JPH07167737A - Twist angle measuring instrument of wind tunnel testing model - Google Patents
Twist angle measuring instrument of wind tunnel testing modelInfo
- Publication number
- JPH07167737A JPH07167737A JP31170993A JP31170993A JPH07167737A JP H07167737 A JPH07167737 A JP H07167737A JP 31170993 A JP31170993 A JP 31170993A JP 31170993 A JP31170993 A JP 31170993A JP H07167737 A JPH07167737 A JP H07167737A
- Authority
- JP
- Japan
- Prior art keywords
- wind tunnel
- model
- twist angle
- measuring
- laser displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は弾性体で形成された模型
(以下弾性模型という)を用いて行う、航空機の静的な
空力弾性特性を計測する風洞試験等に用いられて、供試
体に生じる捩れ角を測定するための風洞試験模型の捩れ
角測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a wind tunnel test or the like for measuring static aeroelastic characteristics of an aircraft, which is performed by using a model formed of an elastic body (hereinafter referred to as an elastic model). The present invention relates to a device for measuring a twist angle of a wind tunnel test model for measuring a generated twist angle.
【0002】[0002]
【従来の技術】従来、弾性模型を用いて航空機主翼のフ
ラッタ特性等、空力弾性試験を行う風洞試験において
は、弾性模型にかかる荷重と同様弾性模型の捩れ角のデ
ータは航空機の設計上重要であるにも拘わらず、その測
定は実施されていない。これは、模型の捩れ角計測を実
施する場合、捩れ角測定装置を風洞内に設置しなければ
ならず、その設置により風洞内に設置される模型に作用
する気流の状態が変り計測データに影響するためであ
る。この模型に作用する気流状態を変えず弾性模型の捩
れ角を計測するためには、捩れ角測定装置を風洞の床に
埋め込んだ状態で風洞内に設置するか、風洞の床を光学
的に透明な素材で構成して、風洞の外から測定するより
方法はない。しかし、何れの方法を取るにしても風洞自
体に大規模な改修を要する不具合がある。航空機の静的
空力弾性特性を精度よく推定し、航空機の設計に反映さ
せるためには、荷重計測のみでは不十分で、前述の通り
風洞試験における模型の捩れ角についてのデータが必要
である。2. Description of the Related Art Conventionally, in a wind tunnel test for performing aeroelasticity tests such as flutter characteristics of an aircraft wing using an elastic model, data on the torsion angle of the elastic model are important in designing an aircraft as well as loads applied to the elastic model. Despite this, the measurement has not been performed. This is because when measuring the twist angle of a model, the twist angle measuring device must be installed in the wind tunnel, and the installation changes the state of the air flow acting on the model installed in the wind tunnel and affects the measurement data. This is because In order to measure the twist angle of an elastic model without changing the air flow state that acts on this model, either install the twist angle measuring device in the wind tunnel floor or install it inside the wind tunnel, or make the floor of the wind tunnel transparent. There is no better way to measure it from outside the wind tunnel than to make it from a different material. However, no matter which method is adopted, there is a problem that the wind tunnel itself needs a large-scale repair. In order to accurately estimate the static aeroelastic characteristics of an aircraft and reflect them in the design of the aircraft, load measurement alone is not enough, and as described above, data on the twist angle of the model in the wind tunnel test is necessary.
【0003】[0003]
【発明が解決しようとする課題】本発明は弾性模型を用
いた風洞試験において、風洞の大規模な改修を必要とす
ることなく亜音速及び超音速通風速度域等の各速度域で
弾性模型に作用する気流状態の乱れをなくして、又は少
くして、弾性模型の捩れ角を測定できる風洞試験模型の
捩れ角測定装置を提供することを課題とする。DISCLOSURE OF THE INVENTION The present invention provides an elastic model in a wind tunnel test using an elastic model in each velocity range such as subsonic velocity and supersonic ventilation velocity range without requiring a large-scale modification of the wind tunnel. An object of the present invention is to provide a twist angle measuring device for a wind tunnel test model that can measure the twist angle of an elastic model by eliminating or reducing the disturbance of the airflow state that acts.
【0004】[0004]
【課題を解決するための手段】このため本発明の風洞試
験模型の捩れ角測定装置では次の手段とした。For this reason, the wind tunnel test model torsion angle measuring apparatus of the present invention uses the following means.
【0005】(1)弾性模型の捩れ角の測定を必要とす
る弾性模型の測定部にレーザ光を送波し測定部からの反
射光を受波できるようにした複数個のレーザ変位計測器
を流れ方向に離して配置した。(1) A plurality of laser displacement measuring devices capable of transmitting a laser beam to a measuring section of an elastic model which requires measurement of the twist angle of the elastic model and receiving reflected light from the measuring section. They were placed apart in the flow direction.
【0006】(2)弾性模型に作用する気流状態が、風
洞試験を行う速度域で、乱されない若しくは乱されこと
が少い形状にフェアリングしたフェアリング体を、弾性
模型に作用する気流状態がその速度域で乱されない若し
くは乱すことが少い速度域で決る風洞内の場所に、レー
ザ変位計測器を包囲して設置した。(2) The state of air flow acting on the elastic model is such that the fairing body faired in a shape that is not disturbed or less disturbed in the velocity range in which the wind tunnel test is performed A laser displacement measuring instrument was installed surrounding the location in the wind tunnel where the velocity was not disturbed in the velocity range or was less disturbed in the velocity range.
【0007】[0007]
【作用】上述の手段により、本発明の風洞試験模型の捩
れ角測定装置では、フェアリング体に配設した複数個の
レーザ変位計測器の発光部から送波されたレーザ光は、
弾性模型上の捩れ角測定対象点で反射されて、レーザ変
位計測器の受光部で受波され、この送・受波位置の2点
の変位量から捩れ角が計測できる。According to the above-mentioned means, in the torsion angle measuring device for the wind tunnel test model of the present invention, the laser light transmitted from the light emitting portions of the plurality of laser displacement measuring devices arranged in the fairing body is
It is reflected at the torsion angle measurement target point on the elastic model and received by the light receiving portion of the laser displacement measuring device, and the torsion angle can be measured from the displacement amount of the two points at the transmitting and receiving positions.
【0008】さらにレーザ変位計測器は、風洞試験を行
う弾性模型に作用する気流状態を、試験を行う速度域
で、乱すことがない若しくは乱すことが少い形状にさ
れ、さらにその様な風洞内の特定の場所に設置されたフ
ェアリング体におおわれて取り付けられるので、風洞の
大規模な改修を行うことなく弾性模型の荷重と同時に変
位も計測でき、弾性模型の精度の高い空力弾性特性デー
タが得られ、航空機設計の精度向上に寄与できる。Further, the laser displacement measuring device is formed into a shape that does not disturb or hardly disturbs the air flow state acting on the elastic model to be subjected to the wind tunnel test in the velocity range to be tested. Since it is attached by covering the fairing body installed at a specific place of the model, it is possible to measure the displacement and the displacement of the elastic model at the same time without major renovation of the wind tunnel. It is possible to contribute to improving the accuracy of aircraft design.
【0009】[0009]
【実施例】以下、本発明の風洞試験模型の捩れ角測定装
置の一実施例を図面にもとづき説明する。図1、図2
は、本装置の第1実施例を示す図であって、超音速風洞
試験に使用されるものである。本実施例は、図1に示さ
れるようにレーザ変位計測器1,2及びそれをおおい且
つ支持するフェアリング体3から構成される。フェアリ
ング体3の高さh、幅wはレーザ変位計測器1,2の大
きさによって、また長さlはレーザ変位計測器1,2の
大きさ、および捩れ角を計測する弾性模型4の測定部の
長さによって決るレーザ変位計測器1,2の気流方向1
0に離隔する距離によって各々決る。またフェアリング
体3の先端7は四角錐の2分割体に形成されて、天頂角
θはその値と気流のマッハ数によってフェアリング先端
8から発生する衝撃波9角度が決まる為、風洞試験を行
うマッハ数及び弾性模型4と捩れ角計測装置との距離を
考慮して、衝撃波9が弾性模型4にあたらぬように定め
られる。レーザ変位計測器1,2は、それぞれの両側部
に設けられたヒンジ5,6のまわりに回転自在とされ、
計測を行う弾性模型4の計測部に向けてレーザが照射で
き、計測部から反射されたレーザを受波できるようレー
ザ送・受波部が気流10の上流側にむかって傾けて設置
されフェアリング体3に固定されている。またレーザ変
位計測器1,2は、その容積の大部分がフェアリング体
3に包囲された状態でフェアリング体に固定され、フェ
アリング先端8から発生する衝撃波9(マッハコーン)
の内側に収まるようにされている。但し、弾性模型4の
捩れ変位が大きくなる場合は、計測部から反射されたレ
ーザを受波する受波部がレーザ送波部と対をなしている
レーザ変位計測器1,2では、レーザ反射波が受波でき
ないことも考えられるので、この様な場合には、風洞の
大きさ及び計測部の捩れ変位量を考慮して、送波部と受
波部が別体となったレーザ変位計測器を使用する等適切
なレーザ変位計測器を用いる必要がある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the twist angle measuring device for a wind tunnel test model of the present invention will be described below with reference to the drawings. 1 and 2
[FIG. 3] is a diagram showing a first embodiment of the present device and is used for a supersonic wind tunnel test. As shown in FIG. 1, this embodiment comprises laser displacement measuring instruments 1 and 2 and a fairing body 3 covering and supporting the laser displacement measuring instruments 1 and 2. The height h and the width w of the fairing body 3 depend on the sizes of the laser displacement measuring devices 1 and 2, and the length 1 indicates the size of the laser displacement measuring devices 1 and 2 and the elasticity model 4 for measuring the twist angle. Airflow direction 1 of laser displacement measuring instruments 1 and 2 determined by the length of the measuring part
It depends on the distance to zero. Further, the tip 7 of the fairing body 3 is formed into a quadrangular pyramid, and the zenith angle θ determines the angle of the shock wave 9 generated from the fairing tip 8 depending on its value and the Mach number of the air flow. Considering the Mach number and the distance between the elastic model 4 and the torsion angle measuring device, the shock wave 9 is determined so as not to hit the elastic model 4. The laser displacement measuring instruments 1 and 2 are rotatable about hinges 5 and 6 provided on both sides thereof,
The fairing is installed so that the laser transmitter / receiver is tilted toward the upstream side of the airflow 10 so that the laser can be emitted toward the measurement part of the elastic model 4 for measurement and the laser reflected from the measurement part can be received. It is fixed to the body 3. Further, the laser displacement measuring instruments 1 and 2 are fixed to the fairing body while most of the volume is surrounded by the fairing body 3, and a shock wave 9 (Mach cone) generated from the fairing tip 8 is provided.
It is designed to fit inside. However, when the torsional displacement of the elastic model 4 becomes large, in the laser displacement measuring instruments 1 and 2 in which the wave receiving section that receives the laser reflected from the measuring section is paired with the laser transmitting section, In such a case, it is possible that the wave cannot be received. In such a case, the laser displacement measurement with the wave transmitter and the wave receiver as separate bodies should be taken into consideration in consideration of the size of the wind tunnel and the amount of torsional displacement of the measurement unit. It is necessary to use an appropriate laser displacement measuring instrument such as using a measuring instrument.
【0010】図2は、超音速風洞試験で、前述の実施例
装置の風洞内への設置の仕方を示す図である。同図に示
す様に本装置を風洞内に設置するに当り、その設置場所
は、フェアリング3の先端から発生する衝撃波9が弾性
模型4に干渉しないことが条件となり、本装置は弾性模
型4の下流に設置しなければならず、風洞試験を行う速
度(マッハ数)で決る。従って、図1において説明した
ように、レーザ変位計測器1,2は傾けられてレーザ光
を上流に向けて発射することになる。本実施例によって
超音速時の模型の捩れ角が測定できる。FIG. 2 is a diagram showing a supersonic wind tunnel test, showing how to install the apparatus of the above-described embodiment in the wind tunnel. As shown in the figure, when installing this device in a wind tunnel, the installation location must be such that the shock wave 9 generated from the tip of the fairing 3 does not interfere with the elastic model 4. Must be installed downstream of, and is determined by the speed (Mach number) at which the wind tunnel test is performed. Therefore, as described with reference to FIG. 1, the laser displacement measuring instruments 1 and 2 are tilted to emit the laser light toward the upstream. According to this embodiment, the twist angle of the model at supersonic speed can be measured.
【0011】次に、図3は本装置の第2実施例に示す斜
視図であって、亜音速、遷音速風洞試験に使用されるも
のである。レーザ変位計測器11,12及びそれをおお
うフェアリング体13で構成される。亜音速では、下流
で発生した擾乱が上流に伝搬する為、超音速風洞試験に
おける如くレーザ変位計測器11,12を傾けて弾性模
型の下流側からレーザ光を照射するようにしても、その
影響は弾性模型4に作用する気流に影響するため、捩れ
角計測装置の風洞内設置による影響を出来るだけ小さく
するためには、気流方向に断面積の小さい流線形のもの
にする必要がある。従ってレーザ変位計測器11,12
の送波/受波部は風洞床面に平行になるよう設置する。
そしてフェアリング体13の上面は同じ理由から風洞床
面に平行とし、その内部にレーザ変位計測器11,12
全体を収容して、これをおおう様にする。さらにフェア
リング体13先端部側面は流れがなめらかに左右に分れ
て流れるよう先端形状を設計し、弾性模型4の計測部の
直下にレーザ変位計測11,12が配置されるように風
洞内に設置する。Next, FIG. 3 is a perspective view showing a second embodiment of this apparatus, which is used for a subsonic and transonic wind tunnel test. It is composed of laser displacement measuring instruments 11 and 12 and a fairing body 13 covering the laser displacement measuring instruments 11 and 12. At subsonic speed, the disturbance generated in the downstream propagates in the upstream, so even if the laser displacement measuring instruments 11 and 12 are tilted to irradiate the laser beam from the downstream side of the elastic model as in the supersonic wind tunnel test, the effect is not affected. Influences the air flow acting on the elastic model 4. Therefore, in order to minimize the influence of the installation of the twist angle measuring device in the wind tunnel, it is necessary to make it a streamline shape having a small cross-sectional area in the air flow direction. Therefore, the laser displacement measuring instruments 11, 12
The wave transmission / reception part of will be installed parallel to the wind tunnel floor.
For the same reason, the upper surface of the fairing body 13 is parallel to the floor surface of the wind tunnel, and the laser displacement measuring instruments 11 and 12 are provided inside thereof.
Enclose the whole and cover this. Furthermore, the tip end side surface of the fairing body 13 is designed so that the flow smoothly divides into the right and left, and the tip side is designed to flow in the wind tunnel so that the laser displacement measurement 11 and 12 are arranged directly below the measuring portion of the elastic model 4. Install.
【0012】[0012]
【発明の効果】本発明の風洞試験模型の捩れ角測定装置
によれば、特許請求範囲に示す構成により風洞試験装置
である風洞の上・下壁又は側壁にフェアリング固定の為
のボルト穴をあける改修を施すのみで、亜音速、遷音速
及び超音速の各速度域の風洞試験において従来は計測を
実施できなかった模型の捩れ角を計測することができ
る。また、静的空力弾性の効果を、荷重のみならず変位
の面からも確認できるようになるので航空機設計におけ
る精度向上に寄与する。According to the torsion angle measuring device for a wind tunnel test model of the present invention, bolt holes for fixing a fairing are formed on the upper / lower wall or the side wall of the wind tunnel which is the wind tunnel testing device, by the structure shown in the claims. The twist angle of the model, which could not be conventionally measured in wind tunnel tests in the subsonic, transonic, and supersonic speed ranges, can be measured only by making repairs. Further, the effect of static aerodynamics can be confirmed not only from the load but also from the aspect of displacement, which contributes to improvement in accuracy in aircraft design.
【図1】本発明の風洞試験模型の捩れ角計測装置の第1
実施例を示す斜視図、FIG. 1 is a first twist angle measuring device for a wind tunnel test model according to the present invention.
A perspective view showing an embodiment,
【図2】図1装置の風洞内設置位置を説明するための側
面図、FIG. 2 is a side view for explaining the installation position of the device in the wind tunnel,
【図3】本発明装置の第2実施例を示す斜視図である。FIG. 3 is a perspective view showing a second embodiment of the device of the present invention.
1,11 (前部)レーザ変位計測器 2,12 (後部)レーザ変位計測器 3,13 フェアリング体 4 弾性模型 5 (前部)ヒンジ 6 (後部)ヒンジ 7 フェアリング体の先端成形体 8 フェアリング体の先端 9 衝撃波(フェアリング先端部発生) 10 気流 1, 11 (front) laser displacement measuring instrument 2, 12 (rear) laser displacement measuring instrument 3, 13 fairing body 4 elastic model 5 (front) hinge 6 (rear) hinge 7 fairing body tip molded body 8 Tip of fairing 9 Shock wave (Fairing tip) 10 Airflow
Claims (1)
における捩れ角を測定する装置において、前記風洞試験
を行う前記弾性模型に作用する気流が各速度域で一様流
に近くなるようにして風洞内に配設されたフェアリング
体と、前記気流の方向に離隔して配置され上面に設けら
れた送・受波器が前記弾性模型の捩れ角を測定する測定
部に各々対向させられ前記フェアリング体に抱持された
複数個のレーザ変位計測器とからなることを特徴とする
風洞試験模型の捩れ角測定装置。1. An apparatus for measuring a twist angle of an elastic model to be subjected to a wind tunnel test during a wind tunnel test, wherein an air flow acting on the elastic model to be subjected to the wind tunnel test is close to a uniform flow in each velocity range. The fairing body arranged in the wind tunnel and the transmitter / receiver arranged on the upper surface and separated from each other in the direction of the air flow are respectively opposed to the measuring units for measuring the torsion angle of the elastic model. A twist angle measuring device for a wind tunnel test model, comprising: a plurality of laser displacement measuring instruments held by a fairing body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31170993A JPH07167737A (en) | 1993-12-13 | 1993-12-13 | Twist angle measuring instrument of wind tunnel testing model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31170993A JPH07167737A (en) | 1993-12-13 | 1993-12-13 | Twist angle measuring instrument of wind tunnel testing model |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07167737A true JPH07167737A (en) | 1995-07-04 |
Family
ID=18020527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31170993A Withdrawn JPH07167737A (en) | 1993-12-13 | 1993-12-13 | Twist angle measuring instrument of wind tunnel testing model |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07167737A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106768817A (en) * | 2016-12-29 | 2017-05-31 | 中国航天空气动力技术研究院 | A kind of roll angle measurement method of non-axis symmetry model in wind tunnel |
-
1993
- 1993-12-13 JP JP31170993A patent/JPH07167737A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106768817A (en) * | 2016-12-29 | 2017-05-31 | 中国航天空气动力技术研究院 | A kind of roll angle measurement method of non-axis symmetry model in wind tunnel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mueller | Aeroacoustic measurements | |
DOUGHERTY, JR et al. | Boundary-layer transition on a 10-deg cone-Wind tunnel/flight correlation | |
JP3143831B2 (en) | Wind tunnel with free jet measurement section simulating wind direction change | |
Dobrzynski et al. | Research into landing gear airframe noise reduction | |
Mead et al. | Under-wing installation effects on jet noise at sideline | |
Peng et al. | Asymmetric distributions in pressure/load fluctuation levels during blade-vortex interactions | |
Sanders et al. | Trailing-edge noise comparability in open, closed, and hybrid wind tunnel test sections | |
Duell et al. | Recent advances in large scale aeroacoustic wind tunnels | |
CN112945500B (en) | Simulation measurement device and method for influence of transonic wind tunnel blocking degree | |
Tadakuma et al. | Development of full-scale wind tunnel for enhancement of vehicle aerodynamic and aero-acoustic performance | |
JPH07167737A (en) | Twist angle measuring instrument of wind tunnel testing model | |
Prigent et al. | Spatial structure and wavenumber filtering of wall pressure fluctuations on a full-scale cockpit model | |
US20170052044A1 (en) | Sensor System For Determining Air Velocities | |
Massarotti et al. | Aeroacoustic analysis of automotive roof crossbars through on-track acoustic measurements | |
US2582814A (en) | Transonic wind tunnel | |
JP3574814B2 (en) | Aircraft ultrasonic airspeed sensor | |
CN109541588B (en) | Closed space raise dust test system of wind channel circulation | |
Sanders et al. | Airfoil Trailing Edge Noise Measurements in an Open-jet, Hard-wall and Kevlar-wall Test Section: a Benchmark Exercise. | |
Sanders et al. | Comparability of High-Lift Noise Measurements in a Kevlar-Wall, a Hard-Wall and an Open-Jet Test Section. | |
Uselton et al. | Validity of Small-Amplitude Oscillation Dynamic-Stability Measurement Technique | |
CN114295643B (en) | System and method for testing dynamic wave absorbing performance of interference material | |
Jacob | Introduction to experimental aeroacoustics | |
Thompson et al. | Wind-tunnel and on-road wind noise: Comparison and replication | |
Morgan Jr et al. | Transonic wind-tunnel investigation of the effects of taper ratio, body indentation, fixed transition, and afterbody shape on the aerodynamic characteristics of a 45 degree sweptback wing-body combination | |
Lübker et al. | Experimental investigations on aerodynamic response of panel structures at high subsonic and low supersonic mach numbers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010306 |