JPH07167771A - Dispersing method for ceramic powder - Google Patents

Dispersing method for ceramic powder

Info

Publication number
JPH07167771A
JPH07167771A JP5348302A JP34830293A JPH07167771A JP H07167771 A JPH07167771 A JP H07167771A JP 5348302 A JP5348302 A JP 5348302A JP 34830293 A JP34830293 A JP 34830293A JP H07167771 A JPH07167771 A JP H07167771A
Authority
JP
Japan
Prior art keywords
water
electric resistance
powder
ceramic powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5348302A
Other languages
Japanese (ja)
Inventor
Yoshihito Fukutani
佳人 福谷
Koji Kako
浩司 加古
Wataru Ito
伊藤  渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP5348302A priority Critical patent/JPH07167771A/en
Publication of JPH07167771A publication Critical patent/JPH07167771A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To safely and surely disperse ceramic powder scarcely using dispersant by using as dispersing medium one of super pure water with electric resistance over a specific value or a degased water with dissolved oxigen below a specific value and electric resistance over a specific value. CONSTITUTION:Either of super pure water with electric resistance over 170MOMEGA or degased water with dissolved oxigen concentration below 10ppm and electric resistance over 1MOMEGA is used as a dispersing medium. The ceramic powder to be dispersed is not limited to a specific material if only it does not elude metal ion when dispersed in water. For example, such non-oxide ceramics as siliconcarbide, siliconnitride, etc., are preferable. The super pure water has little conductive material ion, and therefore has high electric resistance and small surface tension. Thus, the material causing aggregation and gas molecules adsorbed on powder surface are ioninzed, wettability of the powder is improved and stable dispersion is realized. Also, for the specific degased water, similar effect to the super pure water is expected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミック粉末、とくに
凝集しやすい微粉末の分散方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dispersing a ceramic powder, particularly a fine powder which easily agglomerates.

【0002】[0002]

【従来の技術】近年、セラミックはその耐熱性や硬さが
注目され、さまざまな分野で利用されている。従来セラ
ミックは金属と違ってセラミック粉末を焼き固める製造
方法を採るため、セラミック粉末の粒度調整が重要で、
セラミック粉末の粒度を正確に測定する必要があった。
従来セラミック粉末を分散させる方法としては、水(蒸
留水やイオン交換水)または有機溶剤を分散媒体として
その中にセラミック粉末を分散させる方法が一般的であ
った。さらに必要に応じて分散剤を加えたり、超音波分
散装置やボールミルなどで一次粒子に分散させている。
2. Description of the Related Art In recent years, attention has been paid to the heat resistance and hardness of ceramics, and they have been used in various fields. Conventional ceramics are different from metals in that they have a manufacturing method in which ceramic powders are baked and solidified.
It was necessary to accurately measure the particle size of the ceramic powder.
Conventionally, as a method of dispersing the ceramic powder, a method of dispersing the ceramic powder in water (distilled water or ion-exchanged water) or an organic solvent as a dispersion medium has been generally used. Further, if necessary, a dispersant is added or dispersed in the primary particles with an ultrasonic dispersing device or a ball mill.

【0003】[0003]

【発明が解決しようとする課題】水はpH等の問題を考
慮する必要がなく、一般的に用いられる分散媒体である
が、セラミック粉末を分散させる場合、表面張力が大き
く粉末が凝集してしまい、このままでは正確な粒度分布
測定が困難であった。そこで多量の分散剤を投入し、さ
らに分散装置を使用して分散させるという方法を採るの
が一般的であった。
Water is a generally used dispersion medium without the need to take into consideration problems such as pH, but when ceramic powder is dispersed, the surface tension is large and the powder agglomerates. However, it was difficult to measure the particle size distribution accurately as it is. Therefore, it is common practice to add a large amount of a dispersant and to disperse the dispersant using a disperser.

【0004】分散剤の使用は、粉末の凝集を防ぎ効果的
に分散させることができるが、分散剤が一次粒子に付着
するため本来の粒度と異なること。また、一般的に粒子
表面には気体分子が吸着しているため、分散処理しても
再度粒子の凝集が始まるなど不安定であった。一方分散
剤として有機溶剤を使用した場合、粒子の分散には効果
的であるが、取扱いの点で、たとえば揮発性であると
か、毒性があるとか作業性に問題があった。
The use of the dispersant can prevent the powder from agglomerating and effectively disperse the powder, but the dispersant is different from the original particle size because it adheres to the primary particles. In addition, since gas molecules are generally adsorbed on the surface of the particles, the particles were unstable even after the dispersion treatment, for example, the particles started to aggregate again. On the other hand, when an organic solvent is used as the dispersant, it is effective in dispersing the particles, but there is a problem in workability in terms of handling, such as being volatile or toxic.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、こうし
た問題点に対し、簡便、安全で、かつセラミック粉末の
正確な粒度分布を測定可能にする分散方法を提供するも
のである。すなわち、セラミック粉末を分散する方法に
おいて、電気抵抗17MΩ以上の超純水、または水中の
溶存酸素濃度を10ppm以下、かつ電気抵抗を1MΩ
以上とした脱気水のいずれかを分散媒体として用いるこ
とを特徴とする。ここで、セラミック粉末は水中に分散
させたとき、金属イオン等を溶出しない材質であればと
くに限定しないが、たとえば非酸化物セラミックである
炭化珪素、窒化珪素にはとくに有効である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dispersion method which is simple, safe, and capable of measuring an accurate particle size distribution of a ceramic powder with respect to these problems. That is, in the method of dispersing ceramic powder, the ultrapure water having an electric resistance of 17 MΩ or more, or the dissolved oxygen concentration in water of 10 ppm or less and the electric resistance of 1 MΩ.
Any of the above degassed water is used as a dispersion medium. Here, the ceramic powder is not particularly limited as long as it is a material that does not elute metal ions or the like when dispersed in water, but is particularly effective for non-oxide ceramics such as silicon carbide and silicon nitride.

【0006】[0006]

【作用】超純水は一般的に、イオン交換樹脂でも特に超
純水用として開発された樹脂に、ある程度純化された水
(蒸留水、イオン交換水など)を通過させることにより
得ることができる。超純水は、伝導性物質であるイオン
が非常に少ないため電気抵抗が高く(一般的には17M
Ω以上)表面張力が小さいという特徴を持つ。そのた
め、凝集の原因となる物質や粉末の表面に吸着した気体
分子はイオン化され置換される。その結果、粉体との濡
れ性が向上し、安定した分散状態が得られる。脱気水
は、通常の水を真空処理や脱気膜を通過させる処理をす
ることにより容易に得られる。脱気水は、気体分子が溶
存していないため物質表面に吸着した気体分子などは溶
解され、物質表面に濡れやすくなるという特徴を持つ。
特に、水中に溶存する酸素濃度が10ppm以下で電気
抵抗が1MΩ以上の物については、各種の気体イオン、
金属イオンが少ないため、凝集の原因となる物質はイオ
ン化され分散し、また、粉末の表面に吸着した気体分子
は溶解される。その結果、超純水と同様に粉体との濡れ
性が向上し、安定した分散状態が得られる。
In general, ultrapure water can be obtained by passing some purified water (distilled water, ion-exchanged water, etc.) through an ion exchange resin, which has been developed especially for ultrapure water. . Since ultrapure water has very few conductive ions, it has a high electrical resistance (generally 17M
It has the characteristic that the surface tension is small. Therefore, the substance that causes aggregation and the gas molecules adsorbed on the surface of the powder are ionized and replaced. As a result, the wettability with the powder is improved and a stable dispersed state is obtained. Deaerated water can be easily obtained by subjecting ordinary water to a vacuum treatment or a treatment of passing it through a deaeration membrane. Since degassed water does not have gas molecules dissolved therein, gas molecules adsorbed on the surface of the substance are dissolved and the surface of the substance is easily wet.
In particular, for substances having an oxygen concentration of 10 ppm or less dissolved in water and an electric resistance of 1 MΩ or more, various gas ions,
Since the amount of metal ions is small, the substance that causes aggregation is ionized and dispersed, and the gas molecules adsorbed on the surface of the powder are dissolved. As a result, the wettability with the powder is improved as in the case of ultrapure water, and a stable dispersed state is obtained.

【0007】[0007]

【実施例】本発明を実施例で詳細に説明する。 (実施例1)電気抵抗18.1MΩの超純水を分散媒体
として使用し、粒度既知のSiC粉末(粒度0.6μ
m)を入れ、超音波分散装置を用いてセラミック粉末を
水中に分散させた。粒度分布は、レーザー回折式粒度分
布測定器を用いて測定した。その結果、表1に示したよ
うに、0.6μmをピークとした粒度分布のデータが得
られた。さらに残りの試料を2時間放置した後、再度粒
度分布を測定した結果、粒度は0.6μmであり、粒子
の再凝集は起こらなかった。
The present invention will be described in detail with reference to Examples. (Example 1) Using ultrapure water having an electric resistance of 18.1 MΩ as a dispersion medium, SiC powder of known particle size (particle size 0.6 μ)
m) was added, and the ceramic powder was dispersed in water using an ultrasonic dispersing device. The particle size distribution was measured using a laser diffraction type particle size distribution measuring device. As a result, as shown in Table 1, data of particle size distribution having a peak at 0.6 μm was obtained. After the remaining sample was left for 2 hours, the particle size distribution was measured again. As a result, the particle size was 0.6 μm, and reaggregation of particles did not occur.

【0008】(実施例2)電気抵抗が2MΩ、水中溶存
酸素濃度が5ppmの脱気水を分散媒体として、実施例
1と同様に粒度0.6μmのSiC粉末を水に分散させ
て粒度分布を測定した。結果は、正確に0.6μmの粒
度分布が再現された。さらに2時間放置後も同じ結果で
あった。
Example 2 Similar to Example 1, SiC powder having a particle size of 0.6 μm was dispersed in water using degassed water having an electric resistance of 2 MΩ and a dissolved oxygen concentration in water of 5 ppm as a dispersion medium to obtain a particle size distribution. It was measured. As a result, the particle size distribution of 0.6 μm was accurately reproduced. The same result was obtained after standing for another 2 hours.

【0009】(比較例1)電気抵抗15MΩの純水を分
散媒体として使用し、実施例1と同じセラミック材料を
同様の方法で粒度分布を測定した。その結果、表1に記
載したように0.6μmと2μmと2つのピークをもっ
た粒度分布を示した。これは粉末の分散が不十分で凝集
していることを示している。結果を表1に示した。さら
に2時間放置後に再測定したところ、粒度分布は0.6
μmと2μmと7μmの3つのピークに分かれ、凝集し
ていることがわかった。
Comparative Example 1 Pure water having an electric resistance of 15 MΩ was used as a dispersion medium, and the same ceramic material as in Example 1 was used to measure the particle size distribution by the same method. As a result, as shown in Table 1, a particle size distribution having two peaks of 0.6 μm and 2 μm was shown. This indicates that the powder is not well dispersed and is agglomerated. The results are shown in Table 1. The particle size distribution was 0.6 when measured again after being left for 2 hours.
It was found that there were three peaks of μm, 2 μm, and 7 μm, and they were aggregated.

【0010】(比較例2)電気抵抗2MΩで、溶存酸素
濃度が20ppmのイオン交換水を分散媒体として使用
した。実施例1と同じ粉末で、同様の方法で粒度分布を
測定した。その結果、0.6μmと7μmの2つのピー
クをもった粒度分布を示した。さらに2時間放置後に再
測定したところ、粒度分布は0.6μmと7μmの2つ
のピークに分かれ、凝集していることがわかった。
Comparative Example 2 Ion-exchanged water having an electric resistance of 2 MΩ and a dissolved oxygen concentration of 20 ppm was used as a dispersion medium. With the same powder as in Example 1, the particle size distribution was measured by the same method. As a result, a particle size distribution having two peaks of 0.6 μm and 7 μm was shown. Further measurement after standing for 2 hours revealed that the particle size distribution was divided into two peaks of 0.6 μm and 7 μm and aggregated.

【0011】(比較例3)電気抵抗が2MΩで、溶存酸
素濃度が15ppmの脱気水を分散媒体として使用し
た。実施例と同じ粉末で、同様の方法で粒度分布を測定
した。その結果を表1に示したが、比較例1とまったく
同様に、0.6μmと2μmと2つのピークを持った粒
度分布を示した。さらに2時間放置後に再測定したとこ
ろ、粒度分布は0.6μmと2μmと7μmの3つのピ
ークに分かれ、凝集していることがわかった。
Comparative Example 3 Degassed water having an electric resistance of 2 MΩ and a dissolved oxygen concentration of 15 ppm was used as a dispersion medium. The same powder as in the example was used to measure the particle size distribution in the same manner. The results are shown in Table 1. Just like Comparative Example 1, a particle size distribution having two peaks of 0.6 μm and 2 μm was shown. After re-measurement after standing for 2 hours, it was found that the particle size distribution was divided into three peaks of 0.6 μm, 2 μm and 7 μm and aggregated.

【0012】(比較例4)電気抵抗が0.5MΩで、溶
存酸素濃度が5ppmの脱気水を分散媒体として使用し
た。実施例と同じ粉末で、同様の方法で粒度分布を測定
した。その結果を表1に示したが、比較例1とまったく
同様に、0.6μmと2μmと2つのピークを持った粒
度分布を示した。さらに2時間放置後に再測定したとこ
ろ、粒度分布は0.6μmと2μmと7μmの3つのピ
ークに分かれ、凝集していることがわかった。
Comparative Example 4 Degassed water having an electric resistance of 0.5 MΩ and a dissolved oxygen concentration of 5 ppm was used as a dispersion medium. The same powder as in the example was used to measure the particle size distribution in the same manner. The results are shown in Table 1. Just like Comparative Example 1, a particle size distribution having two peaks of 0.6 μm and 2 μm was shown. After re-measurement after standing for 2 hours, it was found that the particle size distribution was divided into three peaks of 0.6 μm, 2 μm and 7 μm and aggregated.

【0013】以上のように本発明の分散方法によれば、
短時間でしかも危険な有機溶剤を用いなくてもセラミッ
ク粉末の安定した分散媒体が得られるのに対して、本発
明の方法以外では二次的に凝集粒をつくってしまい、正
確な粒度分布が得られなかった。
As described above, according to the dispersion method of the present invention,
While a stable dispersion medium of the ceramic powder can be obtained in a short time and without using a dangerous organic solvent, other than the method of the present invention, secondary agglomerated particles are formed, and an accurate particle size distribution is obtained. I couldn't get it.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明に係わる電気抵抗17MΩ以上の
超純水、および溶存酸素濃度が10ppm以下であって
電気抵抗が1MΩ以上の脱気水を分散媒体として用いる
方法は、セラミック粉末の分散に対して、分散剤をほと
んど必要とせずに安全、確実に、しかも安価に分散でき
る方法を提供し、とくにセラミック粉体の粒度評価に対
しては信頼性が上がり、セラミック成形の技術向上に有
効である。
EFFECT OF THE INVENTION Ultra pure water having an electric resistance of 17 MΩ or more and degassed water having a dissolved oxygen concentration of 10 ppm or less and an electric resistance of 1 MΩ or more are used as dispersion media for dispersing ceramic powder. On the other hand, it provides a method that can disperse safely, reliably, and inexpensively with almost no need for a dispersant. In particular, it improves the reliability of particle size evaluation of ceramic powder and is effective in improving ceramic molding technology. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 15/00 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01N 15/00 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミック粉末を分散する方法におい
て、電気抵抗17MΩ以上の超純水、または水中の溶存
酸素濃度を10ppm以下、かつ電気抵抗を1MΩ以上
とした脱気水のいずれかを分散媒体として用いることを
特徴とするセラミック粉末の分散方法。
1. A method for dispersing a ceramic powder, wherein either ultrapure water having an electric resistance of 17 MΩ or more or degassed water having a dissolved oxygen concentration in water of 10 ppm or less and an electric resistance of 1 MΩ or more is used as a dispersion medium. A method for dispersing a ceramic powder, which is used.
JP5348302A 1993-12-15 1993-12-15 Dispersing method for ceramic powder Withdrawn JPH07167771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348302A JPH07167771A (en) 1993-12-15 1993-12-15 Dispersing method for ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348302A JPH07167771A (en) 1993-12-15 1993-12-15 Dispersing method for ceramic powder

Publications (1)

Publication Number Publication Date
JPH07167771A true JPH07167771A (en) 1995-07-04

Family

ID=18396121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348302A Withdrawn JPH07167771A (en) 1993-12-15 1993-12-15 Dispersing method for ceramic powder

Country Status (1)

Country Link
JP (1) JPH07167771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273311B2 (en) * 2010-09-10 2013-08-28 東亞合成株式会社 Additive for ceramic molding
CN104437155A (en) * 2014-11-11 2015-03-25 哈尔滨工业大学 Dispersing method for ZrB2 nanopowder
CN104437154A (en) * 2014-11-11 2015-03-25 哈尔滨工业大学 Dispersing method for SiC nanopowder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273311B2 (en) * 2010-09-10 2013-08-28 東亞合成株式会社 Additive for ceramic molding
CN104437155A (en) * 2014-11-11 2015-03-25 哈尔滨工业大学 Dispersing method for ZrB2 nanopowder
CN104437154A (en) * 2014-11-11 2015-03-25 哈尔滨工业大学 Dispersing method for SiC nanopowder

Similar Documents

Publication Publication Date Title
JP3359479B2 (en) Abrasive, manufacturing method and polishing method
Kelso et al. Effect of powder surface chemistry on the stability of concentrated aqueous dispersions of alumina
Wang et al. Synthesis and characteristics of poly (methyl methacrylate)/expanded graphite nanocomposites
KR20070085831A (en) Nickel powder, process for producing the same, and conductive paste
Shvidchenko et al. Electrosurface properties of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates
TWI682007B (en) Fine silver particle dispersing solution
JPH07167771A (en) Dispersing method for ceramic powder
Lichtenfeld et al. Fast coagulation of nearly spherical ferric oxide (haematite) particles Part 1. Formation and decomposition of aggregates: experimental estimation of velocity constants
JP2007200775A (en) Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
EP0096519A1 (en) Process for producing zirconium oxide sintered body
JP2005519756A (en) Non-aqueous dispersion of nanocrystalline metal oxide
Botha Synthesis and characterization of nanofluids for cooling applications
JP2003201111A (en) Low thickening fumed silica and its slurry
JP3404813B2 (en) Aluminum nitride sintered body and method for producing the same
JP3056247B2 (en) Method for producing polymer composition having antistatic property-conductivity
EP0568243B1 (en) Electrorheological fluid based on amino acid containing metal polyoxo-salts
Wernet et al. Effects of solids loading and dispersion schedule on the state of aqueous alumina/zirconia dispersions
Shih et al. Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte
Maity et al. A nanocomposite of poly (N‐vinylcarbazole) with nanodimensional alumina
Shih et al. Stabilization of aqueous Si3N4 suspensions with ammonium salt of poly (acrylic acid) at various pH
Kurokawa et al. Surface-enhanced Raman scattering (SERS) using polymer (cellulose acetate and Nafion) membranes impregnated with fine silver particles
Martínez‐Esaín et al. Faceted‐Charge Patchy LnF3 Nanocrystals with a Selective Solvent Interaction
JP2002294220A (en) Polishing agent and polishing agent slurry
JP2004217479A (en) Magnetite particle and its manufacturing method
KR100680680B1 (en) Silica sol and process for preparation thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306