JPH07167852A - Filter device for measuring number of fine particles in ultra-pure water, and filter membrane therefor - Google Patents

Filter device for measuring number of fine particles in ultra-pure water, and filter membrane therefor

Info

Publication number
JPH07167852A
JPH07167852A JP31654393A JP31654393A JPH07167852A JP H07167852 A JPH07167852 A JP H07167852A JP 31654393 A JP31654393 A JP 31654393A JP 31654393 A JP31654393 A JP 31654393A JP H07167852 A JPH07167852 A JP H07167852A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
filtration
filtration membrane
membrane
fine particles
number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31654393A
Other languages
Japanese (ja)
Other versions
JP3040298B2 (en )
Inventor
Makio Tamura
Akiko Umeka
明子 梅香
真紀夫 田村
Original Assignee
Japan Organo Co Ltd
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To accurately perform an idle inspection by a constitution wherein a part of a filter membrane is a non-penetration region for the idle inspection.
CONSTITUTION: A filter membrane 1 consists of a filter region 2 and a non- penetration region 3 and the region 2 filters ultra-pure water to capture fine particles. The region 3 is for the use of an idle inspection and does not filter the ultra-pure water so that the fine particles are not captured. Therefore, particles that are detected in the region 3 have been on a face of the membrane from the beginning. After the filtering operation, the fine particles are counted so that the correction of the particles that have been there from the beginning can be carried out. The surface of the membrane after the filtering is subjected to a prescribed treatment and photographs of the surface are taken by means of a scanning microscope by moving the field-of-view and the image processing thereof is carried out to count the number of fine particles on the surface. At that time, the counted result of the region 3 corresponds to the result of the idle inspection. On the basis of those results, it is possible to calculate the number of fine particles in the ultra-pure water.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、超純水中の微粒子数測定用のろ過装置および微粒子数測定用ろ過膜に関するものである。 The present invention relates to relates to a filtration apparatus and a particle number measurement filtration membrane for fine particles measuring the number of ultra-pure water.

【0002】 [0002]

【従来の技術】半導体産業で各種工程用水として利用されている超純水においては、近年の急速な要求水質の高まりに伴い、それらに含まれているごくわずかな不純物を測定するための高度な分析技術が求められている。 BACKGROUND OF THE INVENTION ultrapure water, which is used as various process water in the semiconductor industry, in line with the rise in recent years rapid demand quality, advanced for measuring negligible impurities they contain analysis techniques is required.

【0003】それら不純物の測定項目の中で、特に重要視されている項目として、超純水中の微粒子数が挙げられる。 [0003] Among the measurement items of their impurities, as items that are particularly important, number of microparticles in ultrapure water and the like. 超純水中の微粒子は、露光−エッチング工程においてパターンの欠陥原因となるためである。 Particles of ultrapure water, exposure - is because the defects responsible for the pattern in the etching process.

【0004】超純水中の微粒子数測定方法として、レーザー散乱や音波を応用するオンライン法と、超純水をろ過膜で捕捉し、膜面を光学式顕微鏡または走査型電子顕微鏡で観察して微粒子数を計数する直接検鏡法がある。 [0004] As particulate number measuring method of ultrapure water, and online method of applying a laser scattering and sound to capture ultrapure water filtration membrane, and the film surface was observed with a optical microscope or a scanning electron microscope there is a direct microscopic method for counting the number of particles.

【0005】図8に、従来の直接検鏡法による測定方法を示す。 [0005] Figure 8 illustrates a measuring method using conventional direct microscopy. 超純水が通水されている供給配管7から、バルブ8を設けた試料導入配管9を介して超純水を、ホルダー20の内部にろ過膜1を保持してなる、ろ過装置10 From the supply pipe 7 which ultrapure water is passed through, the ultrapure water through the sample introduction pipe 9 having a valve 8, made to hold the filtration membrane 1 inside the holder 20, the filtration device 10
に導き、供給配管7の管内圧力を利用して常温(25 It leads to, normal temperature by using a pipe pressure supply pipe 7 (25
℃)で試料水を一定水量ろ過して超純水中の微粒子を捕捉する。 ° C.) The water sample was constant amount of water filtered through capturing the ultra pure water particles.

【0006】図7(A)は、ろ過装置の内部の概略を説明する断面図である。 [0008] FIG. 7 (A) is a cross-sectional view illustrating the internal outline of the filtration device. ろ過膜1は、セラミックス、焼結金属等の多孔性の円板または穴やスリット等の多数の流路がほぼ全面にわたって形成されたろ過膜支持体5により支持されており、試料となる超純水はろ過膜でろ過され、超純水中の微粒子4はろ過膜表面に捕捉される。 Filtration membrane 1, a ceramic, is supported by a filtration membrane support 5 a large number of flow paths, such as porous disc or holes or slits are formed over substantially the entire surface of such a sintered metal, as a sample of ultrapure water is filtered through the filtration membrane, fine particles 4 of ultrapure water is captured filtration membrane surface. 図7(B)で示したように、ろ過は周辺部を除いたろ過膜1のほぼ全面で行なわれる。 As shown in FIG. 7 (B), the filtration is carried out in substantially the entire surface of the filtration membrane 1, excluding the peripheral portion.

【0007】ろ過後、ろ過膜表面に一定の処理を施し、 [0007] After filtration, the fixed processing the filtration membrane surface subjected,
光学顕微鏡または走査型電子顕微鏡により、写真撮影または画像処理等を行い、ろ過膜上の微粒子数を計測する。 Optical microscopy or scanning electron microscopy, performs photography or image processing or the like, measuring the number of fine particles on the filtration membrane. 図6に示すように、光学顕微鏡または走査型電子顕微鏡による膜面の観察は、視野11を移動して行う。 As shown in FIG. 6, the observation of the film surface by an optical microscope or a scanning electron microscope is carried out by moving the field of view 11. 観察する視野数は、有効ろ過面積の0.01%前後を観察できるように、一視野の面積から決定する。 Observation field number of, as can be observed 0.01% before and after the effective filtration area is determined from the area of ​​one field of view.

【0008】しかしながら、通常使用するろ過膜の表面には、もともと微粒子が10 5 〜10 6個存在しており、 However, the surface of the filtration membrane normally used, and originally particulate is present 105 to 106 pieces,
計測される微粒子は、ろ過により捕捉された超純水中の微粒子、測定以前から膜の表面に付着していた微粒子および測定に必要な操作によりに付着した微粒子の合計である。 Fine particles to be measured is the sum of the fine particles attached to the operations required to ultrapure water of the particulate matter collected, microparticles and measurement were attached from the measurement before the surface of the membrane by filtration.

【0009】したがって、計測された微粒子数を、ろ過膜により捕捉された超純水中の微粒子数のみに補正する必要がある。 Accordingly, the number of measured particles, it is necessary to correct only the number of microparticles in ultrapure water captured by the filtration membrane. 補正をするために、空試験として実試験のろ過前後に、別のろ過膜を用いて、無ろ過、あるいは少量(例えば10L)のろ過を行った後にそのろ過膜面上の微粒子数を計測し、その計測値で補正することによりろ過で捕捉された超純水中の微粒子のみの微粒子数を算出している。 To the correction, the filtration before and after the actual test as blank test, using another filtration membrane, the filtration of the unfiltered, or a small amount (e.g., 10L) the number of particles on the filter membrane surface is measured after , and it calculates the number of fine particles of only fine particles captured ultrapure water by filtration by correcting by the measured value. また、図9に示したように、実試験用のろ過装置10aと空試験用のろ過装置10bを装着し、ろ過を同時に開始し、空試験のろ過を先に終了させる方法もある。 Further, as shown in FIG. 9, equipped with a filtration device 10b for filtration devices 10a and blank test for actual testing starts filtered simultaneously, there is a method to terminate the filtration of air previously tested.

【0010】実試験と空試験を行って微粒子数を計測した後、以下の(1)式により補正し、超純水中の微粒子数を算出する。 [0010] After the measurement of the number of fine particles subjected to the Real test and the blank test, corrected by the following equation (1), it calculates the number of fine particles in ultrapure water.

【0011】 [0011]

【数1】 [Number 1]

【0012】 [0012]

【発明が解決しようとする課題】しかしながら、従来の直接検鏡法には以下のような問題点があった。 [SUMMARY OF THE INVENTION However, the conventional direct microscopy has problems as follows.

【0013】すなわち、ろ過膜上に元来存在する微粒子数は、ろ過膜毎に異なっており、同一ロットのろ過膜でも1桁以上のバラツキがあることがある。 [0013] That is, number of microparticles originally present on the filter membrane is different for each filtration membrane, there may be one digit or more fluctuation in the filtration membrane of the same lot. したがって、 Therefore,
空試験による補正を行っても、超純水中の微粒子数の測定結果は必ずしも、満足すべき信頼性を有しているとはいいがたかった。 Be corrected by the air test, the results measured ultra-pure water the number of fine particles necessarily, was Gataka' nice to have the reliability satisfactory.

【0014】また、近年の超LSIの製造に用いられる超純水は、存在する微粒子が極めて少ないため、ろ過により捕捉される微粒子が少ない。 Further, the ultrapure water used to prepare the recent super LSI, since fine particles present is very small, less fine particles to be captured by filtration. そのために、微粒子数の測定は、ろ過膜にもともと存在する微粒子数のバラツキの影響を強く受けることになる。 Therefore, measurement of the number of fine particles would strongly influenced by particle number variation originally present in the filtration membrane.

【0015】本発明の目的は、精度よく微粒子数を測定することのできる、微粒子数測定用ろ過装置および微粒子数測定用ろ過膜を提供することである。 An object of the present invention is to provide a high precision capable of measuring the number of fine particles, filtration equipment and number of microparticles measuring filtration membrane for fine particles measuring the number.

【0016】 [0016]

【課題を解決するための手段】本発明者らは、超純水中の微粒子数測定の精度を高めるべく鋭意研究を重ねた結果、1枚のろ過膜上に、超純水を透過して超微粒子を捕捉する領域と、空試験用にろ過膜の一部を不透過とし、 Means for Solving the Problems The present inventors have found that to diligent research improve the accuracy of the ultrapure water particulates number measurement, on one of the filtration membrane, passes through the ultra-pure water a region for trapping ultrafine particles, and opaque portions of the filtration membrane for blank test,
微粒子が捕捉されない領域とが生じるようにろ過装置あるいはろ過膜自身を工夫することにより、精度よく空試験を行うことができることを見いだし、本発明を完成するに至った。 By devising a filtration apparatus or a filtration membrane itself so that a region in which fine particles not captured results, found that it is possible to perform accurately blank test, and have completed the present invention.

【0017】すなわち、本発明は、(1)ろ過膜とろ過膜支持体からなる超純水中の微粒子数測定用ろ過装置において、空試験用としてろ過膜の一部を不透過領域とすることを特徴とする超純水中の微粒子数測定用のろ過装置、(2)ろ過膜の裏面に、耐水性樹脂を塗布まはシート状の耐水性部材を貼着することによりろ過膜の一部を不透過領域とすることを特徴とする(1)項記載のろ過装置、(3)ろ過膜支持体の一部を不透過とすることにより、ろ過膜の一部を不透過領域とすることを特徴とする(1)項記載のろ過装置、(4)ろ過膜とろ過膜支持体の間にシート状の耐水性部材を挿入することによりろ過膜の一部を不透過領域とすることを特徴とする(1) [0017] The present invention provides: (1) in number of microparticles for measuring the filtration device in ultrapure water comprising a filtration membrane and the filtration membrane support, to the non-transmission regions a portion of the filtration membrane for the blank test filtration device for particulate measuring the number of ultra-pure water, wherein, (2) to the back surface of the filtration membrane, a part of the filtration membrane by coating or the water-resistant resin pasting a sheet-shaped water-resistant member the characterized by the non-transmission regions (1) filtration apparatus according to claim (3) by a portion of the filtration membrane support and opaque, to a portion of the filtration membrane and the non-transmission regions the constitution (1) filtration apparatus according to claim, that (4) non-transmission region a part of the filtration membrane by inserting the sheet-shaped water-resistant member between the filtration membrane and the filtration membrane support and wherein (1)
項記載のろ過装置、(5)ろ過膜の裏面に、耐水性樹脂を塗布またはシート状の耐水性部材を貼着することによりろ過膜の一部を不透過領域とする超純水中の微粒子数測定用ろ過膜、を要旨とするものである。 Filtration device according to item, wherein, (5) on the rear surface of the filtration membrane, ultra pure water particles to a portion of the filtration membrane and the non-transmission region by a waterproof resin adhering the coating or sheet-like water-resistant member the number measured for the filtration membrane, it is an gist.

【0018】 [0018]

【作用】以下、本発明について詳細に説明する。 [Action] below, the present invention will be described in detail.

【0019】図1は、本発明のろ過装置に用いられるろ過膜の平面図である。 [0019] Figure 1 is a plan view of the filtration membrane used in the filtration apparatus of the present invention. 1はろ過膜であり、2は微粒子を捕捉するろ過領域、3は空試験用の不透過領域である。 1 is a filtration membrane, the filtration area is 2 to capture particulates, 3 is a non-transmission region for the blank test.
図1の例ではろ過を行わない不透過領域3の面積をろ過膜面積の約50%として示したが、無論この割合により本発明が制限されるものではない。 Showed areas of non-transmission region 3 is not performed filtration as about 50% of the filtration membrane area in the example of FIG. 1, not intended course present invention be limited by this percentage.

【0020】本発明のろ過装置に用いられるろ過膜は、 The filtration membrane employed in the filtration device of the present invention,
1枚のろ過膜に、超純水をろ過して微粒子を捕捉するろ過領域2と、空試験用に不透過領域3を設けてあるため、超純水が透過するろ過領域2では、微粒子が捕捉されるが、不透過領域3では、実質的に超純水が透過しないため超純水中の微粒子は捕捉されない。 On one of the filtration membrane, the filtration area 2 to capture particulates by filtration of ultrapure water, since for blank test is provided with a non-transmission region 3, the filtration area 2 ultrapure water passes, particulate Although trapped, the opaque region 3, substantially ultrapure water particles for impermeable ultrapure water is not captured. したがって、 Therefore,
不透過領域3上の微粒子は、超純水中に存在する微粒子ではなく、ろ過膜面上にもともと存在していた微粒子であり、ろ過操作終了後に不透過領域3の微粒子を計測することにより、ろ過膜面上にもともと存在する微粒子の補正を正確に行うことができる。 Particles on opaque region 3 is not a fine particles present in ultrapure water, a particulate originally present on the filter membrane surface, by measuring the fine particles of the opaque region 3 after the filtration operation completion, the correction of the particles originally present on the filter membrane surface can be accurately performed. 原理的には、同一のろ過膜で、実試験と空試験を行うため、補正は完全に行うことができるが、実際には、同一ろ過膜面上でも、もともと存在する微粒子のバラツキがあるため、多少の誤差は生じる。 In principle, the same filtration membranes, in order to perform actual tests and blank test, the correction can be carried out completely, in fact, even on the same filter membrane surface, since there are variations of particulate originally present , some errors occur.

【0021】ろ過後の膜の表面は、一定の処理を施した後、図5に示すように、視野11を移動して、走査型電子顕微鏡等を用いて、写真撮影、画像処理等を行い膜表面の微粒子数を計測する。 The surface of the membrane after filtration, subjected to certain processing, as shown in FIG. 5, by moving the field of view 11, using a scanning electron microscope or the like, performs photography, image processing, etc. measuring the number of fine particles on the film surface. 前述のように実際に観察される表面の割合は0.0l%程度であるので、不透過領域を設けることによってろ過面積が減少しても、観察時の移動間隔を小さく取れば、従来法と同等の割合でろ過膜表面を観察することができる。 The ratio of the surface to be actually observed as described above is about 0.0L%, even reduces the filtration area by providing the opaque region, taking small movement distance during observation, the conventional method it is possible to observe the filtration membrane surface with equal proportion. 図5中、ろ過領域2の計測結果は従来法のサンプルに、不透過領域3の計測結果は空試験の結果に対応する。 In FIG. 5, the measurement result of the filtration region 2 to a sample of the conventional method, the measurement result of the opaque region 3 corresponds to the result of the blank test. このようにして得た測定結果に基づき、前記(1)式により、空試験のろ過量V b Thus based on the measurement result obtained by the equation (1), filtration rate of the blank test V b
をゼロとして超純水中の微粒子数を計算する。 The calculating the number of particles ultrapure water as zero.

【0022】図2は、ろ過膜の一部に不透過領域を設けるための一実施例の断面図である。 FIG. 2 is a cross-sectional view of one embodiment for providing a partially opaque region of the filter membrane. 1はろ過膜、5はろ過膜支持体である。 1 filtration membrane, 5 is a filtration membrane support. ろ過膜支持体5は、ろ過膜を支持し、超純水を通水しうる構造であれば特に限定されないが、例えば、多孔質のセラミックや、穴やスリット等からなる多数の流路を形成したものである。 Filtration membrane support 5 supports the filtration membrane is not particularly limited as long as the ultra-pure water a structure which can be passed through, for example, or a porous ceramic, a large number of flow paths consisting of holes or slits or the like formed one in which the. 図2の例は、 The example of FIG. 2,
ろ過膜の一部を不透過領域とするために、ろ過膜1の裏面に、耐水性樹脂3aを塗布したものである。 A part of the filtration membrane to the non-transmission regions, the back surface of the filtration membrane 1 is obtained by applying a water-resistant resin 3a. 耐水性樹脂を塗布する他に、耐水性の高分子シート等のシート状の耐水性部材をろ過膜1の裏面に貼着してもよい。 In addition to applying the water-resistant resin, it may be adhered a sheet-shaped water-resistant member of the polymer sheet, such as water resistance on the back surface of the filtration membrane 1. ろ過膜1に超純水を通水すると、不透過処理を施していない領域では超純水がろ過されて微粒子4はろ過膜面上に捕捉されるが、不透過領域では、超純水が実質的にろ過されないため、不透過領域のろ過膜面上に超純水の微粒子が捕捉されることはない。 When passed through the ultra-pure water into the filtration membrane 1, in a region not subjected to opaque process is ultrapure water particles 4 are filtered are captured on a filtration membrane surface, the opaque region, ultrapure water because not substantially filtration, no fine particles of the ultrapure water is captured on a filtration membrane surface of the impermeable region.

【0023】図3は、ろ過膜の一部に不透過領域を設けるための他の実施例の説明図である。 [0023] FIG. 3 is an explanatory view of another embodiment for providing a non-transmission region in a part of the filtration membrane. 図3の例では、ろ過膜1には不透過とするための処理を行わず、ろ過膜支持体5の一部を不透過構造5aとして、この部分と接触しているろ過膜部分においては実質的に超純水がろ過されないようにしたものである。 In the example of FIG. 3, without performing the processing for the non-transmission in the filtration membrane 1, a portion of the filtration membrane support 5 as opaque structure 5a, the filtration membrane portion in contact with this portion substantially ultrapure water is obtained by so as not to be filtered in manner. ろ過膜支持体の一部を不透過構造とする方法としては、例えば、ろ過膜支持体の約半分に前述のような水の流路を形成し、他の半分には流路を形成しない構造としたり、あるいはろ過膜支持体の流路の一部に前述ような耐水性樹脂を注入して閉塞する方法が挙げられる。 A portion of the filtration membrane support as a way of the non-transmission structure, for example, to form a flow path of the water as described above to about half of the filtration membrane support, it does not form a flow path to the other half structure and or, or flow path method partially closing by injecting a water-resistant resin such as the aforementioned filtration membrane supports.

【0024】図4は、ろ過膜の一部に不透過領域を設けるためのさらに他の実施例の説明図である。 FIG. 4 is an explanatory view of another embodiment for providing a partially opaque region of the filter membrane. ろ過膜1とろ過膜支持体5には不透過処理を行わず、シート状の耐水性部材6をろ過膜1とろ過膜支持体5の間に挿入したものである。 The filtration membrane 1 and the filtration membrane support 5 without opaque process, is obtained by inserting the sheet-shaped water-resistant member 6 during the filtration membrane 1 and the filtration membrane support 5.

【0025】本発明のろ過装置は、従来のろ過装置と同様に、超純水が通水されている供給配管に、バルブを設けた試料導入配管を介して接続すればよい。 The filtration apparatus of the present invention, like the conventional filtration device, the supply pipe ultrapure water is passed through, may be connected via a sample introduction pipe provided with a valve. なお、本発明のろ過装置を用いて超純水中の微粒子を計測する際に、必要に応じて供給配管と微粒子数測定用ろ過装置の間にポンプやガスによる加圧手段等を設けたり、ろ過後の液体を減圧することによりろ過速度を増加させ、ろ過時間を短縮することができる。 Incidentally, when measuring the ultrapure water particles by using a filtering device of the present invention, or provided with pressurizing means such as by a pump or a gas between the supply pipe and the number of microparticles for measuring filtration equipment if desired, the liquid after the filtration increases the filtration rate by reducing the pressure, it is possible to shorten the filtration time.

【0026】 [0026]

【実施例】 【Example】

実施例1 オルガノ総合研究所の超純水供給ラインを用いて実験を行った。 Experiments were carried out using an ultra-pure water supply line of the first embodiment organo Research Institute. 微粒子数測定用ろ過膜はポアサイズ0.1μのニュークリポア(有効ろ過面積320mm 2 )を用いた。 Filtration membrane for microparticles number measurements were used having a pore size of 0.1μ Nyukuripoa (effective filtration area 320 mm 2). ろ過膜の一部を不透過領域とするために、ろ過膜裏面の50%に市販の耐水性接着テープを貼付した。 A part of the filtration membrane to the non-transmission regions, was attached to a commercially available water-resistant adhesive tape to 50% of the filtration membrane backside. 超純水を50リットルろ過した後、ろ過膜をスパッタリング処理し、走査型電子顕微鏡で微粒子を計測した。 After the ultra-pure water and filtered 50 liters, the filter membrane was sputtering, was measured particles by a scanning electron microscope. ろ過領域上の微粒子数を、実試験とし、不透過領域上の微粒子数を空試験として計測し、前記(1)式により、超純水中の微粒子数を計算した(但し、V b =0として計算)。 The number of fine particles on the filtration area, the actual test, the number of fine particles on the non-transmission region measured as a blank test, by the equation (1), and calculate the number of particles in ultrapure water (However, V b = 0 calculated as). 試験は、5回繰り返し、微粒子数の平均値と標準偏差を求めた。 Test, repeated 5 times, and the average value was obtained and the standard deviation of the particle count. 結果を表1に示す。 The results are shown in Table 1.

【0027】比較例1 比較例として、実施例1と同じ超純水ライン中の微粒子を従来法により計測した。 [0027] Comparative Example 1 Comparative Example, the fine particles in the same ultrapure water line as in Example 1 was measured by conventional methods. すなわち、実施例1で用いたものと同一ポアサイズのろ過膜を用い、実施例1と同様に実試験(但し、超純水のろ過水量は100リットルとして)を行った後、ろ過膜を交換し、空試験として、超純水を5リットルろ過して空試験の測定値を求めた。 That is, using a filtration membrane of the same pore size as that used in Example 1, in the same manner as in Example 1 actual test (provided that water filtration of ultra-pure water 100 liters) after, replace the filtration membrane as a blank test, it was determined measurements of blank and 5 liters filtered ultrapure water. 前記(1)式により、超純水中の微粒子数を計算した。 By the equation (1), and calculate the number of particles ultrapure water. 試験は、5回繰り返し、微粒子数の平均値と標準偏差を求めた。 Test, repeated 5 times, and the average value was obtained and the standard deviation of the particle count. 結果を、表1に示す。 The results are shown in Table 1.

【0028】 [0028]

【表1】 [Table 1]

【0029】表1から明らかなように、従来法では、空試験による補正を行っても微粒子数に大きなばらつきがある。 As is apparent from Table 1, in the conventional method, it is corrected by a blank test there is a large variation in the number of fine particles. 一方、本発明の結果では、測定値には多少の変動があるものの、算出した微粒子数のばらつきは従来法と比較するとはるかに小さい。 On the other hand, the results of the present invention, although the measured values ​​there is some variation, the variation of the calculated number of particles is much less when compared with the conventional method.

【0030】従来例の微粒子数にばらつきが大きいのは、実試験と空試験でろ過模の表面の汚染状況が違うために起こると思われる。 [0030] The variation in the number of fine particles in the prior art is large, pollution filtration pattern of the surface is likely to occur for different real test and the blank test. すなわち、ろ過膜の表面は製膜時、またその後の包装などの工程で汚染される。 That is, the surface of the filtration membrane during film, also are contaminated in the process such as the subsequent packaging. その度合いは膜毎に一定ではない。 The degree is not constant for each film. したがって、2枚の膜を用いて空試験の補正を行っても大きな誤差が含まれることになる。 Therefore, it will include large error be corrected for blank test using two films. 特に、水中の微粒子数が少ない場合にはこの可能性が高い。 In particular, high this possibility in the case number of fine particles in water is small.

【0031】一方、本発明のように1枚の膜で補正を行う場合、1枚の膜の部分による汚染の違いはあるものの、膜毎の汚染状況の違いが誤差になることはない。 On the other hand, when corrected by a single layer as in the present invention, although according to part of one membrane is the difference between contamination, differences in contamination situation for each layer does not become an error. したがって、遥かに精度の高い微粒子数の計測が可能になった。 Therefore, it enabled much measure high particle count accuracy.

【0032】また、従来は、測定に必要な操作によりろ過膜上に付着した微粒子の影響を除くために2回のろ過操作が必要であったが、本発明によれば1回のろ過操作で良いなどのメリットもある。 Further, conventionally, although filtration twice was necessary to eliminate the effects of fine particles deposited on the filtration membrane by operations required for the measurement, a filtration operation once according to the present invention there are also advantages such as good.

【0033】 [0033]

【発明の効果】本発明によリ、超純水中の微粒子数の計測精度が向上すると共に、実試験と空試験を1回の作業で行えるため、微粒子数計測に必要な作業が滅少する。 It to the present invention re, the measurement accuracy of the number of particles ultrapure water is improved, because that allows the actual test and the blank test in one operation, the work required for particle counting is flashing low to.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明のろ過装置に用いられるろ過膜の平面図。 Plan view of the filtration membrane used in the filtration apparatus of the present invention; FIG.

【図2】本発明のろ過装置およびろ過膜の一実施例を説明するための断面図。 Sectional view for explaining an embodiment of a filtration apparatus and a filtration membrane of the present invention; FIG.

【図3】本発明のろ過装置の他の実施例を説明するための断面図。 Sectional view for explaining another embodiment of a filtering device of the present invention; FIG.

【図4】本発明のろ過装置の他の実施例を説明するための断面図。 Sectional view for explaining another embodiment of a filtering device of the present invention; FIG.

【図5】本発明のろ過装置を用いた場合のろ過膜の検鏡方法の説明図。 Illustration of a speculum method of the filter membrane when the [5] using the filtration device of the present invention.

【図6】従来のろ過装置を用いた場合のろ過膜の検鏡方法の説明図。 Figure 6 is an explanatory diagram of a speculum method of the filtration membrane when using a conventional filtering device.

【図7】(A)は、従来のろ過装置を説明するための断面図、(B)は従来のろ過装置に用いられるろ過膜の平面図。 7 (A) is a sectional view for explaining a conventional filtration device, (B) is a plan view of the filtration membrane used in the conventional filtration devices.

【図8】 従来の超純水中の微粒子測定方法の説明図 FIG. 8 is an explanatory view of a conventional particle measurement method of ultra-pure water

【図9】 従来の超純水中の微粒子測定方法の説明図 FIG. 9 is an explanatory view of a conventional particle measurement method of ultra-pure water

【符号の説明】 DESCRIPTION OF SYMBOLS

1 ろ過膜 2 ろ過領域 3 不透過領域 3a 耐水性樹脂 4 微粒子 5 ろ過膜支持体 6 シート状耐水性部材 7 超純水供給配管 8 バルブ 9 超純水導入管 10 ろ過装置 11 視野 1 filtration membrane 2 filtration area 3 opaque regions 3a waterproof resin 4 particles 5 filtration membrane support 6 sheet waterproof member 7 ultrapure water supply pipe 8 valve 9 ultrapure water inlet pipe 10 filtration device 11 field

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ろ過膜とろ過膜支持体からなる超純水中の微粒子数測定用ろ過装置において、空試験用としてろ過膜の一部を不透過領域とすることを特徴とする超純水中の微粒子数測定用のろ過装置。 1. A filtration membrane and the filtration membrane supporting filtration device for particle number measurement in ultrapure water comprising a body, ultra-pure water, characterized in that the non-transmission regions a portion of the filtration membrane for the blank test filtration device for particulate number measurements in.
  2. 【請求項2】 ろ過膜の裏面に、耐水性樹脂を塗布またはシート状の耐水性部材を貼着することによりろ過膜の一部を不透過領域とすることを特徴とする請求項1記載のろ過装置。 On the back of 2. A filtration membrane, of claim 1, wherein a part of the filtration membrane to the non-transmission regions by the water-resistant resin adhering the coating or sheet-like water-resistant member filtration device.
  3. 【請求項3】 ろ過膜支持体の一部を不透過とすることにより、ろ過膜の一部を不透過領域とすることを特徴とする請求項1記載のろ過装置。 Some of 3. A filtration membrane support by the opaque, filtration device of claim 1, wherein that part of the filtration membrane and the non-transmission regions.
  4. 【請求項4】 ろ過膜とろ過膜支持体の間にシート状の耐水性部材を挿入することにより、ろ過膜の一部を不透過領域とすることを特徴とする請求項1記載のろ過装置。 Wherein by inserting the sheet-shaped water-resistant member between the filtration membrane and the filtration membrane support, the filtration apparatus of claim 1, wherein that part of the filtration membrane and the non-transmission regions .
  5. 【請求項5】 ろ過膜の裏面に、耐水性樹脂を塗布またはシート状の耐水性部材を貼着することによりろ過膜の一部を不透過領域とする超純水中の微粒子数測定用ろ過膜。 On the back of 5. A filtration membrane, waterproof resin coated or partially filtration number of particles ultrapure water measurements the non-transmission regions of the filtration membrane by bonding the sheet-shaped water-resistant member film.
JP31654393A 1993-12-16 1993-12-16 Filtration membrane for filtration apparatus and microparticles number measurement for particle number measurement in ultrapure water Expired - Fee Related JP3040298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31654393A JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration membrane for filtration apparatus and microparticles number measurement for particle number measurement in ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31654393A JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration membrane for filtration apparatus and microparticles number measurement for particle number measurement in ultrapure water

Publications (2)

Publication Number Publication Date
JPH07167852A true true JPH07167852A (en) 1995-07-04
JP3040298B2 JP3040298B2 (en) 2000-05-15

Family

ID=18078275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31654393A Expired - Fee Related JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration membrane for filtration apparatus and microparticles number measurement for particle number measurement in ultrapure water

Country Status (1)

Country Link
JP (1) JP3040298B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269027A (en) * 2008-05-09 2009-11-19 Millipore Corp Method for reducing performance variation of multilayer filter
WO2010012644A3 (en) * 2008-07-31 2010-04-15 Eads Deutschland Gmbh Optical particle detector and detection method
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269027A (en) * 2008-05-09 2009-11-19 Millipore Corp Method for reducing performance variation of multilayer filter
US8733556B2 (en) 2008-05-09 2014-05-27 Emd Millipore Corporation Method for reducing performance variability of multi-layer filters
WO2010012644A3 (en) * 2008-07-31 2010-04-15 Eads Deutschland Gmbh Optical particle detector and detection method
US9557259B2 (en) 2008-07-31 2017-01-31 Eads Deutschland Gmbh Optical particle detector and detection method
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water

Also Published As

Publication number Publication date Type
JP3040298B2 (en) 2000-05-15 grant

Similar Documents

Publication Publication Date Title
US6169601B1 (en) Method and apparatus for distinguishing particles from subsurface defects on a substrate using polarized light
Fane et al. The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes
US20020176617A1 (en) System and method for continuous integrity testing of a material web
US4761074A (en) Method for measuring impurity concentrations in a liquid and an apparatus therefor
US6327021B1 (en) Mask inspection system and method of manufacturing semiconductor device
US5640236A (en) Method and apparatus for detecting the position of defect in a hollow fiber membrane module
US6392745B1 (en) Method and apparatus for the fast detection of surface characteristics
US3681562A (en) Filter device and transparent cover
US20050052642A1 (en) Method and its apparatus for inspecting defects
Venkataraman et al. Characterization studies of ceramic membranes. A novel technique using a Coulter® porometer
JP2005156516A (en) Method of inspecting pattern defect, and apparatus of the same
US4928537A (en) System for airborne particle measurement in a vacuum
JPH05218163A (en) Method and device for inspecting foreing matter
US6779411B1 (en) Adaptable filter sampling device
US20040021097A1 (en) Method for isolation of wafer support-related crystal defects
US5351523A (en) Apparatus and process for determining filter efficiency in removing colloidal suspensions
US20050112893A1 (en) Method for producing a silicon wafer
Burdett et al. Membrane-filter, direct-transfer technique for the analysis of asbestos fibers or other inorganic particles by transmission electron microscopy
Palmer et al. Microscopic circuit fabrication on refractory superconducting films
US4902314A (en) Gas filter
JP2000114329A (en) Method and device for inspecting ground edge section of substrate
US20100132742A1 (en) Template cleaning method, system, and apparatus
CN102252944A (en) Measurement method for particle size
US4433835A (en) Wafer chuck with wafer cleaning feature
US7372561B2 (en) Method and apparatus for inspecting defects and a system for inspecting defects

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees