JPH07167852A - Filter device for measuring number of fine particles in ultra-pure water, and filter membrane therefor - Google Patents

Filter device for measuring number of fine particles in ultra-pure water, and filter membrane therefor

Info

Publication number
JPH07167852A
JPH07167852A JP31654393A JP31654393A JPH07167852A JP H07167852 A JPH07167852 A JP H07167852A JP 31654393 A JP31654393 A JP 31654393A JP 31654393 A JP31654393 A JP 31654393A JP H07167852 A JPH07167852 A JP H07167852A
Authority
JP
Japan
Prior art keywords
fine particles
filtration membrane
filtration
region
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31654393A
Other languages
Japanese (ja)
Other versions
JP3040298B2 (en
Inventor
Makio Tamura
真紀夫 田村
Akiko Umeka
明子 梅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP5316543A priority Critical patent/JP3040298B2/en
Publication of JPH07167852A publication Critical patent/JPH07167852A/en
Application granted granted Critical
Publication of JP3040298B2 publication Critical patent/JP3040298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To accurately perform an idle inspection by a constitution wherein a part of a filter membrane is a non-penetration region for the idle inspection. CONSTITUTION:A filter membrane 1 consists of a filter region 2 and a non- penetration region 3 and the region 2 filters ultra-pure water to capture fine particles. The region 3 is for the use of an idle inspection and does not filter the ultra-pure water so that the fine particles are not captured. Therefore, particles that are detected in the region 3 have been on a face of the membrane from the beginning. After the filtering operation, the fine particles are counted so that the correction of the particles that have been there from the beginning can be carried out. The surface of the membrane after the filtering is subjected to a prescribed treatment and photographs of the surface are taken by means of a scanning microscope by moving the field-of-view and the image processing thereof is carried out to count the number of fine particles on the surface. At that time, the counted result of the region 3 corresponds to the result of the idle inspection. On the basis of those results, it is possible to calculate the number of fine particles in the ultra-pure water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超純水中の微粒子数測
定用のろ過装置および微粒子数測定用ろ過膜に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filtration device for measuring the number of fine particles in ultrapure water and a filtration membrane for measuring the number of fine particles.

【0002】[0002]

【従来の技術】半導体産業で各種工程用水として利用さ
れている超純水においては、近年の急速な要求水質の高
まりに伴い、それらに含まれているごくわずかな不純物
を測定するための高度な分析技術が求められている。
2. Description of the Related Art In the ultrapure water used as water for various processes in the semiconductor industry, with the recent rapid increase in the required water quality, it has become possible to obtain a high degree of purity for measuring the minute amount of impurities contained in them. Analytical technology is required.

【0003】それら不純物の測定項目の中で、特に重要
視されている項目として、超純水中の微粒子数が挙げら
れる。超純水中の微粒子は、露光−エッチング工程にお
いてパターンの欠陥原因となるためである。
Among the measurement items of these impurities, the number of fine particles in ultrapure water is mentioned as a particularly important item. This is because fine particles in ultrapure water cause pattern defects in the exposure-etching process.

【0004】超純水中の微粒子数測定方法として、レー
ザー散乱や音波を応用するオンライン法と、超純水をろ
過膜で捕捉し、膜面を光学式顕微鏡または走査型電子顕
微鏡で観察して微粒子数を計数する直接検鏡法がある。
As a method for measuring the number of fine particles in ultrapure water, an online method applying laser scattering or sound waves and ultrapure water are captured by a filtration membrane and the membrane surface is observed by an optical microscope or a scanning electron microscope. There is a direct microscopic method for counting the number of fine particles.

【0005】図8に、従来の直接検鏡法による測定方法
を示す。超純水が通水されている供給配管7から、バル
ブ8を設けた試料導入配管9を介して超純水を、ホルダ
ー20の内部にろ過膜1を保持してなる、ろ過装置10
に導き、供給配管7の管内圧力を利用して常温(25
℃)で試料水を一定水量ろ過して超純水中の微粒子を捕
捉する。
FIG. 8 shows a conventional measuring method by direct microscopy. A filtration device 10 in which ultrapure water is supplied from a supply pipe 7 through which ultrapure water is passed through a sample introduction pipe 9 provided with a valve 8 and a filtration membrane 1 is held inside a holder 20.
To the normal temperature (25
The sample water is filtered at a constant temperature (.degree. C.) to capture the fine particles in the ultrapure water.

【0006】図7(A)は、ろ過装置の内部の概略を説
明する断面図である。ろ過膜1は、セラミックス、焼結
金属等の多孔性の円板または穴やスリット等の多数の流
路がほぼ全面にわたって形成されたろ過膜支持体5によ
り支持されており、試料となる超純水はろ過膜でろ過さ
れ、超純水中の微粒子4はろ過膜表面に捕捉される。図
7(B)で示したように、ろ過は周辺部を除いたろ過膜
1のほぼ全面で行なわれる。
FIG. 7A is a sectional view for explaining the outline of the inside of the filtration device. The filtration membrane 1 is supported by a filtration membrane support 5 having a porous disk made of ceramics, sintered metal or the like, or a large number of flow paths such as holes and slits formed over almost the entire surface, and is an ultrapure sample. Water is filtered by the filtration membrane, and the fine particles 4 in the ultrapure water are captured on the surface of the filtration membrane. As shown in FIG. 7 (B), the filtration is performed on almost the entire surface of the filtration membrane 1 excluding the peripheral portion.

【0007】ろ過後、ろ過膜表面に一定の処理を施し、
光学顕微鏡または走査型電子顕微鏡により、写真撮影ま
たは画像処理等を行い、ろ過膜上の微粒子数を計測す
る。図6に示すように、光学顕微鏡または走査型電子顕
微鏡による膜面の観察は、視野11を移動して行う。観
察する視野数は、有効ろ過面積の0.01%前後を観察
できるように、一視野の面積から決定する。
After filtration, the surface of the filtration membrane is subjected to a certain treatment,
Photographing or image processing is performed by an optical microscope or a scanning electron microscope to count the number of fine particles on the filtration membrane. As shown in FIG. 6, observation of the film surface with an optical microscope or a scanning electron microscope is performed by moving the visual field 11. The number of visual fields to be observed is determined from the area of one visual field so that approximately 0.01% of the effective filtration area can be observed.

【0008】しかしながら、通常使用するろ過膜の表面
には、もともと微粒子が105〜106個存在しており、
計測される微粒子は、ろ過により捕捉された超純水中の
微粒子、測定以前から膜の表面に付着していた微粒子お
よび測定に必要な操作によりに付着した微粒子の合計で
ある。
However, 10 5 to 10 6 fine particles are originally present on the surface of a commonly used filtration membrane,
The measured fine particles are the total of the fine particles in the ultrapure water captured by filtration, the fine particles attached to the surface of the membrane before the measurement, and the fine particles attached by the operation necessary for the measurement.

【0009】したがって、計測された微粒子数を、ろ過
膜により捕捉された超純水中の微粒子数のみに補正する
必要がある。補正をするために、空試験として実試験の
ろ過前後に、別のろ過膜を用いて、無ろ過、あるいは少
量(例えば10L)のろ過を行った後にそのろ過膜面上
の微粒子数を計測し、その計測値で補正することにより
ろ過で捕捉された超純水中の微粒子のみの微粒子数を算
出している。また、図9に示したように、実試験用のろ
過装置10aと空試験用のろ過装置10bを装着し、ろ
過を同時に開始し、空試験のろ過を先に終了させる方法
もある。
Therefore, it is necessary to correct the measured number of fine particles only to the number of fine particles in the ultrapure water captured by the filtration membrane. In order to make a correction, before and after the filtration of the actual test as a blank test, another filtration membrane is used without filtration or a small amount (for example, 10 L) of filtration is performed, and then the number of fine particles on the filtration membrane surface is measured. The number of fine particles only in the ultrapure water captured by filtration is calculated by correcting the measured value. Further, as shown in FIG. 9, there is also a method in which a filtration device 10a for an actual test and a filtration device 10b for a blank test are mounted, filtration is started at the same time, and the filtration of the blank test is finished first.

【0010】実試験と空試験を行って微粒子数を計測し
た後、以下の(1)式により補正し、超純水中の微粒子
数を算出する。
After the actual test and the blank test are performed to measure the number of fine particles, the number of fine particles in the ultrapure water is calculated by making a correction by the following equation (1).

【0011】[0011]

【数1】 [Equation 1]

【0012】[0012]

【発明が解決しようとする課題】しかしながら、従来の
直接検鏡法には以下のような問題点があった。
However, the conventional direct microscopy method has the following problems.

【0013】すなわち、ろ過膜上に元来存在する微粒子
数は、ろ過膜毎に異なっており、同一ロットのろ過膜で
も1桁以上のバラツキがあることがある。したがって、
空試験による補正を行っても、超純水中の微粒子数の測
定結果は必ずしも、満足すべき信頼性を有しているとは
いいがたかった。
That is, the number of fine particles originally present on the filtration membrane differs for each filtration membrane, and even the filtration membranes of the same lot may vary by one digit or more. Therefore,
It was hard to say that the measurement results of the number of fine particles in ultrapure water always had satisfactory reliability even after correction by blank test.

【0014】また、近年の超LSIの製造に用いられる
超純水は、存在する微粒子が極めて少ないため、ろ過に
より捕捉される微粒子が少ない。そのために、微粒子数
の測定は、ろ過膜にもともと存在する微粒子数のバラツ
キの影響を強く受けることになる。
In addition, since ultrapure water used in the manufacture of VLSIs in recent years has very few fine particles present, few fine particles are captured by filtration. Therefore, the measurement of the number of fine particles is strongly affected by the variation in the number of fine particles originally existing in the filtration membrane.

【0015】本発明の目的は、精度よく微粒子数を測定
することのできる、微粒子数測定用ろ過装置および微粒
子数測定用ろ過膜を提供することである。
An object of the present invention is to provide a filtration device for measuring the number of fine particles and a filtration membrane for measuring the number of fine particles, which can accurately measure the number of fine particles.

【0016】[0016]

【課題を解決するための手段】本発明者らは、超純水中
の微粒子数測定の精度を高めるべく鋭意研究を重ねた結
果、1枚のろ過膜上に、超純水を透過して超微粒子を捕
捉する領域と、空試験用にろ過膜の一部を不透過とし、
微粒子が捕捉されない領域とが生じるようにろ過装置あ
るいはろ過膜自身を工夫することにより、精度よく空試
験を行うことができることを見いだし、本発明を完成す
るに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to improve the accuracy of measuring the number of fine particles in ultrapure water, and as a result, permeate ultrapure water onto a single filtration membrane. The area for capturing ultrafine particles and a part of the filtration membrane for the blank test are made impermeable,
The inventors have found that a blank test can be performed with high accuracy by devising a filtration device or a filtration membrane itself so that a region where fine particles are not captured occurs, and have completed the present invention.

【0017】すなわち、本発明は、(1)ろ過膜とろ過
膜支持体からなる超純水中の微粒子数測定用ろ過装置に
おいて、空試験用としてろ過膜の一部を不透過領域とす
ることを特徴とする超純水中の微粒子数測定用のろ過装
置、(2)ろ過膜の裏面に、耐水性樹脂を塗布まはシー
ト状の耐水性部材を貼着することによりろ過膜の一部を
不透過領域とすることを特徴とする(1)項記載のろ過
装置、(3)ろ過膜支持体の一部を不透過とすることに
より、ろ過膜の一部を不透過領域とすることを特徴とす
る(1)項記載のろ過装置、(4)ろ過膜とろ過膜支持
体の間にシート状の耐水性部材を挿入することによりろ
過膜の一部を不透過領域とすることを特徴とする(1)
項記載のろ過装置、(5)ろ過膜の裏面に、耐水性樹脂
を塗布またはシート状の耐水性部材を貼着することによ
りろ過膜の一部を不透過領域とする超純水中の微粒子数
測定用ろ過膜、を要旨とするものである。
That is, according to the present invention, (1) in a filtration device for measuring the number of fine particles in ultrapure water, which comprises a filtration membrane and a filtration membrane support, a part of the filtration membrane is used as an impermeable region for a blank test. A filtration device for measuring the number of fine particles in ultrapure water, characterized in that (2) a part of the filtration membrane by applying a waterproof resin or attaching a sheet-shaped waterproof member to the back surface of the filtration membrane. Is a non-permeable region, and (3) a part of the filtration membrane support is impermeable, thereby making a part of the filtration membrane a non-permeable region. (4) The filtration device according to item (1), wherein (4) a sheet-shaped water-resistant member is inserted between the filtration membrane and the filtration membrane support to make a part of the filtration membrane an impermeable region. Features (1)
(5) Fine particles in ultrapure water in which a part of the filtration membrane is made into an impermeable region by coating a water-resistant resin or attaching a sheet-shaped water-resistant member to the back surface of the filtration membrane (5) The gist is a filtration membrane for number measurement.

【0018】[0018]

【作用】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0019】図1は、本発明のろ過装置に用いられるろ
過膜の平面図である。1はろ過膜であり、2は微粒子を
捕捉するろ過領域、3は空試験用の不透過領域である。
図1の例ではろ過を行わない不透過領域3の面積をろ過
膜面積の約50%として示したが、無論この割合により
本発明が制限されるものではない。
FIG. 1 is a plan view of a filtration membrane used in the filtration device of the present invention. Reference numeral 1 is a filtration membrane, 2 is a filtration area for capturing fine particles, and 3 is an impermeable area for blank test.
In the example of FIG. 1, the area of the impermeable region 3 where no filtration is performed is shown as about 50% of the filtration membrane area, but the present invention is not limited by this ratio.

【0020】本発明のろ過装置に用いられるろ過膜は、
1枚のろ過膜に、超純水をろ過して微粒子を捕捉するろ
過領域2と、空試験用に不透過領域3を設けてあるた
め、超純水が透過するろ過領域2では、微粒子が捕捉さ
れるが、不透過領域3では、実質的に超純水が透過しな
いため超純水中の微粒子は捕捉されない。したがって、
不透過領域3上の微粒子は、超純水中に存在する微粒子
ではなく、ろ過膜面上にもともと存在していた微粒子で
あり、ろ過操作終了後に不透過領域3の微粒子を計測す
ることにより、ろ過膜面上にもともと存在する微粒子の
補正を正確に行うことができる。原理的には、同一のろ
過膜で、実試験と空試験を行うため、補正は完全に行う
ことができるが、実際には、同一ろ過膜面上でも、もと
もと存在する微粒子のバラツキがあるため、多少の誤差
は生じる。
The filtration membrane used in the filtration device of the present invention is
Since one filtration membrane is provided with a filtration region 2 for filtering ultrapure water to capture fine particles and an impermeable region 3 for blank test, the filtration region 2 through which ultrapure water permeates fine particles. Although captured, the ultrapure water is not substantially permeated in the impermeable region 3, so that the fine particles in the ultrapure water are not captured. Therefore,
The fine particles on the impermeable region 3 are not the fine particles present in the ultrapure water, but the fine particles originally present on the surface of the filtration membrane. By measuring the fine particles in the impermeable region 3 after the filtration operation, The fine particles originally existing on the surface of the filtration membrane can be accurately corrected. In principle, the same filtration membrane is used for the actual test and the blank test, so the correction can be performed completely, but in reality, even on the same filtration membrane surface, there are variations in the originally existing fine particles. , Some errors will occur.

【0021】ろ過後の膜の表面は、一定の処理を施した
後、図5に示すように、視野11を移動して、走査型電
子顕微鏡等を用いて、写真撮影、画像処理等を行い膜表
面の微粒子数を計測する。前述のように実際に観察され
る表面の割合は0.0l%程度であるので、不透過領域
を設けることによってろ過面積が減少しても、観察時の
移動間隔を小さく取れば、従来法と同等の割合でろ過膜
表面を観察することができる。図5中、ろ過領域2の計
測結果は従来法のサンプルに、不透過領域3の計測結果
は空試験の結果に対応する。このようにして得た測定結
果に基づき、前記(1)式により、空試験のろ過量Vb
をゼロとして超純水中の微粒子数を計算する。
The surface of the membrane after filtration is subjected to a certain treatment, and then, as shown in FIG. 5, the field of view 11 is moved to perform photography, image processing, etc. using a scanning electron microscope or the like. Measure the number of fine particles on the film surface. As described above, the ratio of the surface actually observed is about 0.01%, so even if the filtration area is reduced by providing the impermeable region, if the movement interval at the time of observation is made small, it will be the same as the conventional method. The filtration membrane surface can be observed at the same rate. In FIG. 5, the measurement result of the filtration region 2 corresponds to the sample of the conventional method, and the measurement result of the impermeable region 3 corresponds to the result of the blank test. Based on the measurement results obtained in this way, the filtration amount V b in the blank test is calculated by the formula (1).
The number of fine particles in ultrapure water is calculated with 0 as zero.

【0022】図2は、ろ過膜の一部に不透過領域を設け
るための一実施例の断面図である。1はろ過膜、5はろ
過膜支持体である。ろ過膜支持体5は、ろ過膜を支持
し、超純水を通水しうる構造であれば特に限定されない
が、例えば、多孔質のセラミックや、穴やスリット等か
らなる多数の流路を形成したものである。図2の例は、
ろ過膜の一部を不透過領域とするために、ろ過膜1の裏
面に、耐水性樹脂3aを塗布したものである。耐水性樹
脂を塗布する他に、耐水性の高分子シート等のシート状
の耐水性部材をろ過膜1の裏面に貼着してもよい。ろ過
膜1に超純水を通水すると、不透過処理を施していない
領域では超純水がろ過されて微粒子4はろ過膜面上に捕
捉されるが、不透過領域では、超純水が実質的にろ過さ
れないため、不透過領域のろ過膜面上に超純水の微粒子
が捕捉されることはない。
FIG. 2 is a sectional view of an embodiment for providing an impermeable region in a part of the filtration membrane. Reference numeral 1 is a filtration membrane, and 5 is a filtration membrane support. The filtration membrane support 5 is not particularly limited as long as it has a structure that supports the filtration membrane and allows the passage of ultrapure water. For example, a porous ceramic or a large number of flow channels including holes and slits are formed. It was done. The example in Figure 2
In order to make a part of the filtration membrane an impermeable region, the back surface of the filtration membrane 1 is coated with a water resistant resin 3a. In addition to applying the waterproof resin, a sheet-shaped waterproof member such as a waterproof polymer sheet may be attached to the back surface of the filtration membrane 1. When ultrapure water is passed through the filtration membrane 1, the ultrapure water is filtered in the area that has not been subjected to the impermeable treatment and the fine particles 4 are captured on the surface of the filtration membrane. Since the particles are not substantially filtered, ultrapure water particles are not trapped on the filtration membrane surface in the impermeable region.

【0023】図3は、ろ過膜の一部に不透過領域を設け
るための他の実施例の説明図である。図3の例では、ろ
過膜1には不透過とするための処理を行わず、ろ過膜支
持体5の一部を不透過構造5aとして、この部分と接触
しているろ過膜部分においては実質的に超純水がろ過さ
れないようにしたものである。ろ過膜支持体の一部を不
透過構造とする方法としては、例えば、ろ過膜支持体の
約半分に前述のような水の流路を形成し、他の半分には
流路を形成しない構造としたり、あるいはろ過膜支持体
の流路の一部に前述ような耐水性樹脂を注入して閉塞す
る方法が挙げられる。
FIG. 3 is an explanatory view of another embodiment for providing an impermeable region in a part of the filtration membrane. In the example of FIG. 3, the filtration membrane 1 is not treated to make it impermeable, and a part of the filtration membrane support 5 is used as the impermeable structure 5a, so that the filtration membrane portion in contact with this portion is substantially This is to prevent ultrapure water from being filtered. As a method of making a part of the filtration membrane support an impermeable structure, for example, a structure in which a water channel as described above is formed in about half of the filtration membrane support and no channel is formed in the other half Alternatively, a method of injecting the water-resistant resin as described above into a part of the flow path of the filtration membrane support to close it may be mentioned.

【0024】図4は、ろ過膜の一部に不透過領域を設け
るためのさらに他の実施例の説明図である。ろ過膜1と
ろ過膜支持体5には不透過処理を行わず、シート状の耐
水性部材6をろ過膜1とろ過膜支持体5の間に挿入した
ものである。
FIG. 4 is an explanatory view of still another embodiment for providing an impermeable region in a part of the filtration membrane. The filtration membrane 1 and the filtration membrane support 5 were not subjected to the impermeability treatment, and the sheet-shaped water resistant member 6 was inserted between the filtration membrane 1 and the filtration membrane support 5.

【0025】本発明のろ過装置は、従来のろ過装置と同
様に、超純水が通水されている供給配管に、バルブを設
けた試料導入配管を介して接続すればよい。なお、本発
明のろ過装置を用いて超純水中の微粒子を計測する際
に、必要に応じて供給配管と微粒子数測定用ろ過装置の
間にポンプやガスによる加圧手段等を設けたり、ろ過後
の液体を減圧することによりろ過速度を増加させ、ろ過
時間を短縮することができる。
The filtration device of the present invention may be connected to a supply pipe through which ultrapure water is passed through a sample introduction pipe provided with a valve, as in the conventional filtration device. When measuring fine particles in ultrapure water using the filtration device of the present invention, a pump or a gas pressurizing means or the like may be provided between the supply pipe and the filtration device for measuring the number of fine particles, if necessary. By reducing the pressure of the liquid after filtration, the filtration rate can be increased and the filtration time can be shortened.

【0026】[0026]

【実施例】【Example】

実施例1 オルガノ総合研究所の超純水供給ラインを用いて実験を
行った。微粒子数測定用ろ過膜はポアサイズ0.1μの
ニュークリポア(有効ろ過面積320mm2)を用い
た。ろ過膜の一部を不透過領域とするために、ろ過膜裏
面の50%に市販の耐水性接着テープを貼付した。超純
水を50リットルろ過した後、ろ過膜をスパッタリング
処理し、走査型電子顕微鏡で微粒子を計測した。ろ過領
域上の微粒子数を、実試験とし、不透過領域上の微粒子
数を空試験として計測し、前記(1)式により、超純水
中の微粒子数を計算した(但し、Vb=0として計
算)。試験は、5回繰り返し、微粒子数の平均値と標準
偏差を求めた。結果を表1に示す。
Example 1 An experiment was conducted using an ultrapure water supply line of Organo Research Institute. As a filtration membrane for measuring the number of fine particles, Nuclelipa (effective filtration area: 320 mm 2 ) having a pore size of 0.1 μ was used. In order to make a part of the filtration membrane an impermeable region, a commercially available water-resistant adhesive tape was attached to 50% of the back surface of the filtration membrane. After filtering 50 liters of ultrapure water, the filter membrane was subjected to sputtering treatment, and fine particles were measured with a scanning electron microscope. The number of fine particles on the filtration region was measured as an actual test, and the number of fine particles on the impermeable region was measured as a blank test, and the number of fine particles in the ultrapure water was calculated by the formula (1) (where V b = 0. Calculated as). The test was repeated 5 times, and the average value and standard deviation of the number of fine particles were obtained. The results are shown in Table 1.

【0027】比較例1 比較例として、実施例1と同じ超純水ライン中の微粒子
を従来法により計測した。すなわち、実施例1で用いた
ものと同一ポアサイズのろ過膜を用い、実施例1と同様
に実試験(但し、超純水のろ過水量は100リットルと
して)を行った後、ろ過膜を交換し、空試験として、超
純水を5リットルろ過して空試験の測定値を求めた。前
記(1)式により、超純水中の微粒子数を計算した。試
験は、5回繰り返し、微粒子数の平均値と標準偏差を求
めた。結果を、表1に示す。
Comparative Example 1 As a comparative example, the fine particles in the same ultrapure water line as in Example 1 were measured by the conventional method. That is, after using a filtration membrane having the same pore size as that used in Example 1 and conducting an actual test as in Example 1 (however, the amount of filtered water of ultrapure water was 100 liters), the filtration membrane was replaced. As a blank test, 5 liters of ultrapure water was filtered to obtain the measurement value of the blank test. The number of fine particles in the ultrapure water was calculated by the equation (1). The test was repeated 5 times, and the average value and standard deviation of the number of fine particles were obtained. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、従来法では、空
試験による補正を行っても微粒子数に大きなばらつきが
ある。一方、本発明の結果では、測定値には多少の変動
があるものの、算出した微粒子数のばらつきは従来法と
比較するとはるかに小さい。
As is clear from Table 1, in the conventional method, there is a large variation in the number of fine particles even if correction is performed by a blank test. On the other hand, according to the results of the present invention, although the measured values have some fluctuations, the variation in the calculated number of fine particles is far smaller than that of the conventional method.

【0030】従来例の微粒子数にばらつきが大きいの
は、実試験と空試験でろ過模の表面の汚染状況が違うた
めに起こると思われる。すなわち、ろ過膜の表面は製膜
時、またその後の包装などの工程で汚染される。その度
合いは膜毎に一定ではない。したがって、2枚の膜を用
いて空試験の補正を行っても大きな誤差が含まれること
になる。特に、水中の微粒子数が少ない場合にはこの可
能性が高い。
The large variation in the number of fine particles in the conventional example is considered to occur because the actual test and the blank test differ in the contamination state of the surface of the filter. That is, the surface of the filtration membrane is contaminated at the time of membrane formation and at the subsequent steps such as packaging. The degree is not constant from film to film. Therefore, even if the blank test is corrected using two films, a large error is included. This possibility is high especially when the number of fine particles in water is small.

【0031】一方、本発明のように1枚の膜で補正を行
う場合、1枚の膜の部分による汚染の違いはあるもの
の、膜毎の汚染状況の違いが誤差になることはない。し
たがって、遥かに精度の高い微粒子数の計測が可能にな
った。
On the other hand, when the correction is performed with one film as in the present invention, there is a difference in the contamination due to the portion of the one film, but the difference in the contamination state between the films does not cause an error. Therefore, it is possible to measure the number of fine particles with much higher accuracy.

【0032】また、従来は、測定に必要な操作によりろ
過膜上に付着した微粒子の影響を除くために2回のろ過
操作が必要であったが、本発明によれば1回のろ過操作
で良いなどのメリットもある。
Further, conventionally, two filtration operations were required to remove the influence of fine particles adhering to the filtration membrane by the operation required for measurement, but according to the present invention, one filtration operation is required. There are advantages such as goodness.

【0033】[0033]

【発明の効果】本発明によリ、超純水中の微粒子数の計
測精度が向上すると共に、実試験と空試験を1回の作業
で行えるため、微粒子数計測に必要な作業が滅少する。
According to the present invention, the accuracy of measuring the number of fine particles in ultrapure water is improved, and the actual test and the blank test can be performed in one operation, so the work required for measuring the number of fine particles is reduced. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のろ過装置に用いられるろ過膜の平面
図。
FIG. 1 is a plan view of a filtration membrane used in a filtration device of the present invention.

【図2】本発明のろ過装置およびろ過膜の一実施例を説
明するための断面図。
FIG. 2 is a sectional view for explaining one embodiment of the filtration device and the filtration membrane of the present invention.

【図3】本発明のろ過装置の他の実施例を説明するため
の断面図。
FIG. 3 is a cross-sectional view for explaining another embodiment of the filtration device of the present invention.

【図4】本発明のろ過装置の他の実施例を説明するため
の断面図。
FIG. 4 is a cross-sectional view for explaining another embodiment of the filtration device of the present invention.

【図5】本発明のろ過装置を用いた場合のろ過膜の検鏡
方法の説明図。
FIG. 5 is an explanatory view of a microscopic method of a filtration membrane when the filtration device of the present invention is used.

【図6】従来のろ過装置を用いた場合のろ過膜の検鏡方
法の説明図。
FIG. 6 is an explanatory view of a microscopic method of a filtration membrane when a conventional filtration device is used.

【図7】(A)は、従来のろ過装置を説明するための断
面図、(B)は従来のろ過装置に用いられるろ過膜の平
面図。
7A is a cross-sectional view for explaining a conventional filtration device, and FIG. 7B is a plan view of a filtration membrane used in the conventional filtration device.

【図8】 従来の超純水中の微粒子測定方法の説明図FIG. 8 is an explanatory view of a conventional method for measuring fine particles in ultrapure water.

【図9】 従来の超純水中の微粒子測定方法の説明図FIG. 9 is an explanatory view of a conventional method for measuring fine particles in ultrapure water.

【符号の説明】[Explanation of symbols]

1 ろ過膜 2 ろ過領域 3 不透過領域 3a 耐水性樹脂 4 微粒子 5 ろ過膜支持体 6 シート状耐水性部材 7 超純水供給配管 8 バルブ 9 超純水導入管 10 ろ過装置 11 視野 1 Filtration Membrane 2 Filtration Area 3 Impermeable Area 3a Water-Resistant Resin 4 Fine Particles 5 Filtration Membrane Support 6 Sheet-shaped Water-Resistant Member 7 Ultra Pure Water Supply Pipe 8 Valve 9 Ultra Pure Water Introducing Tube 10 Filtration Device 11 Field of View

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ろ過膜とろ過膜支持体からなる超純水中
の微粒子数測定用ろ過装置において、空試験用としてろ
過膜の一部を不透過領域とすることを特徴とする超純水
中の微粒子数測定用のろ過装置。
1. A filtration device for measuring the number of fine particles in ultrapure water, comprising a filtration membrane and a filtration membrane support, wherein a portion of the filtration membrane is used as an impermeable region for a blank test. A filtration device for measuring the number of fine particles in the product.
【請求項2】 ろ過膜の裏面に、耐水性樹脂を塗布また
はシート状の耐水性部材を貼着することによりろ過膜の
一部を不透過領域とすることを特徴とする請求項1記載
のろ過装置。
2. The filtration membrane according to claim 1, wherein a part of the filtration membrane is made an impermeable region by applying a water-resistant resin or adhering a sheet-shaped water-resistant member to the back surface of the filtration membrane. Filtration device.
【請求項3】 ろ過膜支持体の一部を不透過とすること
により、ろ過膜の一部を不透過領域とすることを特徴と
する請求項1記載のろ過装置。
3. The filtration device according to claim 1, wherein a part of the filtration membrane is made impermeable so that a part of the filtration membrane becomes an impermeable region.
【請求項4】 ろ過膜とろ過膜支持体の間にシート状の
耐水性部材を挿入することにより、ろ過膜の一部を不透
過領域とすることを特徴とする請求項1記載のろ過装
置。
4. The filtration device according to claim 1, wherein a part of the filtration membrane is made an impermeable region by inserting a sheet-shaped water resistant member between the filtration membrane and the filtration membrane support. .
【請求項5】 ろ過膜の裏面に、耐水性樹脂を塗布また
はシート状の耐水性部材を貼着することによりろ過膜の
一部を不透過領域とする超純水中の微粒子数測定用ろ過
膜。
5. A filtration for measuring the number of fine particles in ultrapure water in which a part of the filtration membrane is made an impermeable region by coating a water-resistant resin or attaching a sheet-shaped water-resistant member to the back surface of the filtration membrane. film.
JP5316543A 1993-12-16 1993-12-16 Filtration device for measuring the number of fine particles in ultrapure water and filtration membrane for measuring the number of fine particles Expired - Fee Related JP3040298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5316543A JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration device for measuring the number of fine particles in ultrapure water and filtration membrane for measuring the number of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5316543A JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration device for measuring the number of fine particles in ultrapure water and filtration membrane for measuring the number of fine particles

Publications (2)

Publication Number Publication Date
JPH07167852A true JPH07167852A (en) 1995-07-04
JP3040298B2 JP3040298B2 (en) 2000-05-15

Family

ID=18078275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5316543A Expired - Fee Related JP3040298B2 (en) 1993-12-16 1993-12-16 Filtration device for measuring the number of fine particles in ultrapure water and filtration membrane for measuring the number of fine particles

Country Status (1)

Country Link
JP (1) JP3040298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269027A (en) * 2008-05-09 2009-11-19 Millipore Corp Method for reducing performance variation of multilayer filter
WO2010012644A3 (en) * 2008-07-31 2010-04-15 Eads Deutschland Gmbh Optical particle detector and detection method
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water
JP2017138226A (en) * 2016-02-04 2017-08-10 オルガノ株式会社 Fine particle capturing device and fine particle measuring method
CN111855507A (en) * 2020-07-17 2020-10-30 北方民族大学 Air particulate matter detection device and detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269027A (en) * 2008-05-09 2009-11-19 Millipore Corp Method for reducing performance variation of multilayer filter
US8733556B2 (en) 2008-05-09 2014-05-27 Emd Millipore Corporation Method for reducing performance variability of multi-layer filters
WO2010012644A3 (en) * 2008-07-31 2010-04-15 Eads Deutschland Gmbh Optical particle detector and detection method
US9557259B2 (en) 2008-07-31 2017-01-31 Eads Deutschland Gmbh Optical particle detector and detection method
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water
JP2017138226A (en) * 2016-02-04 2017-08-10 オルガノ株式会社 Fine particle capturing device and fine particle measuring method
CN111855507A (en) * 2020-07-17 2020-10-30 北方民族大学 Air particulate matter detection device and detection method

Also Published As

Publication number Publication date
JP3040298B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
DE3785737T2 (en) DEVICE FOR REPAIRING A PATTERNED FILM.
Fane et al. The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes
RU2012142187A (en) FLEXIBLE SAMPLE CONTAINER
Alhadidi et al. Effect of testing conditions and filtration mechanisms on SDI
JP6402263B2 (en) Interface module for filter integrity testing
US20020176617A1 (en) System and method for continuous integrity testing of a material web
EP0958852B1 (en) Device and method for detecting leakage of filter film
JPH07167852A (en) Filter device for measuring number of fine particles in ultra-pure water, and filter membrane therefor
JPH03276622A (en) Monolithick silicon film structure and manufacture thereof
US5351523A (en) Apparatus and process for determining filter efficiency in removing colloidal suspensions
JP2006189427A (en) Filter for liquid chromatography, and column for liquid chromatography
JP7447320B2 (en) Sequential arrangement with multiple layers of asymmetric filter media, method of manufacture, filtration unit, use of this arrangement, and method of characterization
JP4254185B2 (en) Method and apparatus for manufacturing hollow fiber membrane module
JP2011247675A (en) Filter for measuring number of particulates in pure water and method of measuring number of particulates
TW200307809A (en) Device and method for measuring fine particles in ultrapure water
CN108193171B (en) The manufacturing method of multichannel integrated optical filter optical isolation structure
JP2007070126A (en) Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
JPH07120454A (en) Measurement method for number of particulates in ultrapure water and filter device for measurement
JP3233357B2 (en) Depth filter integrity test method
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP2008246378A (en) Hollow fiber membrane module inspection method
JPS6282343A (en) Surface inspecting instrument
Van Heuven et al. Reverse osmosis by dynamically formed cation exchanger membranes
JP2008145102A (en) Method and device for inspecting foreign matter in semiconductor polishing slurry
Bílek et al. Direct visualization of hollow fiber membrane fouling distribution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees