sludge, bottom mud and the like.

【0007】しかし、上記の従来法で得た懸濁液は、微
生物以外の様々な固形物を含有しており、その多くは、
通常のろ過や遠心沈澱などの方法を単に用いただけで
は、微生物と分離することが困難なものである場合が多
い。このような固形物が混入した試料からの微生物の分
離には、微妙な遠心条件の設定や孔径の異なる数種の濾
紙による濾過を繰返すなどの煩雑で労力のかかる操作が
必要となる。更に、微生物が粒子状の固形物に付着して
棲息している場合、それをそのままろ過や遠心にかけて
微生物を分離することは極めて困難であるので、濾過や
遠心分離の前処理としてブレンダーやホモジナイザーで
攪拌して微生物の固形物からの剥離を試みる必要があ
り、処理工程は更に複雑なものとなってしまう。
However, the suspension obtained by the above-mentioned conventional method contains various solid substances other than microorganisms, and most of them are
In many cases, it is difficult to separate the microorganisms from the microorganisms simply by using a method such as ordinary filtration or centrifugal precipitation. Separation of microorganisms from a sample mixed with such a solid substance requires complicated and labor-intensive operations such as setting delicate centrifugal conditions and repeating filtration with several kinds of filter papers having different pore sizes. Furthermore, when microorganisms adhere to particulate solids and live, it is extremely difficult to separate the microorganisms by filtering or centrifuging it as it is. It is necessary to agitate to try to separate the microorganisms from the solid matter, which further complicates the treatment process.

【0008】一方、回収した微生物からのDNAの取得
において、得られたDNAの質や純度がその後の酵素消
化、PCR、ハイブリダイゼーションといった処理にと
って大変重要な要素となってくる。しかし、微小粒子や
固定化担体には腐植のような有機物などが微生物と同様
多量に含まれており、微生物と微小粒子や固定化担体の
分離が不十分だと、これらの有機物が微生物と共に回収
される。従って、このようなDNA等の核酸の回収微生
物からの取得においても、微生物とその他の不用な物質
とを分離することが重要である。さらに、上記のような
遠心や濾過の技術を駆使して微生物と他の不用な物質と
分離できた場合でも、多種類の微生物が混合された状態
で目的とする微生物が取得されると、例えば、得られた
微生物試料からDNAを抽出してPCR増幅を行って、
ハイブリダイゼーション法で目的の微生物からのDNA
の検出を行う場合、目的の微生物以外のDNAも増幅さ
れて混入するので、正確な分析結果が得られにくくなる
という問題がある。このような問題は、寒天培地等を用
いた目的の微生物のスクリーンングのための培養を行う
ことで解決できる。しかしながら、上述のような微生物
が寒天培地等の培地では増殖しないものである場合に
は、このようなスクリーニングによる他の微生物との分
離は不可能であり、またその増殖が遅いものである場合
にはスクリーニングに時間がかかり効率的とはいえな
い。
On the other hand, in obtaining DNA from the collected microorganisms, the quality and purity of the obtained DNA are very important factors for the subsequent treatments such as enzymatic digestion, PCR and hybridization. However, microparticles and immobilization carriers contain a large amount of organic substances such as humus as well as microorganisms, and if the microparticles and microparticles or immobilization carrier are not sufficiently separated, these organic substances will be collected together with the microbes. To be done. Therefore, it is important to separate the microorganism from other unnecessary substances even when the nucleic acid such as DNA is collected from the microorganism. Furthermore, even when the microorganisms and other unnecessary substances can be separated by making full use of the above-mentioned centrifugation and filtration techniques, when the desired microorganisms are obtained in a mixed state of many kinds of microorganisms, for example, , DNA is extracted from the obtained microorganism sample, PCR amplification is performed,
DNA from the target microorganism by the hybridization method
In the case of detecting (1), since DNA other than the target microorganism is also amplified and mixed, there is a problem that it becomes difficult to obtain an accurate analysis result. Such a problem can be solved by culturing for screening the target microorganism using an agar medium or the like. However, when the above-mentioned microorganism is one that does not grow in a medium such as agar medium, it is impossible to separate it from other microorganisms by such screening, and when the growth is slow. Is time consuming to screen and is not efficient.

【0009】従って、土壌、活性汚泥、河川等の底泥な
どの種々の場所から直接微生物を分離回収し、そのDN
Aの情報を調べるためには、目的とする微生物を純度高
く、すなわちできるだけ単一株に近い状態で、しかも簡
便に回収できる方法の確立が求められている。
Therefore, microorganisms are directly separated and recovered from various places such as soil, activated sludge, bottom mud of rivers, etc.
In order to investigate the information of A, it is required to establish a method for collecting the target microorganism with high purity, that is, in a state as close to a single strain as possible, and easily.

【0010】本発明の目的は、土壌、活性汚泥、底泥な
どの多種多用な固形物を含む系等からそこに棲息する微
生物を選別回収するための方法を提供することにある。
An object of the present invention is to provide a method for selectively collecting and recovering microorganisms inhabiting from a system containing various solid substances such as soil, activated sludge and bottom sludge.

【0011】[0011]

【課題を解決するための手段】本発明の微生物の選別回
収方法には、比重勾配遠心法による方法と、直流電圧に
より微生物を液相中を移動させる電気泳動による方法と
が含まれる。以下、これらの方法のそれぞれについて詳
述する。
The method for selecting and recovering microorganisms of the present invention includes a method by specific gravity gradient centrifugation and an electrophoresis method by which microorganisms are moved in a liquid phase by a DC voltage. Hereinafter, each of these methods will be described in detail.

【0012】比重勾配遠心法による方法は、微生物の比
重が種類によって異なることに着目し、複数の微生物が
混在した高濃度懸濁液を比重1以上の所定の範囲内での
比重勾配を持った溶液の上に重層した後遠心分離操作を
行い、目的の比重の部分に集まった微生物のみを回収す
ることによって、目的とする微生物を選別回収できると
いう本発明者らの新たな知見に基づいてなされたもので
ある。
In the method using the specific gravity gradient centrifugation, paying attention to the fact that the specific gravity of microorganisms varies depending on the type, a high-concentration suspension in which a plurality of microorganisms are mixed has a specific gravity gradient within a predetermined range of 1 or more. Centrifugation operation after overlaying on the solution, by collecting only the microorganisms collected in the portion of the specific gravity of interest, it was made based on the new knowledge of the present inventors that the target microorganisms can be selectively collected It is a thing.

【0013】この比重勾配遠心法を用いる方法は、試料
中に混在する複数の微生物を選別する方法において、比
重勾配遠心により各微生物を比重に応じて分画し、回収
することを特徴とする。
The method using the specific gravity gradient centrifugation method is a method for selecting a plurality of microorganisms mixed in a sample, and is characterized in that each microorganism is fractionated by specific gravity gradient centrifugation and collected.

【0014】従来においては、微生物混合液を適当に希
釈して寒天培地上に塗布しコロニーを形成させるまで数
日から数週間必要である、またコロニーを形成しない微
生物の分離回収は不可能である、という不都合があっ
た。これに対して、本発明の方法では、比重勾配遠心を
用いて直接微生物の選別が可能であり、長時間の寒天培
地での培養を省略でき、また寒天培地で増殖しない微生
物の選別も可能となる。
Conventionally, it takes several days to several weeks until a mixture of microorganisms is appropriately diluted and applied on an agar medium to form colonies, and it is impossible to separate and collect microorganisms that do not form colonies. There was an inconvenience. On the other hand, in the method of the present invention, it is possible to directly select the microorganisms by using the specific gravity gradient centrifugation, it is possible to omit the culture for a long time on the agar medium, and it is also possible to select the microorganisms that do not grow on the agar medium. Become.

【0015】この方法における微生物の分離対象として
は、複数の微生物が混在している系、例えば、土壌、下
水・廃水処理槽の活性汚泥、川・湖・海などの底泥、動
物の消化管の内容物等を挙げることができる。
The microorganisms to be separated in this method are systems in which a plurality of microorganisms are mixed, such as soil, activated sludge in sewage / wastewater treatment tanks, bottom mud in rivers / lakes / sea, digestive tracts of animals, etc. The contents, etc. can be mentioned.

【0016】これらの場所からサンプリングした試料を
適当な溶液に懸濁し、て比重勾配遠心で処理することで
本発明の微生物の選別回収方法を行うことができる。な
お、試料懸濁液の調製においては、不用な固形分等を濾
過や遠心等の各種分離法によって除去する前処理を必要
に応じて行うことができる。
The microorganisms of the present invention can be selected and recovered by suspending the samples sampled from these locations in an appropriate solution and subjecting them to specific gravity gradient centrifugation. In addition, in the preparation of the sample suspension, a pretreatment for removing unnecessary solids and the like by various separation methods such as filtration and centrifugation can be performed as necessary.

【0017】比重勾配は、例えば、溶液に溶質を種々の
濃度で添加して得た異なる比重の高密度水溶液を遠心管
等の中に重層することで形成できる。比重の勾配は、遠
心の際に遠心力のかかる方向に段階的に変化するもので
も連続的に変化するものであってもよい。
The specific gravity gradient can be formed, for example, by stacking high-density aqueous solutions having different specific gravities obtained by adding solutes at various concentrations to a solution in a centrifuge tube or the like. The gradient of the specific gravity may change stepwise in the direction in which centrifugal force is applied during centrifugation, or may change continuously.

【0018】この時用いられる溶質としては、DNAの
比重遠心分離などで用いられる、ショ糖、塩化セシウ
ム、硫酸セシウム、エトリザマイド、フィコールなどが
利用でき、水に大量に溶解し1.1から1.5程度の比
重になる物が望ましい。これらは2種以上を組み合わせ
て用いてもよい。
As the solute used at this time, sucrose, cesium chloride, cesium sulfate, etryzamide, ficoll, etc., which are used in centrifuge centrifugation of DNA and the like can be used, and are dissolved in water in a large amount from 1.1 to 1. A material having a specific gravity of about 5 is desirable. You may use these in combination of 2 or more types.

【0019】段階的比重勾配を作成する場合は、比重は
1.1から1.5の間で適当な比重の水溶液を数種類用
意して、重い物から順にお互いに混じって均一化しない
ように注意しながら遠心管に重層していけばよい。ま
た、連続比重勾配の作成には、例えば、市販のグラジェ
ントメーカーがそのまま使用できる。すなわち、比重
1.1と1.5の水溶液をタンパク質の電気泳動用グラ
ジェントゲルを作成する際に使われる市販のグラジェン
トメーカーの2本の円筒にそれぞれ入れて、スターラー
等で攪拌しながらポンプで遠心管に充填してゆけばよ
い。このメーカーによれば、遠心管中に最初に比重1.
5のものが入り、次に2つの溶液の混合比によって連続
的に比重が変化して最後に比重1.1のものが入るよう
になる。
When preparing a stepwise specific gravity gradient, prepare several kinds of aqueous solutions having an appropriate specific gravity between 1.1 and 1.5, and be careful not to mix them in order from the heaviest one to make them uniform. While stacking on the centrifuge tube. In addition, for example, a commercially available gradient maker can be used as it is to create the continuous specific gravity gradient. That is, put the aqueous solutions with specific gravities of 1.1 and 1.5 into two cylinders of a commercially available gradient maker used when preparing a gradient gel for protein electrophoresis, and pump with stirring with a stirrer or the like. Fill the centrifuge tube with. According to this manufacturer, the specific gravity of 1.
No. 5, then the specific gravity continuously changes depending on the mixing ratio of the two solutions, and finally one with a specific gravity of 1.1 comes in.

【0020】サンプルの懸濁液を比重勾配の最上層の上
にのせ、遠心をかけることで比重勾配遠心をおこなうこ
とができる。
Specific gravity gradient centrifugation can be performed by placing the suspension of the sample on the uppermost layer of the specific gravity gradient and centrifuging.

【0021】遠心機での遠心条件は、目的の微生物が一
層に集まるために必要な遠心時間と回転数が選択され、
例えば1〜2時間数万回転程度の遠心条件が利用でき
る。なお、この遠心条件やどの層に目的の微生物が集ま
るかは、あらかじめいくつかの条件で予備検討しておく
と良い。遠心後、予備検討の結果に基づいて、目的の微
生物が層を作っている部分のみをピペットなどで回収
し、体積比で10倍程度の蒸留水に希釈させて比重を低
下させた後、再度10分程度遠心すれば目的の微生物が
回収できる。
The centrifugation conditions in the centrifuge are selected such that the centrifugation time and the number of revolutions required for collecting the desired microorganisms further increase,
For example, centrifugation conditions of several tens of thousands of rotations for 1 to 2 hours can be used. In addition, it is advisable to preliminarily examine the centrifugation conditions and in which layer the target microorganisms are collected under some conditions. After centrifugation, based on the results of the preliminary examination, only the portion where the target microorganisms are forming a layer is collected with a pipette or the like, diluted with distilled water at a volume ratio of about 10 times to reduce the specific gravity, and then again. The target microorganism can be recovered by centrifugation for about 10 minutes.

【0022】一方、電気泳動による微生物の選別回収方
法は、一対の電極から微生物を移動させるための直流電
圧を印加し得る液相内に、試料が添加される試料領域
と、該試料領域の前記微生物の移動方向に微生物選別用
の第1のフィルターを介して連通し、かつ微生物を誘引
する電極側に微生物物捕獲用の第2のフィルターを有す
る回収領域とを設け、前記試料領域に複数種の微生物が
混在する試料を分散させた状態で、前記一対の電極から
直流電圧を前記液相内に印加し、前記第1のフィルター
を通過できる微生物を前記試料領域から前記前記回収領
域に移動させた後、前記試料領域に残された微生物また
は前記回収領域に移動した微生物を回収することを特徴
とする。
On the other hand, in the method of selecting and recovering microorganisms by electrophoresis, a sample region to which a sample is added and a sample region of the sample region are added in a liquid phase to which a DC voltage for moving the microorganisms can be applied from a pair of electrodes. A collection area is provided which communicates with the moving direction of the microorganisms through a first filter for selecting microorganisms, and a recovery area having a second filter for capturing microorganisms is provided on the electrode side for attracting the microorganisms, and a plurality of kinds are provided in the sample area. In a state in which the sample in which the microorganisms are mixed is dispersed, a DC voltage is applied from the pair of electrodes into the liquid phase, and the microorganisms that can pass through the first filter are moved from the sample area to the recovery area. After that, the microorganisms left in the sample area or the microorganisms moved to the recovery area are recovered.

【0023】この電気泳動による方法は、微生物の表面
が荷電しているため、微生物が浮遊している懸濁液に電
極を挿入して電圧をかけると、どちらかの極に移動する
という特性があること、及び微生物の大きさが種類によ
って異なることに着目し、微生物の移動経路中に微生物
を選別するためのフィルターを設け、該フィルターの孔
径に応じて該フィルターを通過した微生物をその大きさ
によって選別し、回収する方法である。
Since the surface of the microorganism is charged in this method by electrophoresis, when the electrode is inserted into the suspension liquid in which the microorganism is suspended and a voltage is applied, it moves to either pole. Focusing on the fact that the size of the microorganisms differs depending on the type, a filter for selecting the microorganisms is provided in the migration path of the microorganisms, and the size of the microorganisms that have passed through the filter is determined according to the pore size of the filter. It is a method of selecting and collecting by.

【0024】この方法によれば、先の比重勾配を利用す
る方法と同様に、従来における長時間の寒天培地での培
養が省略でき、また寒天培地上でコロニーを形成しない
微生物の分離回収も可能となる。
[0024] According to this method, the culture for a long time in the conventional method can be omitted, and the microorganisms that do not form colonies on the agar medium can be separated and recovered, as in the method using the specific gravity gradient. Becomes

【0025】以下図面を参照しつつこの電気泳動を利用
する方法の一例について説明する。
An example of a method of utilizing this electrophoresis will be described below with reference to the drawings.

【0026】図1は、本発明の微生物選別用装置の一例
の要部を示す断面図である。この装置は直流電圧印加用
の一対の電極2、3を設けた水槽(泳動槽)1の内部
に、微生物選別用の第1のフィルター4で仕切られた試
料領域(試料懸濁液領域)6と回収領域7とが設けられ
た構造を有する。試料領域6と回収領域7は第1のフィ
ルターを介して連通しており、電極2、3に直流電圧が
印加された際に移動する微生物の移動方向(電極2から
3への方向)に配置されている。なお、図1の場合は、
電極3が微生物を誘引する電極であるが、電極2方向に
移動する微生物がある場合には、電極2側にも微生物選
別用のフィルターを介した第2の回収領域を設けても良
い。
FIG. 1 is a sectional view showing a main part of an example of the apparatus for selecting microorganisms according to the present invention. This device has a sample area (sample suspension area) 6 partitioned by a first filter 4 for selecting microorganisms inside a water tank (electrophoresis tank) 1 provided with a pair of electrodes 2 and 3 for applying a DC voltage. And a recovery area 7 are provided. The sample area 6 and the recovery area 7 are in communication with each other through the first filter, and are arranged in the moving direction of the microorganisms that move when a DC voltage is applied to the electrodes 2 and 3 (direction from the electrodes 2 to 3). Has been done. In addition, in the case of FIG.
Although the electrode 3 is an electrode that attracts microorganisms, if there are microorganisms that move in the direction of the electrode 2, a second recovery region via a filter for microorganism selection may be provided on the electrode 2 side as well.

【0027】第1のフィルター4は、回収領域で回収す
べき目的微生物が通過でき、それよりも大きな微生物や
土壌粒子といった大型の不純物が通過できない孔径を有
するように設定される。第2のフィルターは、回収領域
7内に移動した微生物を該領域内に捕獲するためのもの
で、微生物が通過できないが、電解液や微小粒子等の微
小な不純物などが通過できるものである。また、フィル
ター8もまた微生物が通過できないが電解液等が通過で
きるものであり、電極2の配置領域9と試料領域6とを
仕切っている。図1の構成において、水槽1の区分され
た各領域はフィルターのみで連通する。
The first filter 4 is set to have a pore size that allows the target microorganisms to be recovered in the recovery area to pass therethrough, but does not allow larger impurities such as larger microorganisms and soil particles to pass through. The second filter is for capturing the microorganisms that have moved into the collection area 7 in the area and cannot pass the microorganisms, but can pass the electrolyte and minute impurities such as fine particles. Further, the filter 8 is also a filter which can prevent the passage of microorganisms but allows the passage of the electrolytic solution and the like, and separates the arrangement region 9 of the electrode 2 and the sample region 6. In the configuration of FIG. 1, each divided area of the water tank 1 communicates only with a filter.

【0028】第1のフィルター4は目的とする微生物の
通過が可能な孔径を有するもので、ニトロセルロースの
ような水に浸しても形状を維持し、かつ電解質水溶液が
しみ込むと電気の良導体になる物が利用され、例えば市
販の0.2μm以上の孔径の物の中から適宜選択して用
いることができる。また、電極2、3側に設けられたフ
ィルター5、8としては、微生物サイズの物は通さない
0.2μm未満の孔径のものや半透膜やアガロースなど
のゲルの薄膜が適している。また、フィルター8は試料
が電極2側の領域9の電解液と混合するのを防ぐための
ものなので、かかる目的を達成できる普通の濾紙やグラ
スファイバー濾紙でもよい。
The first filter 4 has a pore size that allows passage of desired microorganisms, maintains its shape even when immersed in water such as nitrocellulose, and becomes a good conductor of electricity when impregnated with an aqueous electrolyte solution. For example, a commercially available product having a pore size of 0.2 μm or more can be appropriately selected and used. Further, as the filters 5 and 8 provided on the electrodes 2 and 3, those having a pore size of less than 0.2 μm and gel thin films such as semipermeable membranes and agarose that do not allow passage of microorganism-sized substances are suitable. Further, since the filter 8 is for preventing the sample from mixing with the electrolytic solution in the region 9 on the side of the electrode 2, it may be an ordinary filter paper or a glass fiber filter paper which can achieve such an object.

【0029】第1のフィルター4と第2のフィルター5
の間隔は余り長いと分離効率が低下するため、接触しな
い限り短いほど良く、例えば0.5〜1cm程度とされ
る。
First filter 4 and second filter 5
If the distance is too long, the separation efficiency decreases, so the shorter the distance, the better as long as there is no contact, for example, about 0.5 to 1 cm.

【0030】本発明の微生物選別用装置においては、回
収領域を更に1以上のフィルターで2以上の区画に区分
し、より細かな微生物の大きさに応じた選別を行うこと
ができる。図2(a)に示す装置は、回収領域7を区分
用のフィルター10によって2つの区画7−1、7−2
に区分されているもので、区分用フィルター10は、第
1のフィルター4よりも小さな孔径のもので、回収領域
7に移動した微生物はこの区分用フィルター10によっ
て、その大きさに応じて2種に選別される。すなわち、
回収領域7−1に移動した微生物のうち区分用フィルタ
ー10よりも大きな微生物は回収領域7−1に残され、
区分用フィルター10を通過した微生物は回収領域7−
2に捕獲される。このように区分用フィルター10は第
1のフィルター4と同様に微生物をその大きさに応じて
選別する機能を有するもので、ニトロセルロースのよう
な水に浸しても形状を維持し、かつ電解質水溶液がしみ
込むと電気の良導体になる物が利用され、例えば市販の
0.2μm以上の孔径の物の中から適宜選択して用いる
ことができる。また、フィルター4、10及び5の間隔
もあまり大きいと分離効率が悪くなるので、なるべく小
さい方が良く、例えば0.5〜1cm程度とされる。な
お、図1、2の装置において、試料領域と回収領域を有
する部分をラックとして水槽1に着脱自在に設けても良
い。図2(b)は電気泳動用ラック11として構成した
場合の例を示す。
In the apparatus for selecting microorganisms of the present invention, the collection area can be further divided into two or more sections by one or more filters, and the selection according to the size of finer microorganisms can be performed. In the apparatus shown in FIG. 2A, the collection area 7 is divided into two sections 7-1 and 7-2 by a filter 10 for sectioning.
The classification filter 10 has a pore size smaller than that of the first filter 4, and the microorganisms that have moved to the recovery area 7 are classified into two types according to the size thereof. To be selected. That is,
Of the microorganisms that have moved to the collection area 7-1, microorganisms larger than the sorting filter 10 are left in the collection area 7-1.
Microorganisms that have passed through the sorting filter 10 are collected in the recovery area 7-
Captured by 2. As described above, the partitioning filter 10 has a function of selecting microorganisms according to their size, like the first filter 4, and maintains its shape even when immersed in water such as nitrocellulose, and has an electrolyte aqueous solution. A substance that becomes a good conductor of electricity when soaked is used, and for example, it can be appropriately selected and used from commercially available substances having a pore size of 0.2 μm or more. Further, if the spacing between the filters 4, 10 and 5 is too large, the separation efficiency will be poor, so it is better to be as small as possible, for example about 0.5 to 1 cm. In the apparatus of FIGS. 1 and 2, a portion having a sample area and a recovery area may be detachably provided in the water tank 1 as a rack. FIG. 2B shows an example of the case where the rack 11 for electrophoresis is configured.

【0031】次に、図2の構成の装置を用いた微生物の
選別回収方法の一例について以下に説明する。
Next, an example of a method for selecting and collecting microorganisms using the apparatus having the configuration shown in FIG. 2 will be described below.

【0032】先ず、試料領域6に、目的微生物を含む試
料を懸濁させる。試料としては、例えば複数の微生物群
が存在する水溶液または固形物が用いられ、具体的には
複数の微生物群が増殖している培地、土壌、活性汚泥、
底泥などの懸濁液、動物の消化管の内容物などが挙げら
れる。なお、試料懸濁液の調製においては、不用な固形
分等を濾過や遠心等の各種分離法によって除去する前処
理を必要に応じて行うことができる。
First, a sample containing the target microorganism is suspended in the sample area 6. As the sample, for example, an aqueous solution or a solid substance in which a plurality of microorganism groups are present is used, and specifically, a medium in which a plurality of microorganism groups are growing, soil, activated sludge,
Examples include suspensions such as bottom mud and the contents of the digestive tract of animals. In addition, in the preparation of the sample suspension, a pretreatment for removing unnecessary solids and the like by various separation methods such as filtration and centrifugation can be performed as necessary.

【0033】この試料を、DNAやタンパク質の電気泳
動で用いられる緩衝液のような電気を通す電解質の水溶
液に懸濁させるか、もともと懸濁液の場合は適当な電解
質を添加して電気を通す水溶液にして試料領域6に注入
する。あるいは、試料領域6に電解質の溶液を満たして
おいて、これに試料を添加して懸濁させてもよい。この
時用いられる電解質としては、pHを極端に低下させた
り上昇させたりして微生物を溶菌させたり失活させたり
する物はふさわしくない。
This sample is suspended in an aqueous solution of an electrolyte that conducts electricity such as a buffer solution used in electrophoresis of DNA or protein, or in the case of a suspension originally, an appropriate electrolyte is added to conduct electricity. It is made into an aqueous solution and injected into the sample region 6. Alternatively, the sample region 6 may be filled with an electrolyte solution, and the sample may be added to and suspended in the sample region 6. As an electrolyte used at this time, a substance that lyses or deactivates microorganisms by extremely lowering or raising pH is not suitable.

【0034】試料領域6に懸濁させる微生物の量は、1
4個/ml以下と少なすぎると回収の際の効率が悪く
なるが、逆に余り高すぎるとフィルターが目詰まりを起
してしまう。このため、フィルター1cm2あたり10
10個以下になるようにする方が望ましい。
The amount of microorganisms suspended in the sample area 6 is 1
If the amount is too small, such as 0 4 pieces / ml or less, the efficiency of collection will be poor, but if it is too high, the filter will be clogged. Therefore, 10 per cm 2 of filter
It is desirable that the number be 10 or less.

【0035】試料領域に試料が懸濁された電解液を満た
し、また水槽のその他の領域に電解質の溶液を満たした
状態で、目的とする微生物の選別回収が可能な条件で、
電極2、3から直流電圧を印加する。電圧は、例えば数
十〜数百ボルトの範囲から選択し、数時間印加する。こ
の時、電圧と時間の関係は反比例するが、電圧が極端に
高いと電圧と懸濁液の発熱のために微生物が死んでしま
ったり溶菌してしまったりするので、あらかじめ、何ボ
ルト程度まで微生物の活性が失われてしまわないかを予
備検討しておくと良い。また、マイナス荷電した土壌粒
子などの夾雑物が懸濁液中に大量に存在する場合には、
懸濁液を10分程度試料領域6で静置して夾雑物を沈澱
させた後、泳動を始めれば、フィルターの目詰りを防げ
る。泳動後、微生物は各フィルターに付着しているので
フィルターのマイナス電極側の面を丁寧にこすったり、
数分間逆電圧をかけたりして付着物を剥離した後に、回
収領域6に残された微生物、回収領域7−1、7−2に
移動した微生物のなかから目的とする微生物を回収す
る。
In a state where the sample area is filled with the electrolytic solution in which the sample is suspended, and the other area of the water tank is filled with the electrolyte solution, under the condition that the target microorganisms can be selectively collected.
A DC voltage is applied from the electrodes 2 and 3. The voltage is selected from the range of, for example, several tens to several hundreds of volts and is applied for several hours. At this time, the relationship between voltage and time is inversely proportional, but if the voltage is extremely high, the microorganisms will die or lyse due to the heat generated by the voltage and the suspension. It is advisable to preliminarily examine whether the activity of will be lost. If a large amount of negatively charged soil particles or other contaminants are present in the suspension,
If the suspension is allowed to stand in the sample area 6 for about 10 minutes to precipitate impurities and then electrophoresis is started, clogging of the filter can be prevented. After migration, the microorganisms are attached to each filter, so the surface of the negative electrode of the filter should be rubbed carefully,
After the reverse voltage is applied for several minutes to remove the deposits, the target microorganisms are recovered from the microorganisms left in the recovery area 6 and the microorganisms transferred to the recovery areas 7-1 and 7-2.

【0036】[0036]

【実施例】以下、実施例より本発明を説明する。 実施例1Escherichia coliを下記表1の組成の
LB液体培地に入れ37℃の恒温室内で1晩振とう培養
して増殖させた後、培養物を濃縮して乳白色の懸濁液を
作成した。これを図3ののように比重1.20、1.
25及び1.30と3段階の濃度のショ糖水溶液を重層
した容積5mlの超遠心用チューブの最上部に入れ、5
万rpm20℃で4時間遠心した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 Escherichia coli was placed in an LB liquid medium having the composition shown in Table 1 below and shake-cultured overnight in a temperature-controlled room at 37 ° C. for growth, and then the culture was concentrated to prepare a milky white suspension. As shown in FIG. 3, the specific gravity is 1.20, 1.
Put the sucrose aqueous solution having a concentration of 25 and 1.30 in three steps at the top of the ultracentrifuge tube having a volume of 5 ml.
It was centrifuged at 10,000 rpm at 20 ° C. for 4 hours.

【0037】その結果、図3ののように1.25と
1.30の境界のところにcoliの集積した乳白
色の懸濁した帯が生じた。
As a result, as shown in FIG. 3, E. A milky white suspended band of E. coli was formed.

【0038】[0038]

【表1】 実施例2 実施例1と同様にLB液体培地に37℃でBurkho
lderia cepacia KK01株(FERM
BP−4235)(以前はPseudomonas
に分類されていたもの)を培養した培養物を濃縮して得
た乳白色の懸濁液を実施例1と同様にショ糖比重勾配遠
心処理した。
[Table 1] Example 2 Burkho in LB liquid medium at 37 ° C. as in Example 1.
lderia cepacia KK01 strain (FERM
A milky white suspension obtained by concentrating a culture obtained by culturing BP-4235) (previously classified into the genus Pseudomonas ) was subjected to sucrose gradient gravity centrifugation in the same manner as in Example 1.

【0039】その結果、図3ののように1.20と
1.25の境界のところにcepacia KK0
1株の集積した乳白色の懸濁した帯が生じた。 実施例3 実施例1と同様にLB液体培地に37℃でMethyl
osinus trichosporiumを培養した
培養物を濃縮して得たオレンジ色の懸濁液を実施例1と
同様にショ糖比重勾配遠心処理した。
As a result, as shown in FIG. 3, B. cepacia KK0
A concentrated milky white suspended band of 1 strain resulted. Example 3 Methyl was added to LB liquid medium at 37 ° C. as in Example 1.
The orange suspension obtained by concentrating the culture obtained by culturing osinus trichosporium was subjected to sucrose specific gravity gradient centrifugation in the same manner as in Example 1.

【0040】その結果、図3ののように1.20の中
央付近にtrichosporiumの集積したオ
レンジ色の懸濁した帯が生じた。 実施例4 下記表2のPYG液体培地に37℃で2日間振とう培養
して増殖させたSaccharomyces cere
visiae(酵母)の培養物を濃縮して得た黄土色の
懸濁液を実施例1と同様にショ糖比重勾配遠心処理し
た。
As a result, as shown in FIG. 3, M. An orange suspension band accumulating trichosporium resulted. Example 4 Saccharomyces cere grown by shaking culture at 37 ° C. for 2 days in a PYG liquid medium shown in Table 2 below.
The ocher suspension obtained by concentrating the culture of visiae (yeast) was subjected to sucrose gravity gradient centrifugation in the same manner as in Example 1.

【0041】その結果、図3ののように遠心チューブ
の底部にcerevisiaeの黄土色の沈殿が生
じた。
As a result, as shown in FIG. 3, S. An ocher precipitate of cerevisiae formed.

【0042】[0042]

【表2】 実施例5coli(pUC19(宝酒造(株)社製に約1k
bpDNA断片をインサートしたものが導入されている
もの)、cepacia KK01株、tri
chosporium及びcerevisiae
それぞれを実施例1〜4に記載の各菌種用培地で培養
し、得られた培養物をそれぞれ濃縮して混合し、微生物
懸濁液を調製し、これを実施例1と同様にショ糖比重勾
配遠心処理した。その結果、図3ののように3つの懸
濁した帯A、B、Cと沈殿Dが生じた。
[Table 2] Example 5 E. coli (pUC19 (Takara Shuzo Co., Ltd. about 1k
(Introduced one into which a bp DNA fragment has been inserted), B. cepacia KK01 strain, M. tri
chosporium and S. cerevisiae was cultivated in each of the bacterial culture media described in Examples 1 to 4, and the obtained cultures were concentrated and mixed to prepare a microbial suspension, which was prepared in the same manner as in Example 1. Sucrose specific gravity gradient centrifugation was performed. As a result, three suspended zones A, B and C and a precipitate D were generated as shown in FIG.

【0043】次に、帯A、B、Cの部分をピペットで別
々に回収し、蒸留水でショ糖濃度を下げた後、遠心して
微生物を沈殿回収しサンプルA、B、Cとした。また、
上澄みのショ糖水溶液をすべて捨てた後、沈殿Dを蒸留
水に懸濁させ、再び遠心して微生物を沈殿回収し、サン
プルDとした。
Next, the zones A, B, and C were separately collected with a pipette, the sucrose concentration was reduced with distilled water, and the mixture was centrifuged to collect and collect microorganisms to obtain samples A, B, and C. Also,
After discarding all of the supernatant aqueous sucrose solution, the precipitate D was suspended in distilled water and centrifuged again to collect and collect the microorganism, which was designated as sample D.

【0044】各サンプルを容積1.5ccのマイクロチ
ューブにそれぞれ移し500μlの蒸留水に懸濁した
後、LB寒天培地に塗布して37℃の恒温室に放置し
た。
Each sample was transferred to a microtube having a volume of 1.5 cc, suspended in 500 μl of distilled water, applied to an LB agar medium, and left in a thermostatic chamber at 37 ° C.

【0045】その結果、サンプルAを塗布した寒天培地
には2日後trichosporiumと同じ形状
のオレンジ色のコロニーのみが形成され、それ以降放置
しても他のコロニーは形成されなかった。サンプルBを
塗布した寒天培地には2日後cepacia KK
01株と同じ形状の乳白色のコロニーのみが形成され、
それ以降放置しても他のコロニーは形成されなかった。
サンプルCを塗布した寒天培地には1日後coli
と同じ形状の乳白色のコロニーのみが形成され、それ以
降放置しても他のコロニーは形成されなかった。サンプ
ルDを塗布した寒天培地には5日後cerevis
iaeと同じ黄土色のコロニーのみが形成された。これ
らのことから、サンプルA〜Dはすべて単一の微生物か
らなるものであることが確かめられた。
As a result, the agar medium coated with the sample A had an M. Only orange-colored colonies with the same shape as trichosporium were formed, and other colonies were not formed even when left to stand thereafter. Two days later the sample B to the applied agar medium B. cepacia KK
Only milky white colonies with the same shape as the 01 strain are formed,
After that, no other colony was formed even if left standing.
For the agar medium coated with sample C, E. coli
Only a milky white colony of the same shape was formed, and other colonies were not formed even if it was left to stand thereafter. For the agar medium coated with sample D, S. cerevis
Only the same ocher colonies as iae were formed. From these, it was confirmed that Samples A to D were all composed of a single microorganism.

【0046】また、上記と同様の操作を繰返して、サン
プルA〜Dを調製し、更に、上記のプラスミドを有する
coliの菌体をサンプルEとした。各サンプルを
容積1.5ccのマイクロチューブにそれぞれ移し50
0μlの蒸留水に懸濁させた物に、10%SDS溶液を
10μl添加し70℃で1時間加熱し液中の微生物を溶
菌した。次に各液からフェノールクロロホルム溶液を使
ってDNAを抽出し、エタノールで沈殿させて回収し
た。このDNAを50μlの蒸留水に溶解させて微生物
DNA溶液A〜Eとした。
Further, the same operations as above are repeated to prepare samples A to D, which further contain the above-mentioned plasmid.
E. E. coli cells were used as sample E. Transfer each sample to a microtube with a volume of 1.5 cc.
10 μl of a 10% SDS solution was added to the product suspended in 0 μl of distilled water and heated at 70 ° C. for 1 hour to lyse the microorganisms in the solution. Next, DNA was extracted from each solution using a phenol-chloroform solution, precipitated with ethanol and collected. This DNA was dissolved in 50 μl of distilled water to obtain microbial DNA solutions A to E.

【0047】これらのDNA溶液を100倍に希釈した
後、これと上記のプラスミドとアニールして約1kbp
のDNA断片を増幅するプライマ(M13プライマM4
とM13プライマRV:共に宝酒造(株)製)、PCR
用の酵素などを表3の組成となるように混合した後、表
4の温度条件(〜の順の温度サイクル)でPCR増
幅を行った。増幅後、反応液をアガロースゲルで電気泳
動したところDNA溶液C及びEのみに約1kbpのD
NA断片が検出された。つまり、DNA溶液A〜Dの4
つの内でEと同じプラスミドを持つcoliがいる
のはサンプルCだけで、A、B、Dにはcoli
混入していないことが確かめられた。
These DNA solutions were diluted 100-fold and then annealed with this and the above plasmid to obtain about 1 kbp.
For amplifying the DNA fragment of M13 (M13 primer M4
And M13 primer RV: both Takara Shuzo Co., Ltd., PCR
After mixing the enzymes for use so as to have the composition shown in Table 3, PCR amplification was carried out under the temperature conditions shown in Table 4 (temperature cycles in the order of). After amplification, the reaction mixture was electrophoresed on an agarose gel, and only DNA solutions C and E had a D of about 1 kbp.
NA fragment was detected. That is, 4 of DNA solutions A to D
E., which has the same plasmid as E. E. coli is present only in sample C, and E. It was confirmed that E. coli was not mixed.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 実施例6coliを先に表1に示した組成のLB液体培地に
入れ37℃の恒温室内で1晩振とう培養して増殖させた
後濃縮し下記表5の組成の電気泳動用緩衝液20ccに
懸濁させて乳白色の懸濁液を作成した。この懸濁液を図
2(b)に示す電気泳動用ラック11の試料領域(懸濁
液領域)6に入れた。なお、本実施例では、下記の孔径
のニトロセルロース製メンブランフィルター(アドバン
テック東洋社製)を用いた。
[Table 4] Example 6 E. E. coli was placed in an LB liquid medium having the composition shown in Table 1 above, shake-cultured overnight in a constant temperature room at 37 ° C. to grow, then concentrated and suspended in 20 cc of the electrophoresis buffer solution having the composition shown in Table 5 below. Then, a milky white suspension was prepared. This suspension was put in the sample area (suspension area) 6 of the electrophoresis rack 11 shown in FIG. In this example, a nitrocellulose membrane filter (Advantech Toyo Co., Ltd.) having the following pore size was used.

【0050】第1のフィルター(4)・・・・5.0μm 区分用フィルター(10)・・0.8μm 第2のフィルター(5)・・・・0.2μm 電極2側フィルター(8)・・0.2μm 回収領域7−1、7−2に10ccの緩衝液をそれぞれ
注入し、あらかじめ約200ccの電気泳動用緩衝液を
入れた電気泳動槽1に図2(a)のようにこのラック1
1をセットして、200V(約50mA)の直流電圧
(電極2を−極、電極3を+極とした)をかけた。
First filter (4) ··· 5.0 μm Classification filter (10) ··· 0.8 μm Second filter (5) ··· 0.2 μm Electrode 2 side filter (8) · -0.2 μm 10 cc of buffer solution was injected into each of the collection areas 7-1 and 7-2, and the rack was placed in the electrophoresis tank 1 containing about 200 cc of electrophoresis buffer solution in advance as shown in FIG. 2 (a). 1
1 was set and a DC voltage of 200 V (about 50 mA) was applied (electrode 2 was a negative electrode and electrode 3 was a positive electrode).

【0051】1時間後にフィルター4、10、5の3枚
のフィルターのそれぞれ左側の面に付着した微生物を充
分掻き落とした後、試料領域6内のフィルター4よりの
位置の液10cc、回収領域7−1、7−2の緩衝液各
々約10ccを回収し遠心したところ、回収領域7−1
からのサンプルの遠心管底部に乳白色の沈殿物が認めら
れ、coliが回収領域7−1のみに集まっている
ことが確かめられた。
After 1 hour, the microorganisms adhering to the left side of each of the three filters 4, 10 and 5 were thoroughly scraped off, and then 10 cc of liquid at the position of the filter 4 in the sample area 6 and the recovery area 7 About 10 cc of each of the buffer solutions of -1, 7-2 were collected and centrifuged.
A milky white precipitate was observed at the bottom of the centrifuge tube of the sample from E. It was confirmed that the E. coli was collected only in the collection area 7-1.

【0052】[0052]

【表5】 実施例7 実施例6と同様に、LB液体培地に37℃でtri
chosporiumを培養した培養液を濃縮し、電気
泳動用緩衝液20ccに懸濁させてオレンジ色の懸濁液
を作成した。この懸濁液を実施例1と同様に電気泳動し
た。
[Table 5] Example 7 In the same manner as in Example 6, M. tri
The culture broth in which chosporium was cultivated was concentrated and suspended in 20 cc of the buffer for electrophoresis to prepare an orange suspension. This suspension was electrophoresed in the same manner as in Example 1.

【0053】1時間後に実施例1と同様に液を回収し遠
心したところ、回収領域7−2からのサンプルの遠心管
底部にオレンジ色の沈殿物が認められ、trich
osporiumが回収領域7−2のみに集まっている
ことが確かめられた。 実施例8 先に表2に示したPYG液体培地に37℃で2日間振と
う培養して増殖させたcerevisiae(酵
母)を濃縮し、表5の組成の電気泳動用緩衝液20cc
に懸濁させて黄土色の懸濁液を作成した。この懸濁液を
実施例6と同様に電気泳動した。
After 1 hour, the solution was recovered and centrifuged in the same manner as in Example 1. As a result, an orange precipitate was observed at the bottom of the centrifuge tube of the sample from the recovery area 7-2, and M. trich
It was confirmed that osporium gathered only in the recovery area 7-2. Example 8 S. cerevisiae grown in the PYG liquid medium shown in Table 2 above by shaking culture at 37 ° C. for 2 days. cerevisiae (yeast) was concentrated, and 20 cc of electrophoresis buffer having the composition shown in Table 5 was used.
To produce an ocher suspension. This suspension was electrophoresed in the same manner as in Example 6.

【0054】1時間後に実施例1と同様に液を回収し遠
心したところ、試料領域6からのサンプルの遠心間底部
に黄土色の沈殿物が認められ、cerevisia
が懸濁液槽Aのプラス電極側に集まっていることが確
かめられた。 実施例9coli(実施例5で用いたのと同様のpUC19
に約1kbpのDNA断片をインサートしたものを導入
した物)、trichosporium及び
erevisiaeのそれぞれを実施例6〜8に記載の
各菌種用培地で培養し、得られた培養物をそれぞれ濃縮
して混合し、微生物懸濁液を調製し、これを実施例6と
同様に電気泳動した。
[0054] After 1 hour in Example 1 and was centrifuged to recover the liquid in the same manner, the precipitate ocher is observed Centrifuge bottom of the sample from the sample region 6, S. cerevisia
It was confirmed that e gathered on the positive electrode side of the suspension tank A. Example 9 E. coli (pUC19 similar to that used in Example 5)
Which has a DNA fragment of about 1 kbp inserted thereinto), M. trichosporium and S. c
erevisiae was cultivated in each of the bacterial culture media described in Examples 6 to 8, and the obtained cultures were concentrated and mixed to prepare a microbial suspension, which was prepared in the same manner as in Example 6. Electrophoresed.

【0055】1時間後に実施例1と同様に液を回収し遠
心し、生じた沈殿物をサンプルA(試料領域6から回
収)、B(回収領域7−1から回収)、C(回収領域7
−2から回収)とした。
After 1 hour, the liquid was collected and centrifuged in the same manner as in Example 1, and the resulting precipitates were sample A (collected from sample area 6), B (collected from collection area 7-1), C (collection area 7).
-2).

【0056】このサンプルA〜Cを個々に容積1.5c
cのマイクロチューブに移し500μlの蒸留水に懸濁
した後、LB寒天培地に塗布して37℃の恒温室に放置
した。
Each of the samples A to C has a volume of 1.5 c.
After transferring to a microtube of c and suspending in 500 μl of distilled water, it was applied to LB agar medium and left in a constant temperature room at 37 ° C.

【0057】その結果、サンプルAを塗布した寒天培地
には5日後cerevisiaeと同じ形状の黄土
色ののコロニーのみが形成された。サンプルBを塗布し
た寒天培地には1日後coliと同じ形状の乳白色
のコロニーのみが形成され、それ以降放置しても他のコ
ロニーは形成されなかった。サンプルCを塗布した寒天
培地には2日後trichosporiumと同じ
形状のオレンジ色のコロニーのみが形成され、それ以降
放置しても他のコロニーは形成されなかった。これらの
ことから、A〜Cはすべて単一の微生物からなるもので
あることが確かめられた。
As a result, after 5 days, S. Only ocher colonies with the same shape as S. cerevisiae were formed. For the agar medium coated with sample B, E. Only a milky white colony having the same shape as E. coli was formed, and other colonies were not formed even if it was allowed to stand thereafter. The agar medium coated with Sample C had M. Only orange-colored colonies with the same shape as trichosporium were formed, and other colonies were not formed even when left to stand thereafter. From these, it was confirmed that A to C are all composed of a single microorganism.

【0058】次に、上記の操作を繰返してサンプルA〜
Cを調製し、更に上記のプラスミドを有するcol
の菌体をサンプルDとした。各サンプルを容積1.5
ccのマイクロチューブにそれぞれ移し500μlの蒸
留水に懸濁させた物に、10%SDS溶液を10μl添
加し70℃で1時間加熱し液中の微生物を溶菌した。次
に各液からフェノールクロロホルム溶液を使ってDNA
を抽出し、エタノールで沈殿させて回収した。このDN
Aを50μlの蒸留水に溶解させて微生物DNA溶液A
〜Dとした。
Next, by repeating the above-mentioned operation, samples A to
C. was prepared and E. col
The microbial cell of i was used as sample D. Volume of each sample is 1.5
10 μl of a 10% SDS solution was added to the suspensions in 500 μl of distilled water and suspended in 500 μl of distilled water, and the mixture was heated at 70 ° C. for 1 hour to lyse microorganisms in the solution. Next, from each solution, use phenol-chloroform solution
Was extracted, precipitated with ethanol and collected. This DN
Microbial DNA solution A by dissolving A in 50 μl of distilled water
~ D.

【0059】これらのDNA溶液を100倍に希釈した
後、PCR用の酵素など混合してPCR増幅を行った。
PCRの条件は実施例5と同様の条件とした。増幅後、
反応液をアガロースゲルで電気泳動したところDNA溶
液BとDのみに約1kbpのDNA断片が検出された。
つまり、A〜Dの4つのサンプルの内でDと同じプラス
ミドを持つcoliがいるのはサンプルBだけで、
AとCにはcoliが混入していないことが確かめ
られた。
After diluting these DNA solutions by 100 times, PCR enzymes were mixed to carry out PCR amplification.
The PCR conditions were the same as in Example 5. After amplification
When the reaction solution was subjected to agarose gel electrophoresis, a DNA fragment of about 1 kbp was detected only in DNA solutions B and D.
That is, among the four samples A to D, E. coli having the same plasmid as D. Only sample B has coli .
A and C are E. It was confirmed that E. coli was not mixed.

【0060】[0060]

【発明の効果】以上のように、遠心勾配方または電気泳
動法を用いて複数の微生物群を選別回収することによ
り、以下の効果が得られた。 1)平板培養法のように、想定されるまたは期待する様
々な条件の寒天培地を用意して、微生物懸濁液を塗布し
て数日間培養する、といった操作を行わなくても、懸濁
液中の各種微生物を比重にしたがって簡単にかつ数時間
で選別回収できる。 2)平板培養法の場合、有用な微生物であるにも関わら
ず培養条件が合わなかったためにコロニーを形成でき
ず、結果的に回収できなかった微生物を選別回収でき
る。 3)吸引ろ過法のように、固形物による目詰まりのため
にろ紙を頻繁に交換する必要がなく、一度フィルターを
セットすれば、後は電圧をかけるだけで微生物を選別回
収できる。 4)遠心分離法のように、微生物の種類の違いによる微
妙な遠心条件の違いをあらかじめ調べて遠心機を細かく
コントロールする必要がなく、適当な孔径のフィルター
をセットすれば、後は電圧をかけるだけで微生物を選別
回収できる。 5)本方法によって回収した微生物から溶菌抽出したD
NAは、更に不純物を取り除くための処理をしなくても
PCR増幅反応などの酵素反応ができる純度である。
As described above, the following effects were obtained by selecting and collecting a plurality of microorganism groups by using the centrifugal gradient method or the electrophoresis method. 1) Suspension without the operation of preparing an agar medium under various expected or expected conditions, applying a microbial suspension and culturing for several days like the plate culture method Various microorganisms inside can be easily sorted and collected according to specific gravity in a few hours. 2) In the case of the plate culture method, colonies cannot be formed because the culture conditions are not suitable even though they are useful microorganisms, and as a result, microorganisms that could not be recovered can be selectively collected. 3) Unlike the suction filtration method, it is not necessary to frequently replace the filter paper due to clogging with solid matter, and once the filter is set, the microorganisms can be selectively collected by simply applying voltage. 4) Unlike the centrifugation method, it is not necessary to finely control the centrifuge by preliminarily investigating the slight difference in the centrifugation conditions due to the difference in the type of microorganisms. If a filter with an appropriate pore size is set, the voltage will be applied afterwards. Microorganisms can be selected and collected only by themselves. 5) D lysed and extracted from microorganisms recovered by this method
NA has such a purity that an enzymatic reaction such as a PCR amplification reaction can be performed without further treatment for removing impurities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微生物選別装置の一例の模式的断面図
を示す。
FIG. 1 shows a schematic cross-sectional view of an example of a microorganism selection device of the present invention.

【図2】本発明の微生物選別装置の他の例の構造を示
し、(a)は水槽全体の模式的断面図を、(b)は電気
泳動用ラックの模式的断面図をそれぞれ示す。
FIG. 2 shows the structure of another example of the microorganism selection device of the present invention, (a) is a schematic sectional view of the entire water tank, and (b) is a schematic sectional view of an electrophoresis rack.

【図3】遠心勾配方による本発明の方法における操作を
説明するための遠心管内の状態を示す模式的断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing a state in a centrifuge tube for explaining an operation in the method of the present invention by a centrifugal gradient method.

【符号の説明】[Explanation of symbols]

1 水槽(電気泳動槽) 2,3 電極 4 第1のフィルター(微生物選別用) 5 第2のフィルター(微生物捕獲用) 6 試料領域(懸濁液領域) 7,7−1,7−2 回収領域 8 フィルター 9 電極2側領域 10 区分用フィルター(微生物選別用) 11 電気泳動用ラック 1 Water tank (electrophoresis tank) 2,3 Electrode 4 First filter (for microorganism selection) 5 Second filter (for microorganism capture) 6 Sample area (suspension area) 7,7-1,7-2 Recovery Area 8 Filter 9 Electrode 2 side area 10 Classification filter (for microbial selection) 11 Electrophoresis rack

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月31日[Submission date] January 31, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】[0038]

【表1】 実施例2 実施例1と同様にLB液体培地に37℃でPseudo
monas cepacia KK01株(FERM
BP−4235)を培養した培養物を濃縮して得た乳白
色の懸濁液を実施例1と同様にショ糖比重勾配遠心処理
した。
[Table 1] Example 2 Pseudo was added to LB liquid medium at 37 ° C. as in Example 1.
monas cepacia KK01 strain (FERM
The milky white suspension obtained by concentrating the culture obtained by culturing BP-4235 ) was subjected to sucrose specific gravity gradient centrifugation in the same manner as in Example 1.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】その結果、図3ののように1.20と
1.25の境界のところにcepacia KK0
1株の集積した乳白色の懸濁した帯が生じた。 実施例3 実施例1と同様にLB液体培地に37℃でMethyl
osinus trichosporiumを培養した
培養物を濃縮して得たオレンジ色の懸濁液を実施例1と
同様にショ糖比重勾配遠心処理した。
As a result, as shown in FIG. 3, at the boundary between 1.20 and 1.25, P. cepacia KK0
A concentrated milky white suspended band of 1 strain resulted. Example 3 Methyl was added to LB liquid medium at 37 ° C. as in Example 1.
The orange suspension obtained by concentrating the culture obtained by culturing osinus trichosporium was subjected to sucrose specific gravity gradient centrifugation in the same manner as in Example 1.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0042】[0042]

【表2】 実施例5coli(pUC19(宝酒造(株)社製に約1k
bpDNA断片をインサートしたものが導入されている
もの)、cepacia KK01株、tri
chosporium及びcerevisiae
それぞれを実施例1〜4に記載の各菌種用培地で培養
し、得られた培養物をそれぞれ濃縮して混合し、微生物
懸濁液を調製し、これを実施例1と同様にショ糖比重勾
配遠心処理した。その結果、図3ののように3つの懸
濁した帯A、B、Cと沈殿Dが生じた。
[Table 2] Example 5 E. coli (pUC19 (Takara Shuzo Co., Ltd. about 1k
bpDNA fragment inserted thereinto), P. cepacia KK01 strain, M. tri
chosporium and S. cerevisiae was cultivated in each of the bacterial culture media described in Examples 1 to 4, and the obtained cultures were concentrated and mixed to prepare a microbial suspension, which was prepared in the same manner as in Example 1. Sucrose specific gravity gradient centrifugation was performed. As a result, three suspended zones A, B and C and a precipitate D were generated as shown in FIG.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0045[Name of item to be corrected] 0045

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0045】その結果、サンプルAを塗布した寒天培地
には2日後trichosporiumと同じ形状
のオレンジ色のコロニーのみが形成され、それ以降放置
しても他のコロニーは形成されなかった。サンプルBを
塗布した寒天培地には2日後cepacia KK
01株と同じ形状の乳白色のコロニーのみが形成され、
それ以降放置しても他のコロニーは形成されなかった。
サンプルCを塗布した寒天培地には1日後coli
と同じ形状の乳白色のコロニーのみが形成され、それ以
降放置しても他のコロニーは形成されなかった。サンプ
ルDを塗布した寒天培地には5日後cerevis
iaeと同じ黄土色のコロニーのみが形成された。これ
らのことから、サンプルA〜Dはすべて単一の微生物か
らなるものであることが確かめられた。
As a result, the agar medium coated with the sample A had an M. Only orange-colored colonies with the same shape as trichosporium were formed, and other colonies were not formed even when left to stand thereafter. For the agar medium coated with sample B, P. cepacia KK
Only milky white colonies with the same shape as the 01 strain are formed,
After that, no other colony was formed even if left standing.
For the agar medium coated with sample C, E. coli
Only a milky white colony of the same shape was formed, and other colonies were not formed even if it was left to stand thereafter. For the agar medium coated with sample D, S. cerevis
Only the same ocher colonies as iae were formed. From these, it was confirmed that Samples A to D were all composed of a single microorganism.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 試料中に混在する複数の微生物を選別す
る方法において、比重勾配遠心により各微生物を比重に
応じて分画し、回収することを特徴とする微生物の選別
回収方法。
1. A method for selecting and collecting a plurality of microorganisms mixed in a sample, which comprises fractionating each microorganism according to specific gravity by specific gravity gradient centrifugation and collecting the microorganisms.
【請求項2】 前記比重勾配を水に溶質を溶解させるこ
とで1以上の比重の範囲で調製する請求項1に記載の微
生物の選別回収方法。
2. The method for selecting and recovering microorganisms according to claim 1, wherein the specific gravity gradient is prepared by dissolving a solute in water in a range of one or more specific gravities.
【請求項3】 前記比重勾配が連続的に比重が変化する
ものである請求項1または2に記載の微生物の選別回収
方法。
3. The method for selecting and collecting microorganisms according to claim 1, wherein the specific gravity gradient is such that the specific gravity changes continuously.
【請求項4】 前記比重勾配が段階的に比重が変化する
ものである請求項1または2に記載の微生物の選別回収
方法。
4. The method for selecting and collecting microorganisms according to claim 1, wherein the specific gravity gradient is such that the specific gravity changes stepwise.
【請求項5】 前記溶質がショ糖、塩化セシウム、硫酸
セシウム、メトリザマイド及びフィコールから選ばれた
1種以上からなる請求項1〜4のいずれかに記載の微生
物の選別回収方法。
5. The method according to claim 1, wherein the solute comprises at least one selected from sucrose, cesium chloride, cesium sulfate, metrizamide and ficoll.
【請求項6】 前記試料が複数種の微生物の混合培養液
である請求項1〜5のいずれかに記載の微生物の選別回
収方法。
6. The method for selecting and recovering a microorganism according to claim 1, wherein the sample is a mixed culture solution of a plurality of kinds of microorganisms.
【請求項7】 前記試料が土壌懸濁液である請求項1〜
5のいずれかに記載の微生物の選別回収方法。
7. The method according to claim 1, wherein the sample is a soil suspension.
5. The method for selecting and collecting microorganisms according to any one of 5 above.
【請求項8】 前記試料が下水・廃水処理槽の活性汚泥
である請求項1〜5のいずれかに記載の微生物の選別回
収方法。
8. The method for selecting and collecting microorganisms according to claim 1, wherein the sample is activated sludge in a sewage / wastewater treatment tank.
【請求項9】 前記試料が川・湖・海などの底泥である
請求項1〜5のいずれかに記載の微生物の選別回収方
法。
9. The method for selecting and recovering microorganisms according to claim 1, wherein the sample is bottom mud of a river, lake, sea or the like.
【請求項10】 前記試料が、動物の消化管の内容物で
ある請求項1〜5のいずれかに記載の微生物の選別回収
方法。
10. The method for selective collection of microorganisms according to claim 1, wherein the sample is the contents of the digestive tract of an animal.
【請求項11】 一対の電極から微生物を移動させるた
めの直流電圧を印加し得る液相内に、試料が添加される
試料領域と、該試料領域と前記微生物の移動方向に微生
物選別用の第1のフィルターを介して連通し、かつ微生
物を誘引する電極側に微生物捕獲用の第2のフィルター
を有する回収領域とを設け、前記試料領域に複数種の微
生物が混在する試料を分散させた状態で、前記一対の電
極から直流電圧を前記液相内に印加し、前記第1のフィ
ルターを通過できる微生物を前記試料領域から前記前記
回収領域に移動させた後、前記試料領域に残された微生
物または前記回収領域に移動した微生物を回収すること
を特徴とする微生物の選別回収方法。
11. A sample region to which a sample is added in a liquid phase to which a DC voltage for moving microorganisms from a pair of electrodes can be applied, and a first region for selecting microorganisms in the moving direction of the sample region and the microorganisms. A state in which a sample which is in communication with the first filter and which has a second filter for capturing microorganisms is provided on the electrode side for attracting microorganisms, and a sample in which a plurality of types of microorganisms are mixed is dispersed in the sample region. Then, a direct current voltage is applied to the liquid phase from the pair of electrodes, and the microorganisms that can pass through the first filter are moved from the sample area to the recovery area, and then the microorganisms left in the sample area. Alternatively, a method of selecting and recovering a microorganism is characterized by recovering the microorganism that has moved to the recovery area.
【請求項12】 前記第1のフィルターと第2のフィル
ター間に1以上の区分用フィルターを設けて前記回収領
域を2以上に区分し、これら第1のフィルター及び区分
用フィルターの孔径が、選別する微生物の大きさに応じ
て前記微生物の移動方向において順に小さくなるように
した請求項11に記載の微生物の選別回収方法。
12. The recovery area is divided into two or more by providing one or more dividing filters between the first filter and the second filter, and the pore diameters of the first filter and the dividing filter are selected. The method for selecting and recovering microorganisms according to claim 11, wherein the microorganisms are sequentially reduced in size in the moving direction of the microorganisms according to the size of the microorganisms.
【請求項13】 前記微生物を誘引する電極がプラス極
である請求項11または12のいずれかに記載の微生物
の選別回収方法。
13. The method for selecting and collecting microorganisms according to claim 11, wherein the electrode for attracting the microorganisms is a positive electrode.
【請求項14】 前記試料が複数種の微生物の混合培養
液である請求項11〜13のいずれかに記載の微生物の
選別回収方法。
14. The method for selecting and collecting microorganisms according to claim 11, wherein the sample is a mixed culture solution of a plurality of kinds of microorganisms.
【請求項15】 前記試料が土壌懸濁液である請求項1
1〜13のいずれかに記載の微生物の選別回収方法。
15. The sample according to claim 1, which is a soil suspension.
The method for selecting and collecting microorganisms according to any one of 1 to 13.
【請求項16】 前記試料が下水・廃水処理槽の活性汚
泥である請求項11〜13のいずれかに記載の微生物の
選別回収方法。
16. The method for separating and collecting microorganisms according to claim 11, wherein the sample is activated sludge in a sewage / wastewater treatment tank.
【請求項17】 前記試料が川・湖・海などの底泥であ
る請求項11〜13のいずれかに記載の微生物の選別回
収方法。
17. The method for selecting and recovering microorganisms according to claim 11, wherein the sample is sediment of river, lake, sea or the like.
【請求項18】 前記試料が、動物の消化管の内容物で
ある請求項11〜13のいずれかに記載の微生物の選別
回収方法。
18. The method for selective collection of microorganisms according to claim 11, wherein the sample is the contents of the digestive tract of an animal.
【請求項19】 液相を形成し得る槽と、該液相内で微
生物を移動させるための直流電圧を印加するための一対
の電極と、前記液相を、複数種の微生物を含む試料を添
加する試料領域と、該試料領域の前記微生物の移動方向
に微生物選別用の第1のフィルターを介して連通し、か
つ微生物を誘引する電極側に微生物捕獲用の第2のフィ
ルターを有する回収領域と、を有することを特徴とする
微生物選別用装置。
19. A tank capable of forming a liquid phase, a pair of electrodes for applying a DC voltage for moving microorganisms in the liquid phase, and a liquid containing a sample containing a plurality of types of microorganisms. A collection region that communicates with the sample region to be added in the moving direction of the microorganisms in the sample region through a first filter for selecting microorganisms, and has a second filter for capturing microorganisms on the side of an electrode that attracts microorganisms. A device for selecting a microorganism, comprising:
【請求項20】 前記第1のフィルターと第2のフィル
ター間に1以上の区分用フィルターが設けられて前記回
収領域が2以上に区分され、これら第1のフィルター及
び区分用フィルターの孔径が、選別する微生物の大きさ
に応じて前記微生物の移動方向において順に小さくなる
ように設定された請求項19に記載の微生物選別用装
置。
20. One or more dividing filters are provided between the first filter and the second filter to divide the recovery region into two or more, and the pore diameters of the first filter and the dividing filter are: 20. The apparatus for selecting microorganisms according to claim 19, which is set so as to become smaller in order in the moving direction of the microorganisms according to the size of the microorganisms to be selected.
JP31658193A 1993-11-15 1993-12-16 Sorting and collecting microorganisms Expired - Fee Related JP3548211B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31658193A JP3548211B2 (en) 1993-12-16 1993-12-16 Sorting and collecting microorganisms
EP19940308364 EP0653492B1 (en) 1993-11-15 1994-11-11 Process for obtaining individual microorganisms, and applications of that process
DE1994626008 DE69426008T2 (en) 1993-11-15 1994-11-11 Process for the extraction of individual microorganisms and applications of this process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31658193A JP3548211B2 (en) 1993-12-16 1993-12-16 Sorting and collecting microorganisms

Publications (2)

Publication Number Publication Date
JPH07170973A true JPH07170973A (en) 1995-07-11
JP3548211B2 JP3548211B2 (en) 2004-07-28

Family

ID=18078687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31658193A Expired - Fee Related JP3548211B2 (en) 1993-11-15 1993-12-16 Sorting and collecting microorganisms

Country Status (1)

Country Link
JP (1) JP3548211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034127A (en) * 2017-06-15 2017-08-11 黄捷 A kind of test tube and method for being used to extract microbial gene and Inorganic chemical substance in soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034127A (en) * 2017-06-15 2017-08-11 黄捷 A kind of test tube and method for being used to extract microbial gene and Inorganic chemical substance in soil

Also Published As

Publication number Publication date
JP3548211B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
EP0406306B1 (en) Method and apparatus for collecting and detecting microorganisms
EP1776174A1 (en) Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
Zeng et al. Harvesting of microalgal biomass
JP3548211B2 (en) Sorting and collecting microorganisms
Martin et al. Separation of Non‐filamentous Micro‐organisms from Soil by Density Gradient Centrifugation in Percoll
CN110819692A (en) Separation and identification method of high-purity super microalgae
JP3542367B2 (en) Method for separating, purifying and recovering microorganism, method for measuring microorganism population, and method for recovering nucleic acid of microorganism
DE60112604T2 (en) STEP-BY-STEP PROCESS FOR RECOVERING OR REMOVING BIOLOGICAL SUBSTANCES BY FLOTATION FROM A COLLIDAL MEDIUM THROUGHOUT
JP3542366B2 (en) Method for separating microorganisms and method for measuring microorganism population
JP5316983B2 (en) Microorganism isolation culture method and culture kit
JPH07203965A (en) Method for preparing microorganism sample and method for recovering microorganism dna
JP3517448B2 (en) Method for recovering and purifying microorganism-derived DNA
JP3444946B2 (en) Microbial property measurement method
WO2019007862A1 (en) Method for haploid cell separation
CN1244689C (en) Method for forming block from divided sponge organs
JPH07135962A (en) Purification and recovery of microorganism
Marbelia et al. Combined Filtration and Flocculation for Chlorella vulgaris Harvesting
CN115404177B (en) Bacteria producing biological emulsifier, application thereof and method for producing biological emulsifier
US6890740B2 (en) Method and apparatus for biological material separation
JPH07298872A (en) Method for recovering soilborne microbe
CN117264770A (en) Cell extraction method for low-cell-amount soil sample
JP3122050B2 (en) Culture and reaction method and apparatus for microorganisms, cells or immobilized enzymes
Mishustina Submicroscopic forms in marine muds isolated by a density gradient method and studied by electronmicroscopy
WO2024073128A1 (en) Microfiltration device, method of preparing the same, method of separating biological material and a kit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040407

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees