JPH07167931A - Optical fiber sensor device - Google Patents

Optical fiber sensor device

Info

Publication number
JPH07167931A
JPH07167931A JP5313915A JP31391593A JPH07167931A JP H07167931 A JPH07167931 A JP H07167931A JP 5313915 A JP5313915 A JP 5313915A JP 31391593 A JP31391593 A JP 31391593A JP H07167931 A JPH07167931 A JP H07167931A
Authority
JP
Japan
Prior art keywords
optical fiber
groove
sensor device
fiber sensor
resilient pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5313915A
Other languages
Japanese (ja)
Inventor
Hiroshi Miura
宏 三浦
Toru Tamagawa
徹 玉川
Sakae Ikuta
栄 生田
Kiyohisa Terai
清寿 寺井
Masao Takahashi
正雄 高橋
Keiko Niwa
景子 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5313915A priority Critical patent/JPH07167931A/en
Publication of JPH07167931A publication Critical patent/JPH07167931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To provide an optical fiber sensor device excellent in practical application, in which complex refraction of optical fiber is small, by furnishing a circumferential groove at the periphery of a non-magnetic ring-shaped member, and winding a twined optical fiber on resilient pieces fastened into the groove. CONSTITUTION:To wind an optical fiber 1 in loop form, a groove 7 for insertion of the optical fiber 1 is furnished at the peripheral surface of a bobbin 5 as a, non-magnetic ring-shaped member. To the bottom of this groove 7, resilient pieces 6 are adhered at even intervals circumferentially. The optical fiber 1 is twined and inserted into this groove 7 while given a controlled tension. Because therein the optical fiber 1 lifts the resilient pieces 6 a little, the twine of the fiber is held by the friction of their contacting surfaces involving a repulsive force. The roles of the resilient pieces 6 are to separate the optical fiber 1 from the groove 7, absorb and relieve the tensile stress in the optical fiber 1 produced thermal expansion and contraction, and prevent generation of detrimental stresses resulting from the fiber touching the groove 7 which is hard.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバーを用いた磁
気計測装置等の光ファイバーセンサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber sensor such as a magnetic measuring device using an optical fiber.

【0002】[0002]

【従来の技術】ファラデー効果を用いた磁気計測装置等
で、シングルモード光ファイバーに捻りを加えると、ル
ープ状に加工する時に発生する複屈折を打ち消す事が出
来る。複屈折を抑える事により、測定誤差の要因を除く
効果が得られるため、光ファイバーセンサーの製作に捻
りを用いる事が広く行われている。この捻りファイバー
の捻りの保持を原理的に示すと、図6のように光ファイ
バー1の両端のコネクター2、及びファイバー1を接着
剤3により固定する事により行われていた。
2. Description of the Related Art In a magnetic measuring device using the Faraday effect, when a single mode optical fiber is twisted, it is possible to cancel the birefringence that occurs when it is processed into a loop. By suppressing the birefringence, the effect of eliminating the factor of the measurement error can be obtained, and therefore, the twist is widely used in the production of the optical fiber sensor. The principle of holding the twist of the twisted fiber is to fix the connector 2 and the fiber 1 at both ends of the optical fiber 1 with an adhesive 3 as shown in FIG.

【0003】磁気計測装置の光ファイバーセンサー4
は、図7のように非磁性環状部材であるボビン5に沿わ
せて光ファイバー1を複数回巻いて、ループ状に形成さ
れる。このループが通電導体を取り囲むように配置し、
光ファイバー1に直線偏光を入射すれば、ファラデー効
果により磁界に比例した偏光面の回転が起こる。この回
転角を計算させる事により、導体の発生する磁界を計測
する。偏光面の回転を計測する為に、偏光の乱れは測定
誤差を招くことになる。偏光の乱れ具合を表す1つの尺
度として消光比があり、直線偏光に対する円偏光・非偏
光成分の比で示される。また、一般に異方性の媒質は屈
折率の異なる二つの光学軸を持ち、これを複屈折と呼
ぶ。ガラスのような光学的に等方性な媒質も、応力が加
わると異方性となり複屈折を発生する。この複屈折は媒
質の消光比を悪化させる主要因となるため、計測装置の
測定精度に影響する。
Optical fiber sensor 4 of magnetic measuring device
Is formed into a loop by winding the optical fiber 1 a plurality of times along the bobbin 5 which is a non-magnetic annular member as shown in FIG. Place this loop so that it surrounds the current-carrying conductor.
When linearly polarized light enters the optical fiber 1, the plane of polarization is rotated in proportion to the magnetic field due to the Faraday effect. By calculating this rotation angle, the magnetic field generated by the conductor is measured. Since the rotation of the polarization plane is measured, the disorder of the polarization causes a measurement error. The extinction ratio is one measure of the degree of polarization disorder, and is indicated by the ratio of circularly polarized light / non-polarized light component to linearly polarized light. In general, an anisotropic medium has two optical axes with different refractive indexes, which is called birefringence. An optically isotropic medium such as glass also becomes anisotropic when stress is applied to generate birefringence. This birefringence is a main factor that deteriorates the extinction ratio of the medium, and thus affects the measurement accuracy of the measuring device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような光ファイバーセンサーには、以下に述べるような
解決すべき課題があった。すなわち、複屈折を消去する
ために光ファイバーを捻るが、この捻りを保持するため
ファイバーを固定する必要がある。光ファイバーを接着
剤で固定すると、応力を生じて複屈折が発生する。図6
乃至図7に示した従来の実施例では、光ファイバーを接
着剤でボビンに固定するため、接着剤の硬化時におきる
収縮で接合境界面に応力を発生する。ファラデー効果を
応用した磁気計測装置では、複屈折の増加が測定誤差を
招くため問題となる。また、温度による熱膨張・収縮の
程度を比べると、石英系のシングルモード光ファイバー
は、線膨張係数が 0.4×10-6で、ボビン(例:Al、ま
たは絶縁物)が23〜60×10-6、接着剤(例:シリコーン
類)は 300×10-6と、それぞれの係数差が大きいため、
高温になった時に熱膨張により光ファイバー対して過大
な引張応力を発生させる。この応力は複屈折の増加原因
となって捻り効果を消滅させ、最悪の場合、光ファイバ
ーにクラックを発生させる危険性がある。一方、光ファ
イバーを巻くときは、捻った光ファイバーに常にある程
度の張力を加えて保持しないと、もつれて光ファイバー
が切れてしまうため、更に張力が働きやすくなる。
However, the above-described optical fiber sensor has the following problems to be solved. That is, although the optical fiber is twisted in order to eliminate the birefringence, it is necessary to fix the fiber in order to maintain this twist. When an optical fiber is fixed with an adhesive, stress is generated and birefringence occurs. Figure 6
In the conventional embodiment shown in FIGS. 7 to 7, since the optical fiber is fixed to the bobbin with the adhesive, the shrinkage that occurs when the adhesive cures causes a stress on the bonding interface. In the magnetic measurement device applying the Faraday effect, an increase in birefringence causes a measurement error, which is a problem. Furthermore, when comparing the degree of thermal expansion and contraction due to temperature, a single-mode quartz optical fiber is a linear expansion coefficient of 0.4 × 10 -6, the bobbin (eg: Al or insulator) is twenty-three to sixty × 10 - 6. Adhesives (eg silicones) have a large coefficient difference of 300 × 10 -6 , so
When the temperature becomes high, thermal expansion causes excessive tensile stress to the optical fiber. This stress causes an increase in birefringence, eliminates the twisting effect, and in the worst case, there is a risk of cracking the optical fiber. On the other hand, when the optical fiber is wound, if the twisted optical fiber is not always applied with a certain amount of tension and held, the optical fiber is entangled and the optical fiber is broken, so that the tension is more likely to work.

【0005】本発明は、上記のような従来技術の問題点
を解決するために提案されたもので、その目的は光ファ
イバーの複屈折が小さく、実用性のある光ファイバーセ
ンサー装置を提供する事にある。
The present invention has been proposed to solve the above-mentioned problems of the prior art, and its object is to provide a practical optical fiber sensor device having a small birefringence of the optical fiber. .

【0006】[0006]

【課題を解決するための手段】本発明は、非磁性環状部
材の外周面円周方向に溝部を設け、この溝部に固着した
弾性部材上に捻りを加えた光ファイバーを所定張力で巻
回されることを特徴とする。
According to the present invention, a groove portion is provided in a circumferential direction of an outer peripheral surface of a non-magnetic annular member, and a twisted optical fiber is wound on an elastic member fixed to the groove portion with a predetermined tension. It is characterized by

【0007】[0007]

【作用】捻った光ファイバーを弾性部材上に保持した事
により、従来の光ファイバーと接着剤界面で発生する大
きな応力を回避し、複屈折が抑えられる。また、膨張係
数に差がある光ファイバーと環状部材の熱膨張に起因す
る、光ファイバーに加わる引っ張り応力の発生を、環状
部材上の弾性部材が、柔軟な弾性変形力で吸収する。従
って、複屈折が小さく実用性のある光ファイバーセンサ
ー装置を構成することができる。
By holding the twisted optical fiber on the elastic member, the large stress generated at the interface between the conventional optical fiber and the adhesive can be avoided and birefringence can be suppressed. Further, the elastic member on the annular member absorbs the generation of the tensile stress applied to the optical fiber due to the thermal expansion of the optical fiber and the annular member having different expansion coefficients by the flexible elastic deformation force. Therefore, an optical fiber sensor device having small birefringence and being practical can be constructed.

【0008】[0008]

【実施例】以下に本発明の一実施例を詳細に説明する。
図1には、光ファイバー1をループ状に巻くために、非
磁性環状部材のボビン5の外周面に設けた光ファイバー
1の挿入溝部7で、ボビン半径Rの中心軸に平行に切っ
た部分拡大断面図である。溝部7の底部には弾性体片6
を、図2に示すような円周上の均等分割配置で接着して
おく。この実施例では、耐熱性と柔軟性を有するRTV
シリコーンを弾性体片6に用いた。次に捻った光ファイ
バー1を、管理された張力を掛けながら溝部7に挿入す
る。この時、光ファイバー1は弾性体片6を少し押し下
げるから、反発力を伴った相互の接触面摩擦で光ファイ
バー1の捻りを保持する。弾性体片6の役割は、光ファ
イバー1を溝部7の底から離して、熱膨張・収縮により
生ずる光ファイバー1への引っ張り応力を吸収し消去す
る事、および、光ファイバー1が硬質の溝部7に触れて
有害となる応力の発生を防止する事である。従って、弾
性体片6の配置数や溝方向幅は、ボビン半径Rの大きさ
により適する物を選択する必要がある。例として、R=
200 mm、温度差=50℃、条件で試算すると、1ターンで
膨張差が約4mm、半径の変化にして約0.6mm となる。従
って、溝部7の底から測った弾性体片6の厚さを0.6mm
以上とし、かつ0.6mm 圧縮しても、光ファイバー1に大
きな応力を発生しない厚さと形状を選定する。これによ
り光ファイバー1に引っ張り応力が加わることが防止さ
れる。
EXAMPLE An example of the present invention will be described in detail below.
FIG. 1 is a partially enlarged cross-sectional view of the insertion groove 7 of the optical fiber 1 provided on the outer peripheral surface of the bobbin 5 of the non-magnetic annular member for winding the optical fiber 1 in a loop shape in parallel with the central axis of the bobbin radius R. It is a figure. An elastic piece 6 is provided on the bottom of the groove 7.
Are bonded in an evenly divided arrangement on the circumference as shown in FIG. In this embodiment, an RTV having heat resistance and flexibility
Silicone was used for the elastic piece 6. Next, the twisted optical fiber 1 is inserted into the groove portion 7 while applying a controlled tension. At this time, since the optical fiber 1 pushes down the elastic piece 6 a little, the twist of the optical fiber 1 is held by mutual contact surface friction accompanied by repulsive force. The role of the elastic piece 6 is to separate the optical fiber 1 from the bottom of the groove portion 7 to absorb and eliminate the tensile stress to the optical fiber 1 caused by thermal expansion / contraction, and for the optical fiber 1 to touch the hard groove portion 7. To prevent the generation of harmful stress. Therefore, it is necessary to select an appropriate number of the elastic pieces 6 and the width in the groove direction depending on the size of the bobbin radius R. As an example, R =
When the trial calculation is performed under the conditions of 200 mm, temperature difference = 50 ° C, the expansion difference is about 4 mm per turn, and the radius change is about 0.6 mm. Therefore, the thickness of the elastic piece 6 measured from the bottom of the groove 7 is 0.6 mm.
The thickness and shape are selected so that a large stress is not generated in the optical fiber 1 even if the above is applied and 0.6 mm is compressed. This prevents tensile stress from being applied to the optical fiber 1.

【0009】この方法は、光ファイバー1を非接着で保
持するため、従来例のようにファイバーと接着剤との接
合境界面で応力を発生する心配がない。以上述べたよう
に、光ファイバー1に応力が掛からなければ、複屈折を
小さく抑える事が可能となり、計測用として実用性の有
る光ファイバーセンサー装置が得られる。
According to this method, since the optical fiber 1 is held without being adhered, there is no fear of generating stress at the joint interface between the fiber and the adhesive unlike the conventional example. As described above, if the optical fiber 1 is not stressed, the birefringence can be suppressed to a small value, and a practical optical fiber sensor device for measurement can be obtained.

【0010】図3は他の実施例を示したもので、溝部7
の上から溝カバー8を取り付ける様子を表わしており、
溝カバー8側にも弾性体片6’を接着して、光ファイバ
ー1を上部より圧接固定する。これは、温度差が負の方
向になって光ファイバー1がゆるみ、ほつれる事の無い
ように考慮した例である。図4乃至図5は溝カバー8の
形状例解図を示す。この他、溝の断面形状を変えた構
成、溝を弾性体片6相当の材質で構成した例、弾性体片
6に滑り止めの処理を変えた例など、既存の技術との組
み合わせによる実施例が考えられる。
FIG. 3 shows another embodiment, in which the groove portion 7 is formed.
It shows how the groove cover 8 is attached from above,
The elastic piece 6'is also adhered to the groove cover 8 side, and the optical fiber 1 is pressed and fixed from above. This is an example in which the optical fiber 1 is prevented from loosening and fraying due to the negative temperature difference. FIGS. 4 to 5 show schematic views of the shape of the groove cover 8. In addition to this, an embodiment in combination with the existing technology, such as a configuration in which the cross-sectional shape of the groove is changed, an example in which the groove is formed of a material corresponding to the elastic body piece 6, an example in which the slip prevention process is changed to the elastic body piece 6, Can be considered.

【0011】[0011]

【発明の効果】以上説明した様に、本発明によれば、複
屈折の小さい実用性のある光ファイバーセンサー装置を
提供することができる。
As described above, according to the present invention, it is possible to provide a practical optical fiber sensor device having a small birefringence.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光ファイバーセンサーの要
部断面図
FIG. 1 is a sectional view of an essential part of an optical fiber sensor according to an embodiment of the present invention.

【図2】図1に係る光ファイバーセンサーの概観例解図FIG. 2 is a schematic diagram showing an example of an overview of the optical fiber sensor according to FIG.

【図3】本発明の他の実施例の光ファイバーセンサーの
要部断面図
FIG. 3 is a sectional view of a main part of an optical fiber sensor according to another embodiment of the present invention.

【図4】図4に係る溝カバーの取付例解図FIG. 4 is a schematic view of an example of mounting the groove cover according to FIG.

【図5】溝カバーの詳細例解図FIG. 5 is a detailed illustration of a groove cover.

【図6】従来の光ファイバーの捻り保持の例解図FIG. 6 is a schematic view showing an example of conventional twist holding of an optical fiber.

【図7】従来の光ファイバーセンサーの構成図FIG. 7 is a block diagram of a conventional optical fiber sensor.

【符号の説明】[Explanation of symbols]

1…光ファイバー 2…コネクター 3…接着剤 4…光ファイバーセンサー 5…ボビン 6,6’…弾性体片 7…溝部 R…ボビン半径 8…溝カバー DESCRIPTION OF SYMBOLS 1 ... Optical fiber 2 ... Connector 3 ... Adhesive 4 ... Optical fiber sensor 5 ... Bobbin 6,6 '... Elastic piece 7 ... Groove part R ... Bobbin radius 8 ... Groove cover

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 26/08 Z (72)発明者 寺井 清寿 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 高橋 正雄 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 丹羽 景子 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内Continuation of front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location G02B 26/08 Z (72) Inventor Kiyotoshi Terai 2-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Stock Company Toshiba Corporation Hamakawasaki Plant (72) Inventor Masao Takahashi 2-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Stock Company Toshiba Hamakawasaki Plant (72) Inventor Keiko Niwa 2-1-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Company Toshiba Hamakawasaki factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性環状部材の外周面円周方向に溝部
を設け、この溝部に固着した弾性部材上に捻りを加えた
光ファイバーを所定張力で巻回して構成される光ファイ
バーセンサー装置。
1. An optical fiber sensor device comprising a non-magnetic annular member provided with a groove portion in the circumferential direction of the outer peripheral surface thereof, and a twisted optical fiber wound on an elastic member fixed to the groove portion with a predetermined tension.
【請求項2】 前記光ファイバーの上部に、この光ファ
イバーを圧接固定する弾性部材を取り付けた溝カバーを
取り付けた請求項1記載の光ファイバーセンサー装置。
2. The optical fiber sensor device according to claim 1, wherein a groove cover having an elastic member for pressing and fixing the optical fiber is attached to the upper portion of the optical fiber.
【請求項3】 前記弾性部材はシリコンゴムである請求
項1乃至2記載の光ファイバーセンサー装置。
3. The optical fiber sensor device according to claim 1, wherein the elastic member is silicon rubber.
【請求項4】 前記弾性部材は前記光ファイバーとは非
接着である請求項1乃至2記載の光ファイバーセンサー
装置。
4. The optical fiber sensor device according to claim 1, wherein the elastic member is not adhered to the optical fiber.
【請求項5】 前記弾性部材の厚さは前記環状部材と前
記光ファイバーの熱膨張率の差に伴う前記光ファイバー
に加わる引っ張り応力を吸収可能なものである請求項1
乃至2記載の光ファイバーセンサー装置。
5. The elastic member has a thickness capable of absorbing tensile stress applied to the optical fiber due to a difference in thermal expansion coefficient between the annular member and the optical fiber.
2. The optical fiber sensor device according to 2 above.
JP5313915A 1993-12-15 1993-12-15 Optical fiber sensor device Pending JPH07167931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5313915A JPH07167931A (en) 1993-12-15 1993-12-15 Optical fiber sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5313915A JPH07167931A (en) 1993-12-15 1993-12-15 Optical fiber sensor device

Publications (1)

Publication Number Publication Date
JPH07167931A true JPH07167931A (en) 1995-07-04

Family

ID=18047058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5313915A Pending JPH07167931A (en) 1993-12-15 1993-12-15 Optical fiber sensor device

Country Status (1)

Country Link
JP (1) JPH07167931A (en)

Similar Documents

Publication Publication Date Title
US5208883A (en) Method of reinforcing optical fiber coupler
CA2073162C (en) Fiber optic bending and positioning sensor
JP3898760B2 (en) Verde constant temperature compensation current sensor
US5293440A (en) Environmentally stable fiber optic polarization maintaining couplers
EP0098875A4 (en) Quadrature fiber-optic interferometer matrix.
JPH075350A (en) Cassette for optical fiber device
US4514054A (en) Quadrature fiber-optic interferometer matrix
EP0487509B1 (en) Fiber optic gyroscope
JPH01244376A (en) Optical part
WO1995002191A1 (en) Optical electric field sensor
US6477308B2 (en) Optical waveguide devices and methods of fabricating the same
JPH07167931A (en) Optical fiber sensor device
JP2000155239A (en) Optical fiber array
GB2190744A (en) Magnetic field sensors
JP2012247236A (en) Optical current transformer
EP0775914B1 (en) Optical voltage sensor, group of optical parts and method of manufacturing same
JPH07280902A (en) Optical-fiber sensor and its manufacture
JP2013217845A (en) Optical current sensor and method of manufacturing the same
JP4105299B2 (en) Photovoltage sensor
JPH0750216B2 (en) Polarization-maintaining optical fiber fixing method
JPH0238923A (en) Method for restraining noises of optical fiber sensor
JP2007086301A (en) Packaging method of filter module
JPS62299914A (en) Method and member for fixing polarization maintaining optical fiber
JPS58126514A (en) Light branching device
JPH04281407A (en) Reinforced structure of optical fiber type coupler