JPH07170965A - Method for deactivating enzyme of liquid food - Google Patents

Method for deactivating enzyme of liquid food

Info

Publication number
JPH07170965A
JPH07170965A JP18084494A JP18084494A JPH07170965A JP H07170965 A JPH07170965 A JP H07170965A JP 18084494 A JP18084494 A JP 18084494A JP 18084494 A JP18084494 A JP 18084494A JP H07170965 A JPH07170965 A JP H07170965A
Authority
JP
Japan
Prior art keywords
enzyme
carbon dioxide
liquid food
filter
sake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18084494A
Other languages
Japanese (ja)
Other versions
JP2820625B2 (en
Inventor
Yutaka Osajima
豊 筬島
Mitsuya Shimoda
満哉 下田
Tamotsu Kono
保 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tansan Co Ltd
Original Assignee
Nippon Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tansan Co Ltd filed Critical Nippon Tansan Co Ltd
Priority to JP18084494A priority Critical patent/JP2820625B2/en
Publication of JPH07170965A publication Critical patent/JPH07170965A/en
Application granted granted Critical
Publication of JP2820625B2 publication Critical patent/JP2820625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To deactivate an enzyme without requiring its separation with a membrane or its heating at a high temperature by charging carbon dioxide liquid into an enzyme-containing liquid food in a micro-size. CONSTITUTION:This method for deactivating the enzyme of a liquid food comprises charging the enzyme-containing liquid food into a treating tank 13 comprising a pressure-resistant container, and subsequently charging carbon dioxide from a cylinder 1 into the treating tank through a filter 16. The carbon dioxide is charged into the liquid food in a supercritical state controlled with a pump 3, a heater 7, a treating tank heater 14 and a pressure-controlling valve 15 in a micro-size through a filter 16. The average diameter of the sieve opening of the filter is <=100mum, preferably <=20mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液状食品の酵素失活法
に関するものであり、詳しくは、失活効率に優れ、しか
も、安全性が高く且つ品質劣化を伴わない酵素失活法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an enzyme deactivating method for liquid foods, and more particularly to an enzyme deactivating method which is excellent in deactivating efficiency, high in safety and free from quality deterioration. Is.

【0002】[0002]

【従来の技術】酵素含有液状食品の代表例である清酒
は、一般的には、次の各工程を経て製造される。すなわ
ち、発酵終了後に圧搾・濾過して新酒を得る第1工程、
新酒を60〜65℃で加熱殺菌して貯蔵する第2工程、
得られた原酒を調合して酒質(甘辛など)を決めると共
にアルコール分を規格に調整する第3工程、調整した酒
を再び加熱殺菌して充填する第4工程を経て製造され
る。この様に、清酒は、上記の第2工程と第4工程にお
いて2回の加熱処理を受け、酵素失活と殺菌がなされ
る。
Sake, which is a typical example of an enzyme-containing liquid food, is generally manufactured through the following steps. That is, the first step of obtaining fresh sake by squeezing and filtering after completion of fermentation,
The second step of heat-sterilizing and storing the sake at 60 to 65 ° C.
It is manufactured through the third step of blending the obtained raw liquor to determine the quality of the liquor (sweet or spicy) and adjusting the alcohol content to the standard, and the fourth step of sterilizing the adjusted liquor by heat sterilization again. In this way, sake is subjected to heat treatment twice in the above-mentioned second step and fourth step to undergo enzyme deactivation and sterilization.

【0003】ところで、新酒のフレッシュな香味は、2
回の加熱処理により顕著に減少するため、加熱処理を伴
わない生酒の需要が急増している。しかしながら、搾り
たての新酒は、味や香りが新鮮である反面、その酵素活
性が高いので香味が極めて変化し易い。生酒として、低
温で流通させた未処理の新酒もあるが、斯かる生酒は、
α−アミラーゼ、プロテアーゼ、カルボキシペプチダー
ゼ等の酵素により、品質が劣化し易く、その防止のため
の流通コストの増大が問題となっている。
By the way, the fresh flavor of sake is 2
Since the number of times of heat treatment markedly decreases, the demand for sake without heat treatment is rapidly increasing. However, freshly squeezed sake has a fresh taste and aroma, but its enzymatic activity is high, so the flavor is extremely likely to change. There is unprocessed fresh sake that has been distributed at low temperature as raw sake, but such sake is
Enzymes such as α-amylase, protease, carboxypeptidase and the like tend to cause deterioration in quality, and an increase in distribution cost for preventing the problem is a problem.

【0004】そこで、従来より、上記の問題を解決する
ため、精密濾過や限外濾過法により生酒中の酵素の除去
が行われているが、充分な除去は不可能である。しか
も、膜を利用する方法においては、生酒の香り成分が膜
に溶解し、また、ある種の味成分が除去されるため、風
味が失われるという問題もある。
Therefore, in order to solve the above-mentioned problems, the enzyme in the raw sake has been conventionally removed by microfiltration or ultrafiltration, but it cannot be sufficiently removed. Moreover, the method using a film has a problem that the flavor component is lost because the scent component of sake is dissolved in the film and a certain taste component is removed.

【0005】また、オレンジ果汁の様な混濁果汁の安定
性を保つためにはペクチンエステラーゼ(PE)の不活
性化が必要であるが、PEは熱に安定な酵素であり、そ
の失活に対しては一般に高温条件(88〜99℃又は1
20℃)の熱処理が必要とされている。しかしながら、
上記の様な高温条件の熱処理では果汁の風味が劣化する
と言う問題がある。
Further, in order to maintain the stability of cloudy juice such as orange juice, it is necessary to inactivate pectinesterase (PE), but PE is a heat-stable enzyme, and its deactivation is against it. Generally, high temperature conditions (88-99 ° C or 1
Heat treatment at 20 ° C.) is required. However,
There is a problem that the flavor of fruit juice is deteriorated by the heat treatment under the high temperature condition as described above.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、上記実情
に鑑みなされたものであり、その目的は、膜分離によら
ず、しかも、100℃前後の高温加熱を必要としない液
状食品の新規な酵素失活法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to provide a novel liquid food which does not depend on membrane separation and which does not require high temperature heating at about 100 ° C. To provide a simple enzyme deactivation method.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の目
的を達成すべく鋭意検討を重ねた結果、酵素含有液状食
品に超臨界状態の二酸化炭素を接触させることにより、
酵素を失活させることが可能であるとの知見を得た。本
発明者等は、斯かる知見を基に更に検討を重ねた結果、
驚くべきことに、特定の接触方法を採用するならば、酵
素の失活効率が著しく高められるとの知見を得た。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention, by contacting the enzyme-containing liquid food with carbon dioxide in a supercritical state,
We have found that it is possible to inactivate the enzyme. The present inventors, as a result of further studies based on such findings,
It was surprisingly found that the enzyme deactivation efficiency is significantly enhanced if a specific contact method is adopted.

【0008】本発明は、上記の知見に基づき完成された
ものであり、その要旨は、処理槽内において、平均直径
が100μm以下のフイルターを通して供給され且つ超
臨界状態の二酸化炭素と酵素含有液状食品とを接触させ
ることを特徴とする液状食品の酵素失活法に存する。
The present invention has been completed based on the above findings, and the gist thereof is a liquid food containing carbon dioxide and an enzyme, which is supplied through a filter having an average diameter of 100 μm or less in a treatment tank and is in a supercritical state. And an enzyme inactivation method for liquid foods, which comprises contacting with.

【0009】以下、本発明を詳細に説明する。本発明の
酵素失活法が適用される酵素含有液状食品としては、代
表的には、前述の生酒が挙げられる。その他には、ビー
ル等の醗酵液状食品や各種果汁類などが挙げられる。果
汁類は、通常、リンゴ、ブドウ、各種の柑橘類などを原
料として得られるが、トマトやその他の野菜を原料とし
て得られる搾汁液であってもよい。
The present invention will be described in detail below. Typical examples of the enzyme-containing liquid food to which the enzyme deactivating method of the present invention is applied include the above-mentioned sake. Other examples include fermented liquid foods such as beer and various fruit juices. The fruit juices are usually obtained from apples, grapes, various citrus fruits and the like as raw materials, but juices obtained from tomatoes and other vegetables may also be used.

【0010】本発明において、二酸化炭素は、超臨界状
態の流体として使用される。斯かる状態は、圧力が70
〜400atm、好ましくは100〜300atm、特
に好ましくは150〜300atm、温度が30〜70
℃、好ましくは30〜50℃の条件下に達成することが
出来る。以下、超臨界状態の二酸化炭素を「二酸化炭素
流体」と略記することがある。
In the present invention, carbon dioxide is used as a fluid in a supercritical state. In such a state, the pressure is 70
~ 400 atm, preferably 100-300 atm, particularly preferably 150-300 atm, temperature 30-70.
It can be achieved under the condition of ℃, preferably 30 to 50 ℃. Hereinafter, carbon dioxide in a supercritical state may be abbreviated as “carbon dioxide fluid”.

【0011】液状食品と二酸化炭素流体とは十分に接触
させることが必要である。そのため、本発明において
は、液状食品中に二酸化炭素流体をミクロの大きさで供
給することを必要とする。具体的には、処理槽内におい
て、平均直径が100μm以下のフイルターを通して供
給され且つ超臨界状態の二酸化炭素と酵素含有液状食品
とを接触させる。フイルターの種類は、特に、制限され
ず、例えば、銅、青銅、ステンレス鋼、ニッケル、モネ
ルメタル、銀、白金などから成る焼結金属フイルターが
好適に使用される。本発明においては、平均直径が50
μm以下のフイルターを使用するのが好ましく、平均直
径が20μm以下のフイルターを使用するのが特に好ま
しい。通常、フイルターの平均直径は最低1μmまで小
さくすることが可能である。
It is necessary that the liquid food and the carbon dioxide fluid be in sufficient contact. Therefore, in the present invention, it is necessary to supply the carbon dioxide fluid into the liquid food in a micro size. Specifically, in the treatment tank, carbon dioxide supplied through a filter having an average diameter of 100 μm or less and in a supercritical state is brought into contact with the enzyme-containing liquid food. The type of filter is not particularly limited, and for example, a sintered metal filter made of copper, bronze, stainless steel, nickel, monel metal, silver, platinum or the like is preferably used. In the present invention, the average diameter is 50
It is preferable to use a filter having a diameter of not more than μm, and it is particularly preferable to use a filter having an average diameter of not more than 20 μm. Generally, the average diameter of the filter can be reduced to a minimum of 1 μm.

【0012】液状食品と二酸化炭素流体との接触時間
は、対象とする食品の種類により、また、目的とする酵
素の失活程度により異なる。例えば、生酒の場合は、通
常10〜60分、好ましくは20〜30分程度である。
また、本発明においては、通常、エントレーナーの添加
を必要としないが、特に要すれば、二酸化炭素流体に対
して5%以下の範囲で使用してもよい。アルコール成分
を含有しない液状食品の場合、エントレーナーとして
は、エチルアルコールが好適に使用される。二酸化炭素
流体による処理は回分式でも連続式でもよい。
The contact time between the liquid food and the carbon dioxide fluid varies depending on the type of the target food and the degree of deactivation of the target enzyme. For example, in the case of sake, it is usually 10 to 60 minutes, preferably about 20 to 30 minutes.
In the present invention, addition of an entrainer is not usually required, but if necessary, it may be used within a range of 5% or less with respect to the carbon dioxide fluid. In the case of a liquid food containing no alcohol component, ethyl alcohol is preferably used as the entrainer. The treatment with the carbon dioxide fluid may be a batch type or a continuous type.

【0013】二酸化炭素流体による接触処理後、酵素を
失活した液状食品は、処理条件を常温、常圧に戻すこと
により容易に回収される。回収された液状食品は、香味
が損なわれておらず、しかも、乳酸菌などの微生物も殺
菌されており、貯蔵中に品質の劣化を生じることがな
い。
After the contact treatment with the carbon dioxide fluid, the enzyme-inactivated liquid food is easily recovered by returning the treatment conditions to room temperature and pressure. The recovered liquid food is not impaired in flavor, and microorganisms such as lactic acid bacteria are sterilized, so that the quality does not deteriorate during storage.

【0014】次に、添付図面に基づいて本発明のプロセ
スの一例について説明する。図1は、本発明のプロセス
の一例を示す説明図である。図1に示すプロセスにおい
て、エントレーナー容器(2)は必要に応じて設置さ
れ、処理槽(13)は耐圧容器で構成されている。処理
槽(13)内の温度、圧力は、処理槽加温器(14)、
圧力調整弁(15)により一定に調整出来るようになさ
れており、処理槽(13)の下部にはフイルター(1
6)が設置されている。また、分離槽(17)内の温
度、圧力は、分離槽加温器(18)、圧力調整弁(1
9)により調整出来るようになされている。
Next, an example of the process of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing an example of the process of the present invention. In the process shown in FIG. 1, the entrainer container (2) is installed as needed, and the treatment tank (13) is composed of a pressure resistant container. The temperature and pressure in the treatment tank (13) are the same as those of the treatment tank warmer (14),
The pressure adjusting valve (15) can be adjusted to a constant level, and the filter (1) is installed at the bottom of the processing tank (13).
6) is installed. The temperature and pressure in the separation tank (17) are controlled by the separation tank warmer (18) and the pressure adjusting valve (1
It can be adjusted by 9).

【0015】先ず、二酸化炭素は、液化炭酸ガスボンベ
(1)から、バルブ(9)、フイルター(5)を通り、
(ガス化している場合は冷却器(6)により冷却して液
化され)ポンプ(3)により、加温器(7)、逆止弁
(10)を経てラインミキサー(8)に供給される。エ
ントレーナーを使用する場合は、エントレーナー容器
(2)からポンプ(4)により逆止弁(11)を経てラ
インミキサー(8)に供給され、二酸化炭素と混合され
る。
First, carbon dioxide passes from the liquefied carbon dioxide gas cylinder (1) through the valve (9) and the filter (5).
(If it is gasified, it is cooled and liquefied by the cooler (6)) and supplied to the line mixer (8) via the warmer (7) and the check valve (10) by the pump (3). When an entrainer is used, it is supplied from the entrainer container (2) to the line mixer (8) via the check valve (11) by the pump (4) and mixed with carbon dioxide.

【0016】次に、二酸化炭素(及びエントレーナー)
は、バルブ(12)、フイルター(16)を経て液状食
品を仕込んだ処理槽(13)に供給される。この際、二
酸化炭素は、ポンプ(3)、加温器(7)、処理槽加温
器(14)、圧力調整弁(15)を適当な条件に調整す
ることにより、超臨界状態となされて処理槽(13)内
に供給される。しかも、フイルター(16)によりミク
ロの大きさで供給される。なお、処理槽(13)内に供
給されると同時に超臨界状態となる様に制御することも
可能である。
Next, carbon dioxide (and the entrainer)
Is supplied to the processing tank (13) containing the liquid food through the valve (12) and the filter (16). At this time, carbon dioxide is brought into a supercritical state by adjusting the pump (3), the warmer (7), the treatment tank warmer (14), and the pressure adjusting valve (15) to appropriate conditions. It is supplied into the processing tank (13). Moreover, it is supplied in a micro size by the filter (16). It is also possible to control so that the supercritical state is reached at the same time when it is supplied into the processing tank (13).

【0017】液状食品と接触させた二酸化炭素流体は、
分離槽(17)に導入され、分離槽加温器(18)及び
圧力調整弁(19)を操作することにより、超臨界状態
が解除される。ガス化した二酸化炭素は、流量計(2
0)を経て系外へ排出される。なお、バルブ(21)
は、二酸化炭素を処理槽(13)に供給する前に途中か
ら系外へ排出するために予備的に設けられている。
The carbon dioxide fluid contacted with the liquid food is
The supercritical state is released by being introduced into the separation tank (17) and operating the separation tank warmer (18) and the pressure adjusting valve (19). The gasified carbon dioxide is measured by the flowmeter (2
It is discharged to the outside of the system via 0). The valve (21)
Is preliminarily provided in order to discharge the carbon dioxide to the outside of the system halfway before being supplied to the treatment tank (13).

【0018】[0018]

【実施例】以下、本発明を試験例および実施例により更
に詳細に説明するが、本発明はその要旨を超えない限
り、以下の諸例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to test examples and examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0019】試験例1 図1のプロセスに従って酵素試液と二酸化炭素流体とを
接触させた。酵素試液としては、20mg/100ml
濃度に調整したグルコアミラーゼ水溶液を使用し、処理
槽(13)の下部に装着されるフイルター(16)とし
ては、平均直径が10μmの焼結金属(SUS316)
フイルターを使用した。エントレーナーは使用しなかっ
た。
Test Example 1 An enzyme test solution was contacted with a carbon dioxide fluid according to the process shown in FIG. As enzyme test solution, 20mg / 100ml
Using a glucoamylase aqueous solution adjusted to a concentration, a sintered metal (SUS316) having an average diameter of 10 μm is used as the filter (16) attached to the lower part of the treatment tank (13)
A filter was used. No entrainer was used.

【0020】先ず、処理槽(13)に500mlの酵素
試液を仕込み、液化炭酸ガスボンベ(1)内の二酸化炭
素の供給を開始した。二酸化炭素は、バルブ(9)、フ
イルター(5)を通り、冷却器(6)により液化され、
加温器(7)により35℃に加温され、ポンプ(3)に
より、逆止弁(10)、ラインミキサー(8)、バルブ
(12)、フイルター(16)を経て処理槽(13)に
供給された。処理槽加温器(14)、圧力調整弁(1
5)により、処理槽(13)内の圧力は250atm、
温度は35℃に維持された。二酸化炭素流体の処理槽
(13)への供給速度は10NL/分、酵素試液と二酸
化炭素流体との接触時間は30分とした。
First, 500 ml of the enzyme reagent solution was charged into the treatment tank (13), and the supply of carbon dioxide in the liquefied carbon dioxide gas cylinder (1) was started. Carbon dioxide passes through the valve (9) and the filter (5) and is liquefied by the cooler (6).
It is heated to 35 ° C. by the warmer (7), and is then pumped by the pump (3) into the processing tank (13) via the check valve (10), line mixer (8), valve (12) and filter (16). Supplied. Treatment tank warmer (14), pressure control valve (1
According to 5), the pressure in the processing tank (13) is 250 atm,
The temperature was maintained at 35 ° C. The supply rate of the carbon dioxide fluid to the treatment tank (13) was 10 NL / min, and the contact time between the enzyme reagent solution and the carbon dioxide fluid was 30 minutes.

【0021】次いで、酵素試液と二酸化炭素流体とを分
離槽(17)に導入し、分離槽加温器(18)及び圧力
調整弁(19)を操作することにより、分離槽(17)
内の二酸化炭素流体の温度および圧力を常温常圧に戻し
て超臨界状態を解除した。ガス化した二酸化炭素は流量
計(20)を経て系外へ排出された。なお、ミクロの大
きさの二酸化炭素流体の効果を確認するため、フイルタ
ー(16)を取り外した場合についても上記と同様に実
施した。結果を表1に示すが、フイルターを使用するこ
とにより、酵素の残存活性を顕著に低下させることが出
来た。
Next, the enzyme test solution and the carbon dioxide fluid are introduced into the separation tank (17), and the separation tank warmer (18) and the pressure adjusting valve (19) are operated to separate the separation tank (17).
The supercritical state was released by returning the temperature and pressure of the carbon dioxide fluid inside to normal temperature and pressure. The gasified carbon dioxide was discharged to the outside of the system through the flow meter (20). In addition, in order to confirm the effect of the carbon dioxide fluid having a micro size, the same procedure as above was performed when the filter (16) was removed. The results are shown in Table 1, and the residual activity of the enzyme could be remarkably reduced by using the filter.

【0022】[0022]

【表1】 [Table 1]

【0023】試験例2 酵素試液として、カルボキシペプチダーゼ(セリンカル
ボキシペプチダーゼ)、リパーゼ、グルコアミラーゼ、
酸性プロテアーゼの各々を20〜100mg/100m
l濃度に調整した水溶液を使用した。そして、処理槽
(13)に供給される二酸化炭素流体の温度と処理槽
(13)内の圧力および温度を表2及び3に示す通りに
変更した以外は、試験例1と同様に操作して酵素試液と
ミクロの大きさの二酸化炭素流体との接触処理を行なっ
た。未処理試液に対する二酸化炭素流体処理液の残存活
性の割合(%)を比較し、その結果を表2及び3に示し
た。
Test Example 2 As an enzyme reagent solution, carboxypeptidase (serine carboxypeptidase), lipase, glucoamylase,
20-100 mg / 100 m of each of the acidic proteases
An aqueous solution adjusted to 1 concentration was used. Then, the same operation as in Test Example 1 was performed except that the temperature of the carbon dioxide fluid supplied to the treatment tank (13) and the pressure and temperature in the treatment tank (13) were changed as shown in Tables 2 and 3. The enzyme reagent was contacted with a carbon dioxide fluid of microscopic size. The ratio (%) of the residual activity of the carbon dioxide fluid-treated solution to the untreated sample solution was compared, and the results are shown in Tables 2 and 3.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】実施例1 液状食品として搾りたての新酒500mlを使用し、試
験例1と同一条件下にミクロの大きさの二酸化炭素流体
と接触させた。二酸化炭素流体処理後の新酒の残存酵素
活性(U/ml酒)及び60日間保存後の乳酸菌数(C
FU/ml酒)を表4に示す。比較のため、未処理品
(比較例1)及び62℃で5分加熱処理品(比較例2)
の残存酵素活性も併せて表4に示した。また、二酸化炭
素流体処理後の新酒について専門のパネラーによる官能
検査を行った結果、生酒に近い良好な風味であった。こ
れに対し、加熱処理後の新酒(比較例2)は、生酒に比
して風味が劣っていた。なお、乳酸菌数の測定は、吸光
度(波長562nm)を利用した検量線法により行っ
た。
Example 1 As a liquid food, 500 ml of freshly squeezed sake was used and brought into contact with a carbon dioxide fluid of microscopic size under the same conditions as in Test Example 1. Residual enzyme activity of fresh sake after carbon dioxide fluid treatment (U / ml) and number of lactic acid bacteria after storage for 60 days (C
FU / ml liquor) is shown in Table 4. For comparison, an untreated product (Comparative Example 1) and a product heat-treated at 62 ° C. for 5 minutes (Comparative Example 2)
Table 4 also shows the residual enzyme activity of the. Further, as a result of a sensory test conducted by a specialized panelist on the new sake after the carbon dioxide fluid treatment, it had a good flavor close to that of unbrewed sake. On the other hand, the fresh sake after the heat treatment (Comparative Example 2) was inferior in flavor to the raw sake. The number of lactic acid bacteria was measured by a calibration curve method using the absorbance (wavelength 562 nm).

【0027】[0027]

【表4】 [Table 4]

【0028】また、上記の各例における新酒を60日間
貯蔵し、乳酸および酢酸濃度の経時変化を測定した。そ
の結果を表5に示す。表5に示す結果から明らかな様
に、本発明の酵素失活法によれば、同時に、乳酸菌など
の微生物の殺菌処理も達成されるため、乳酸や酢酸など
の濃度が増加することもない。
Further, the fresh sake in each of the above examples was stored for 60 days, and the change with time of lactic acid and acetic acid concentrations was measured. The results are shown in Table 5. As is clear from the results shown in Table 5, according to the enzyme inactivation method of the present invention, at the same time, the sterilization treatment of microorganisms such as lactic acid bacteria can be achieved, so that the concentrations of lactic acid and acetic acid do not increase.

【0029】[0029]

【表5】 [Table 5]

【0030】実施例2 市販のアメリカ産ネーブルオレンジをハンドプレッサー
で搾汁して果汁を得、当該果汁500mlを液状食品と
して使用し、試験例1と同一条件下にミクロの大きさの
二酸化炭素流体と接触させた。二酸化炭素流体処理後の
果汁のPE活性を測定し、未処理果汁に対する残存活性
(%)を算出し、表6に示す。また、比較例3として、
フイルター(16)を取り外した場合についても上記と
同様に実施した。
Example 2 Commercially available American navel orange was squeezed with a hand presser to obtain fruit juice, and 500 ml of the fruit juice was used as a liquid food. Contacted with. The PE activity of the juice after the carbon dioxide fluid treatment was measured, and the residual activity (%) with respect to the untreated juice was calculated and shown in Table 6. In addition, as Comparative Example 3,
The same procedure was performed when the filter (16) was removed.

【0031】上記のPE活性の測定は、Rouse A
tkins(1955)の方法に従って行なった。すな
わち、1重量%のペクチン溶液を基質溶液として使用
し、30℃で30分間、酵素と反応させ、生成した酸を
0.02N水酸化ナトリウム水溶液で滴定することによ
り、酵素活性を測定した。滴定には、メトローム社製の
自動滴定装置を使用した。
The above PE activity was measured according to the method described in Rouse A
It was performed according to the method of tkins (1955). That is, the enzyme activity was measured by using a 1 wt% pectin solution as a substrate solution, reacting with the enzyme at 30 ° C. for 30 minutes, and titrating the produced acid with a 0.02N sodium hydroxide aqueous solution. An automatic titrator manufactured by Metrohm Co. was used for the titration.

【0032】[0032]

【表6】 [Table 6]

【0033】実施例3 市販のアメリカ産バレンシアオレンジをハンドプレッサ
ーで搾汁して果汁を得、当該果汁500mlを液状食品
として使用した。そして、処理槽(13)に供給される
二酸化炭素流体の温度と処理槽(13)内の温度を45
℃に変更した以外は、試験例1と同様に操作して酵素試
液とミクロの大きさの二酸化炭素流体との接触処理を行
なった。また、比較例4として、フイルター(16)を
取り外した場合についても上記と同様に実施した。実施
例2と同様にPEの残存活性(%)を算出し、表7に示
す。
Example 3 Commercially available American Valencia orange was squeezed with a hand presser to obtain fruit juice, and 500 ml of the fruit juice was used as a liquid food. Then, the temperature of the carbon dioxide fluid supplied to the treatment tank (13) and the temperature in the treatment tank (13) are set to 45
The same procedure as in Test Example 1 was carried out except that the temperature was changed to 0 ° C. to carry out the contact treatment between the enzyme reagent solution and the carbon dioxide fluid of micro size. Further, as Comparative Example 4, the same operation as described above was performed when the filter (16) was removed. The residual activity (%) of PE was calculated in the same manner as in Example 2 and is shown in Table 7.

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【発明の効果】以上説明した本発明の酵素失活法は、失
活効率に優れ、しかも、二酸化炭素を使用するため安全
性が高く、従って、液状食品の酵素失活法として適して
いる。
INDUSTRIAL APPLICABILITY The enzyme deactivation method of the present invention described above is excellent in deactivation efficiency and highly safe because it uses carbon dioxide. Therefore, it is suitable as an enzyme deactivation method for liquid foods.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプロセスの一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a process of the present invention.

【符号の説明】[Explanation of symbols]

1:液化炭酸ガスボンベ 2:エントレーナー容器 6:冷却器 7:加温器 8:ラインミキサー 13:処理槽 14:処理槽加温器 16:フイルター 17:分離槽 18:分離槽加温器 1: Liquefied carbon dioxide cylinder 2: Entrainer container 6: Cooler 7: Warmer 8: Line mixer 13: Treatment tank 14: Treatment tank warmer 16: Filter 17: Separation tank 18: Separation tank warmer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 処理槽内において、平均直径が100μ
m以下のフイルターを通して供給され且つ超臨界状態の
二酸化炭素と酵素含有液状食品とを接触させることを特
徴とする液状食品の酵素失活法。
1. An average diameter of 100 μm in a processing tank.
A method for inactivating an enzyme of a liquid food, which comprises contacting carbon dioxide in a supercritical state, which is supplied through a filter of m or less, with an enzyme-containing liquid food.
【請求項2】 酵素含有液状食品が生酒である請求項1
に記載の酵素失活法。
2. The enzyme-containing liquid food is a raw sake.
The enzyme deactivation method described in 1.
【請求項3】 酵素含有液状食品が果汁である請求項1
に記載の酵素失活法。
3. The enzyme-containing liquid food is fruit juice.
The enzyme deactivation method described in 1.
JP18084494A 1993-10-27 1994-07-08 Enzyme inactivation method for liquid food Expired - Lifetime JP2820625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18084494A JP2820625B2 (en) 1993-10-27 1994-07-08 Enzyme inactivation method for liquid food

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29123093 1993-10-27
JP5-291230 1993-10-27
JP18084494A JP2820625B2 (en) 1993-10-27 1994-07-08 Enzyme inactivation method for liquid food

Publications (2)

Publication Number Publication Date
JPH07170965A true JPH07170965A (en) 1995-07-11
JP2820625B2 JP2820625B2 (en) 1998-11-05

Family

ID=26500222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18084494A Expired - Lifetime JP2820625B2 (en) 1993-10-27 1994-07-08 Enzyme inactivation method for liquid food

Country Status (1)

Country Link
JP (1) JP2820625B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786513A2 (en) * 1996-01-29 1997-07-30 Shimadzu Corporation Method of and system for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
JP2000139433A (en) * 1998-11-04 2000-05-23 Shimadzu Corp Continuous treatment of liquid substance, apparatus for continuous treatment and liquid food or drink treated therewith
JP2000184878A (en) * 1998-12-19 2000-07-04 Satoru Tabata Production of liquors and sweet food
KR100477845B1 (en) * 2002-02-26 2005-03-23 신경식 Manufacturing method and machine for traditional fermented liquor using high pressure cardon dioxide gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786513A2 (en) * 1996-01-29 1997-07-30 Shimadzu Corporation Method of and system for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
EP0786513A3 (en) * 1996-01-29 1997-11-26 Shimadzu Corporation Method of and system for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
US5704276A (en) * 1996-01-29 1998-01-06 Shimadzu Corporation System for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
US5869123A (en) * 1996-01-29 1999-02-09 Shimadzu Corporation System for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
JP2000139433A (en) * 1998-11-04 2000-05-23 Shimadzu Corp Continuous treatment of liquid substance, apparatus for continuous treatment and liquid food or drink treated therewith
JP2000184878A (en) * 1998-12-19 2000-07-04 Satoru Tabata Production of liquors and sweet food
KR100477845B1 (en) * 2002-02-26 2005-03-23 신경식 Manufacturing method and machine for traditional fermented liquor using high pressure cardon dioxide gas

Also Published As

Publication number Publication date
JP2820625B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
EP2181612B1 (en) Food processing method and food processing apparatus
US5704276A (en) System for processing liquid foodstuff or liquid medicine with a supercritical fluid of carbon dioxide
Fukumoto et al. Microfiltration and ultrafiltration ceramic membranes for apple juice clarification
US5328703A (en) Method for treating fruit juice with high pressure
US4716044A (en) Process for obtaining juices from fruits containing same
US20150090252A1 (en) Apparatus and process for pasteurization of sap and product thereof
US5520943A (en) Method for modifying the quality of liquid foodstuff
US20060127554A1 (en) Method for treating foods under alternating atmospheres
US5667835A (en) Method for inactivating enzymes, microorganisms and spores in a liquid foodstuff
EP1156874B1 (en) Method and membrane system for sterilizing and preserving liquids using carbon dioxide
US4963381A (en) Method for partial or total dealcoholization of wine and/or cider and device for implementing such method
US6616849B1 (en) Method of and system for continuously processing liquid materials, and the product processed thereby
Milani et al. Pasteurization of beer by non-thermal technologies
JP2820625B2 (en) Enzyme inactivation method for liquid food
US5006354A (en) Deaeration process for the manufacture of fruit juices
EP0979657B1 (en) Method and apparatus for continuous flow reduction of microbial activity in a liquid product using pressurized carbon dioxide
US6723365B2 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid product using carbon dioxide
US20050084581A1 (en) Apparatus for liquid food sterilization or enzyme deactivation with supercritical carbon dioxide, and method of liquid food sterilization or enzyme deactivation, and liquid food obtained by the use of the apparatus and the method
JPH07289220A (en) Sterilization of liquid material
JP3397148B2 (en) Liquid substance continuous processing method, continuous processing apparatus and liquid food and drink treated by them
US3982024A (en) Preservation of alcoholic beverages
US6994878B2 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid beer product using carbon dioxide
Plazzotta et al. High-pressure carbon dioxide treatment of fresh fruit juices
JP4359680B2 (en) Fruit juice sterilization method
RU2248732C2 (en) Method for disinfecting of liquid food products

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980806