JPH07167521A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH07167521A
JPH07167521A JP5342838A JP34283893A JPH07167521A JP H07167521 A JPH07167521 A JP H07167521A JP 5342838 A JP5342838 A JP 5342838A JP 34283893 A JP34283893 A JP 34283893A JP H07167521 A JPH07167521 A JP H07167521A
Authority
JP
Japan
Prior art keywords
water
porous body
evaporator
absorption
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5342838A
Other languages
Japanese (ja)
Inventor
Junjiro Iwamoto
純治郎 岩元
Takashi Ichimura
敬司 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5342838A priority Critical patent/JPH07167521A/en
Publication of JPH07167521A publication Critical patent/JPH07167521A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To efficiently separate refrigerant (water) from absorbent, or absorb the refrigerant to the absorbent by using a vapor/liquid separating film having large moisture moving velocity and no liquid leakage for a long period. CONSTITUTION:A vapor/liquid separating film 20 formed of two layers of a hydrophobia porous unit 21 and a non-porous moisture permeating film 22 is so disposed in an evaporator and/or absorber that the unit 21 is opposed to a liquid side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水を冷媒とした吸収式冷
凍装置に関し、さらに詳しく言えば、その蒸発器と吸収
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type refrigerating device using water as a refrigerant, and more particularly to an evaporator and an absorber thereof.

【0002】[0002]

【従来の技術】水を冷媒とする吸収式冷凍装置において
は、水を蒸発器にて蒸発させ、その水蒸気を吸収器内に
導いて例えば臭化リチウム(LiBr)の吸収液に吸収
させるようにしている。
2. Description of the Related Art In an absorption refrigeration system using water as a refrigerant, water is evaporated in an evaporator, and the water vapor is introduced into the absorber so that it is absorbed by an absorption liquid of, for example, lithium bromide (LiBr). ing.

【0003】この水蒸気の吸収液への吸収を自由表面を
透して行なうと、透過面積の効率に限度があり、また、
水溶液と気体とが直接触れるため、その気体中に水溶液
のミストが混入するトラブルが発生する。このため、そ
のトラブルの防止策が必要となり、これが原因で構造が
複雑になり、さらには効率が低下するなどの問題があっ
た。
If this water vapor is absorbed into the absorbing liquid through the free surface, the efficiency of the permeation area is limited, and
Since the aqueous solution and the gas come into direct contact with each other, a trouble occurs in which the mist of the aqueous solution is mixed into the gas. Therefore, it is necessary to take measures to prevent the trouble, which makes the structure complicated and further reduces the efficiency.

【0004】これらの問題は、水蒸気を透すが吸収液の
漏れを阻止し得る水蒸気透過膜を用いることにより解決
され、例えば特開昭61−186739号公報には疎水
性多孔体を水分透過膜として用い、水分移動を行なわせ
ることが提案されている。
These problems are solved by using a water vapor permeable membrane that allows water vapor to pass through but prevents leakage of the absorbing liquid. For example, Japanese Patent Laid-Open No. 61-186739 discloses a hydrophobic porous body with a water permeable membrane. It has been proposed to use it as a water vaporizer to cause water movement.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この水
分透過膜は基本的に多孔体の疎水性で水溶液の移行を阻
止しているため、長期の使用においては水溶液中の溶解
物が膜面に析出してその膜面が徐々に親水化し、やがて
リークにつながることが多い。
However, since this water-permeable membrane is basically a hydrophobic material of the porous body and prevents migration of the aqueous solution, the dissolved matter in the aqueous solution is deposited on the membrane surface during long-term use. Then, the film surface gradually becomes hydrophilic, and eventually leads to leakage.

【0006】他方、親水基を分子構造にもつポリマーか
らなる含水性フィルムを水分透過膜として用いることも
提案されている(例えば、特開平2−293551号公
報参照)。このポリマーにより形成されたフィルムは、
無孔でありながら水分透過性を有しており、水溶液の漏
れの阻止を多孔体の疎水性に頼るものでないため、長期
に用いた場合でも漏れなどが発生することは殆どない。
On the other hand, it has been proposed to use a water-containing film made of a polymer having a hydrophilic group in its molecular structure as a moisture permeable film (see, for example, Japanese Patent Application Laid-Open No. 2-293551). The film formed by this polymer is
Although it is non-porous, it has water permeability and does not rely on the hydrophobicity of the porous body to prevent leakage of the aqueous solution, so that leakage does not occur even when used for a long period of time.

【0007】このようなポリマーの代表的なものとして
は、酢酸セルロース、親水性ウレタン、イオン交換ポリ
マーなどがある。
Typical of such polymers are cellulose acetate, hydrophilic urethane, ion exchange polymers and the like.

【0008】そこで、これらのポリマーから形成された
フィルムを用いたところ、水溶液の濃度が低い場合には
期待したとおり効率よく水分を移動させることができる
が、吸収液のように濃度が高い場合には、水分の移動速
度がきわめて小さくなってしまうことが判明した。
Therefore, by using a film formed of these polymers, it is possible to move water efficiently as expected when the concentration of the aqueous solution is low, but when the concentration is high like the absorbing liquid. Was found to have a very low water transfer rate.

【0009】この原因は必ずしも明確でないが、無孔の
フィルムを水分透過膜として用いた場合、その膜内にも
溶質が浸入して膜内濃度が上昇するため、膜内水のモビ
リティーが低下するものと推測される。
The cause of this is not always clear, but when a non-porous film is used as a water permeable membrane, the solute also penetrates into the membrane and the concentration in the membrane increases, so the mobility of water in the membrane decreases. It is supposed to be.

【0010】[0010]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、その構成上の特徴は、冷
媒としての水を蒸発器にて蒸発させて水蒸気とし、同水
蒸気を吸収器内で臭化リチウムなどの吸収液に吸収させ
て混合水溶液とし、再生器により同混合水溶液を加熱し
て水分を蒸発させ、その水蒸気を凝縮器で凝縮させて上
記蒸発器に戻す冷凍サイクルを有する吸収式冷凍装置に
おいて、上記蒸発器と上記吸収器内の少なくとも一方
に、疎水性多孔体と無孔性水分透過フィルムとの2層か
らなる気液分離膜を同疎水性多孔体が液体側に面するよ
うに配置したことにある。
The present invention has been made in order to solve the above-mentioned problems, and its structural feature is that water as a refrigerant is vaporized by an evaporator to form steam, and the steam is A refrigeration cycle in which an absorbing liquid such as lithium bromide is absorbed in the absorber to form a mixed aqueous solution, the regenerator is used to heat the mixed aqueous solution to evaporate water, and the water vapor is condensed in a condenser and returned to the evaporator In the absorption refrigerating apparatus having the above-mentioned, at least one of the evaporator and the absorber is provided with a gas-liquid separation membrane composed of two layers of a hydrophobic porous body and a nonporous water-permeable film, wherein the hydrophobic porous body is a liquid. It is arranged so that it faces the side.

【0011】これによると、無孔性水分透過フィルムが
あるため、水溶液の移行を多孔体が100%阻止する必
要はないが、水分透過性能の大幅な低下を防止するため
には、大部分の面積において吸収液の無孔性水分透過フ
ィルムへの接触を阻止する必要がある。この意味からし
て、上記疎水性多孔体は0.01Kg/cm以上、特
には0.1Kg/cm以上の水阻止性をもつことが好
ましい。
According to this, since there is a non-porous water permeable film, it is not necessary for the porous body to block the migration of the aqueous solution 100%, but most of it is necessary to prevent a significant decrease in the water permeable performance. It is necessary to prevent contact of the absorbent with the non-porous water-permeable film in the area. And this sense, the hydrophobic porous body 0.01 kg / cm 2 or more, and particularly preferably has a 0.1 Kg / cm 2 or more water-blocking property.

【0012】他方、水分透過性を確保するためには多孔
体の拡散抵抗を小さく保持する必要があり、そのため、
通気度は600秒/100cc以下、特には200秒/
100cc以下であることが好ましい。
On the other hand, in order to ensure water permeability, it is necessary to keep the diffusion resistance of the porous body small, and therefore,
Air permeability is 600 seconds / 100 cc or less, especially 200 seconds /
It is preferably 100 cc or less.

【0013】無孔性水分透過フィルムとしては、酢酸セ
ルロース、透湿性ウレタン、エチレンビニルアルコー
ル、イオン交換膜などいずれも使用可能であるが、水分
透過性の大きなイオン交換膜が好ましい。
As the non-porous water permeable film, any of cellulose acetate, moisture permeable urethane, ethylene vinyl alcohol, ion exchange membrane and the like can be used, but an ion exchange membrane having a large water permeability is preferable.

【0014】本発明で使用されるイオン交換膜に制限は
ないが、吸水率が20〜150容量%、固定イオン濃度
0.4〜15ミリ当量/gHO、イオン交換容量0.
5〜3.5ミリ当量/g樹脂、膜厚1〜100μmのも
のが適当である。
The ion exchange membrane used in the present invention is not limited, but has a water absorption of 20 to 150% by volume, a fixed ion concentration of 0.4 to 15 meq / gH 2 O, an ion exchange capacity of 0.
A resin having a thickness of 5 to 3.5 meq / g and a film thickness of 1 to 100 μm is suitable.

【0015】吸水率が20容量%に満たない場合には、
水蒸気透過速度が著しく低下し、また、150容量%を
超える場合には、膜強度の著しい低下をもたらすのでい
ずれも好ましくない。
When the water absorption rate is less than 20% by volume,
The water vapor permeation rate remarkably decreases, and when it exceeds 150% by volume, the film strength remarkably decreases, which is not preferable.

【0016】固定イオン濃度が0.4N/gHOに満
たない場合には、イオン交換基濃度が低いため水蒸気透
過性が低下し、これに対して15N/gHOを超える
場合には、イオン交換基濃度が著しく高くなるため、膜
内の水のうちイオン交換基と相互作用する水が増加し自
由水が減少すると推測され、水蒸気透過速度が減少する
のでいずれも好ましくない。
[0016] When the fixed ion concentration if less than 0.4 N / gH 2 O is reduced water vapor permeability due to the low ion-exchange group concentration, in excess of 15N / gH 2 O contrast, Since the ion-exchange group concentration becomes extremely high, it is presumed that the amount of water interacting with the ion-exchange groups in the water in the membrane is increased and the free water is decreased.

【0017】また、イオン交換容量が0.5ミリ当量/
g樹脂より低い場合には、イオン交換基濃度の低下によ
り水が透過し難くなり、他方、3.5ミリ当量/g樹脂
を超える場合には、膜強度が低下するのでいずれも好ま
しくない。
The ion exchange capacity is 0.5 milliequivalent /
When it is lower than the g resin, it becomes difficult for water to permeate due to a decrease in the concentration of ion exchange groups, while when it exceeds 3.5 meq / g resin, the membrane strength decreases, which is not preferable.

【0018】次に、膜厚が1μmより小さいと膜に欠陥
が発生しやすくなり、100μmを超えると水蒸気透過
速度が低下するのでいずれも好ましくない。
Next, if the film thickness is less than 1 μm, defects tend to occur in the film, and if it exceeds 100 μm, the water vapor transmission rate decreases, which is not preferable.

【0019】イオン交換膜のうち、吸水率が50〜10
0容量%、固定イオン濃度1.5〜10N/gHO、
イオン交換容量0.9〜2.5ミリ当量/g樹脂、膜厚
3〜20μmを採用すると、水蒸気透過速度および膜強
度が高く、欠陥のない優れた膜が得られので特に好まし
い。
Among the ion exchange membranes, the water absorption rate is 50 to 10
0% by volume, fixed ion concentration 1.5 to 10 N / gH 2 O,
It is particularly preferable to employ an ion exchange capacity of 0.9 to 2.5 meq / g resin and a film thickness of 3 to 20 μm, since a high water vapor transmission rate and a high film strength and an excellent film without defects can be obtained.

【0020】本発明で使用されるイオン交換膜のイオン
交換基としては、スルホン酸、スルホン酸塩、カルボン
酸、カルボン酸塩、燐酸、燐酸塩、酸性水酸基、酸性水
酸塩などのカチオン交換基のほかに、1〜3級アミノ
基、4級アンモニウム基などのアニオン交換基が例示で
きるが、その中でもスルホン酸基が吸水性が高く、水中
に含有するカルキ成分による劣化が少ないことに加えて
耐熱性、対薬品性に優れているので、特に好ましい。
The ion exchange group of the ion exchange membrane used in the present invention is a cation exchange group such as sulfonic acid, sulfonate, carboxylic acid, carboxylate, phosphoric acid, phosphate, acidic hydroxyl group and acidic hydroxide. In addition to the above, anion exchange groups such as a primary to tertiary amino group and a quaternary ammonium group can be exemplified. Among them, the sulfonic acid group has high water absorption, and in addition to being less deteriorated by the chlorine component contained in water, It is particularly preferable because it has excellent heat resistance and chemical resistance.

【0021】イオン交換膜の形状は、平膜状、中空糸状
またはスパイラル状のいずれでもよく、また、その材質
としては、スチレン系樹脂、エチレン系樹脂、ポリスル
ホン系樹脂、含フッ素樹脂などなんら制限なく使用でき
るが、耐熱性、対薬品性、成形加工性および機械的性
質、特に膨潤、収縮による膜破損がないことなどの点か
ら、含フッ素樹脂からなるスルホン酸系陽イオン交換
膜、特に化1に示した含フッ素重合体が好ましい。
The shape of the ion exchange membrane may be a flat membrane shape, a hollow fiber shape or a spiral shape, and the material thereof is not limited to styrene resin, ethylene resin, polysulfone resin, fluorine-containing resin and the like. Although it can be used, from the viewpoints of heat resistance, chemical resistance, molding processability and mechanical properties, in particular, there is no membrane damage due to swelling or shrinking, etc. The fluorine-containing polymer shown in is preferable.

【0022】[0022]

【化1】 ただし、p,qは正の整数であり、q/pは2〜16、
mは0または1、nは1〜5の整数である。また、化2
に示した構造を含むスルホン化ポリスルホン重合体も好
ましい。
[Chemical 1] However, p and q are positive integers, and q / p is 2 to 16,
m is 0 or 1, and n is an integer of 1-5. Also,
Sulfonated polysulfone polymers containing the structure shown in are also preferred.

【0023】[0023]

【化2】 ただし、Arはベンゼン、ビフェニル、ビスフェノール
Aから選ばれたアリル基であり、nは正の整数である。
[Chemical 2] However, Ar is an allyl group selected from benzene, biphenyl, and bisphenol A, and n is a positive integer.

【0024】[0024]

【作用】吸収液は多孔体の疎水性により阻止されて無孔
性水分透過フィルムまで達しないが、水蒸気は無孔性水
分透過フィルムを透過して多孔体に浸入し拡散して吸収
液面に達し、吸収液内に拡散していく。
[Function] The absorbing liquid is blocked by the hydrophobicity of the porous body and does not reach the non-porous water permeable film, but the water vapor permeates the non-porous water permeable film, infiltrates into the porous body and diffuses to the surface of the absorbing liquid. It reaches and diffuses into the absorbent.

【0025】疎水性多孔体の親水化は皆無ではなく徐々
に進行するが、同多孔体の水蒸気側は無孔性水分透過フ
ィルムがあるために孔内には当初から空気が存在してい
る。そのため、無孔性水分透過フィルムがない場合に比
べて吸収液の多孔内への入り込みも少なくなる。
Hydrophobicization of the hydrophobic porous body gradually progresses, but does not exist at all, but air is present in the pores from the beginning since the water vapor side of the porous body has a nonporous water-permeable film. Therefore, the infiltration of the absorbent into the pores is reduced as compared with the case where there is no nonporous water-permeable film.

【0026】さらに、疎水性多孔体が局所的に親水化し
た場合でも、多孔体単独の場合には漏れにつながってシ
ステム全体としてトラブルになってしまうが、無孔性水
分透過フィルムと疎水性多孔体の2層構造の場合、吸収
液はその無孔性水分透過フィルムで阻止されるため、漏
れトラブルにはつながらない。
Further, even if the hydrophobic porous body is made hydrophilic locally, if the porous body is used alone, it will lead to leakage and cause a trouble as the whole system. In the case of the two-layer structure of the body, the absorbing liquid is blocked by the non-porous water-permeable film, so that no leakage trouble occurs.

【0027】もっとも、吸収液が無孔性水分透過フィル
ムに触れた部分の水分透過性能は低下するが、全体に占
める割合が小さい限りには、水分透過性能の低下もわず
かであるため、その範囲がかなりの部分を占めるまでシ
ステムとして使用可能であり、寿命が大幅に伸びる。
However, the moisture permeability of the portion where the absorbent touches the non-porous moisture permeable film is reduced, but the moisture permeability is only slightly reduced as long as the ratio of the absorbing liquid to the whole is small. Can be used as a system until it occupies a considerable part, and the life is greatly extended.

【0028】[0028]

【実施例】以下、本発明の実施例について説明するが、
それに先立って図1を参照しながら、この吸収式冷凍装
置の全体的な構成についてその概略を説明する。
EXAMPLES Examples of the present invention will be described below.
Prior to that, an outline of the overall configuration of the absorption refrigerating apparatus will be described with reference to FIG. 1.

【0029】これによると、冷媒としての水は蒸発器1
1内において冷媒ポンプ11aにより汲み上げられ、そ
の上部に配置されているノズル11bより噴霧され、仕
事済みの冷水から熱をうばって蒸発させられる。
According to this, the water as the refrigerant is the evaporator 1
The refrigerant is pumped up by the refrigerant pump 11a in the inside of 1, and sprayed from the nozzle 11b arranged at the upper part of the refrigerant pump 11a.

【0030】蒸発器11にて生成された水蒸気は吸収器
12内に導かれ、吸収器ポンプ12aにより汲み上げら
れてノズル12bより噴霧される吸収液(この例では臭
化リチウム)と接触して同吸収液に吸収される。
The water vapor generated in the evaporator 11 is introduced into the absorber 12, and is brought into contact with the absorbing liquid (lithium bromide in this example) which is pumped up by the absorber pump 12a and sprayed from the nozzle 12b. It is absorbed by the absorbent.

【0031】水蒸気を吸収した希溶液は、ポンプ13a
により熱交換器14を経て再生器13に送られ、同再生
器13内で例えば蒸気により加熱される。これにより、
希溶液内の水分が蒸発し、その水蒸気が凝縮器15に送
られる。なお、水分の蒸発により濃度が高められた濃溶
液は熱交換器14を介して吸収器12内に戻される。
The dilute solution which absorbed the water vapor is pump 13a.
Is sent to the regenerator 13 via the heat exchanger 14 and heated in the regenerator 13 by, for example, steam. This allows
Moisture in the dilute solution evaporates, and the water vapor is sent to the condenser 15. The concentrated solution whose concentration has been increased by evaporation of water is returned to the absorber 12 via the heat exchanger 14.

【0032】凝縮器15内は低圧であって、かつ、冷却
水がとおっており、水蒸気はその冷却水に熱をうばわれ
て凝縮し、水となって蒸発器11に戻る。なお、吸収器
12と凝縮器15内には冷却水用のパイプ16が配管さ
れている。
The inside of the condenser 15 has a low pressure, and the cooling water has passed through. The steam is heat-conducted by the cooling water to condense and returns to the evaporator 11 as water. A pipe 16 for cooling water is provided in the absorber 12 and the condenser 15.

【0033】このような吸収式冷凍装置において、蒸発
器11と吸収器12内には図2に示されているように、
疎水性多孔体21と無孔性水分透過フィルム22との2
層からなる気液分離膜20がその疎水性多孔体21を液
体側に面するようにして配置されている。
In such an absorption type refrigerating apparatus, as shown in FIG.
2 of hydrophobic porous body 21 and non-porous water-permeable film 22
The gas-liquid separation membrane 20 composed of layers is arranged so that the hydrophobic porous body 21 faces the liquid side.

【0034】この気液分離膜20には次のようなものが
用いられ、これを比較例とともに説明する。
As the gas-liquid separation membrane 20, the following is used, which will be described together with a comparative example.

【0035】《実施例1》テトラフルオロエチレン(T
FE)とCF=CFOCFCF(CF)OCF
CFSOFとを共重合させてイオン交換容量1.1
ミリ当量/g樹脂の共重合体Aを得た。そして、この共
重合体Aを水酸化カリウム水溶液で加水分解した後、塩
酸で処理し末端を−SOHに交換した共重合体Bを得
た。
Example 1 Tetrafluoroethylene (T
FE) and CF 2 = CFOCF 2 CF (CF 3 ) OCF 2
Ion exchange capacity of 1.1 by copolymerizing with CF 2 SO 2 F
A copolymer A having a milliequivalent / g resin was obtained. Then, this copolymer A was hydrolyzed with an aqueous solution of potassium hydroxide and then treated with hydrochloric acid to obtain a copolymer B in which the terminal was replaced with —SO 3 H.

【0036】この共重合体Bをエタノールとともにオー
トクレーブに入れ、加熱攪拌し共重合体Bのエタノール
溶液を得た。
This copolymer B was put into an autoclave together with ethanol and stirred under heating to obtain an ethanol solution of copolymer B.

【0037】次に、このエタノール溶液を孔径0.6μ
m、多孔率85%、厚さ25μmのPTFE製多孔体
(商品名ミクロテックス、日東電工社製)上に塗布して
厚さ10μmのフィルムを形成し、疎水性多孔体と無孔
水分透過フィルムとの複合膜を作製した。
Next, this ethanol solution was added with a pore size of 0.6 μm.
m, porosity 85%, thickness 25 μm made of PTFE (trade name Microtex, manufactured by Nitto Denko KK) to form a film having a thickness of 10 μm, a hydrophobic porous body and a non-porous water-permeable film A composite film with

【0038】この複合膜を気液分離膜としてセルに挟
み、室温にて多孔体側に40%LiCl水溶液を満た
し、無孔水分透過フィルム側に1m/秒の流速で調湿空
気を導入しながら出てくる空気の湿度を測定して水分の
透過状況を測定したところ、表1の結果が得られた。
This composite membrane is sandwiched between cells as a gas-liquid separation membrane, the porous body side is filled with a 40% LiCl aqueous solution at room temperature, and the non-porous moisture permeable film side is discharged while introducing conditioned air at a flow rate of 1 m / sec. When the humidity of the incoming air was measured to measure the water permeation state, the results shown in Table 1 were obtained.

【0039】[0039]

【表1】 〈比較例1〉テトラフルオロエチレン(TFE)とCF
=CFOCFCF(CF)OCFCFSO
Fとを共重合させてイオン交換容量1.1ミリ当量/g
樹脂の共重合体Aを得た。そして、この共重合体Aを水
酸化カリウム水溶液で加水分解した後、塩酸で処理し末
端を−SOHに交換した共重合体Bを得た。
[Table 1] <Comparative Example 1> Tetrafluoroethylene (TFE) and CF
2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2
Ion exchange capacity 1.1 meq / g by copolymerizing with F
A resin copolymer A was obtained. After hydrolysis with the copolymer A potassium hydroxide solution, to obtain a copolymer B replacing the ends were treated with hydrochloric acid to -SO 3 H.

【0040】この共重合体Bをエタノールとともにオー
トクレーブに入れ、加熱攪拌し共重合体Bのエタノール
溶液を得た。
This copolymer B was put into an autoclave together with ethanol, and heated and stirred to obtain an ethanol solution of copolymer B.

【0041】次に、このエタノール溶液をPTFEフィ
ルム上に塗布し、60℃の恒温槽内で溶媒を蒸散させた
後、同PTFEフィルムを剥離することにより、厚さ4
0μmのイオン交換膜を得た。
Next, this ethanol solution was applied onto a PTFE film, the solvent was evaporated in a constant temperature bath at 60 ° C., and the PTFE film was peeled off to give a thickness of 4 μm.
An ion exchange membrane of 0 μm was obtained.

【0042】そして、このイオン交換膜を実施例1と同
じセルに挟み、室温にてその一方の面側に40%LiC
l水溶液を満たし、他方の面側に1m/秒の流速で調湿
空気を導入しながら出てくる空気の湿度を測定して水分
の透過状況を測定したところ、表2の結果が得られた。
Then, this ion-exchange membrane was sandwiched in the same cell as in Example 1, and 40% LiC was formed on one surface thereof at room temperature.
The water permeability was measured by measuring the humidity of the air that was filled with the aqueous solution and introducing the conditioned air at a flow rate of 1 m / sec to the other surface side to measure the water permeation status. .

【0043】[0043]

【表2】 〈比較例2〉孔径0.6μm、多孔率85%、厚さ25
μmのPTFE製多孔体(商品名ミクロテックス−K
2、日東電工社製)を実施例1と同じセルに挟み、室温
にてその一方の面側に40%LiCl水溶液を満たし、
他方の面側に1m/秒の流速で調湿空気を導入しながら
出てくる空気の湿度を測定して水分の透過状況を測定し
たところ、表3の結果が得られた。
[Table 2] <Comparative Example 2> Pore diameter 0.6 μm, porosity 85%, thickness 25
μm PTFE porous body (trade name: Microtex-K
2, manufactured by Nitto Denko Co., Ltd.) in the same cell as in Example 1, and one side of the cell is filled with a 40% LiCl aqueous solution at room temperature,
When the humidity of the air coming out while introducing the conditioned air at a flow rate of 1 m / sec to the other surface side was measured to measure the water permeation state, the results in Table 3 were obtained.

【0044】[0044]

【表3】 なお、蒸発器と吸収器の双方にこの気液分離膜を設ける
ことが好ましいが、場合によってはそのいずれか一方、
例えば吸収器側のみに設けることも想定される。
[Table 3] Incidentally, it is preferable to provide this gas-liquid separation membrane in both the evaporator and the absorber, but depending on the case, either one of them is
For example, it may be provided only on the absorber side.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
吸収式冷凍装置の蒸発器と吸収器の少なくともいずれか
一方に、水分移動速度が大きく、かつ、長期にわたって
液側のリークを生じさせない気液分離性能の安定した疎
水性多孔体と無孔性水分透過フィルムとの2層からなる
気液分離膜が適用されているため、吸収式冷凍装置の運
転効率をより高めることができるとともに、長寿命化が
図れる。
As described above, according to the present invention,
Hydrophobic porous body and non-porous water with stable vapor-liquid separation performance that has a high moisture transfer rate and does not cause liquid-side leakage for a long period of time in at least one of the evaporator and absorber of the absorption refrigeration system. Since the gas-liquid separation membrane consisting of two layers with the permeable film is applied, the operating efficiency of the absorption refrigeration system can be further improved and the life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式冷凍装置の構成を概略的に示した模式
図。
FIG. 1 is a schematic diagram schematically showing the configuration of an absorption refrigeration system.

【図2】同冷凍装置の蒸発器と吸収器内に設けられる気
液分離膜を示した断面図。
FIG. 2 is a cross-sectional view showing a gas-liquid separation membrane provided in an evaporator and an absorber of the refrigeration system.

【符号の説明】[Explanation of symbols]

11 蒸発器 12 吸収器 13 再生器 15 凝縮器 20 気液分離膜 21 疎水性多孔体 22 無孔性水分透過フィルム 11 Evaporator 12 Absorber 13 Regenerator 15 Condenser 20 Gas-liquid separation membrane 21 Hydrophobic porous body 22 Non-porous water permeable film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒としての水を蒸発器にて蒸発させて
水蒸気とし、同水蒸気を吸収器内で臭化リチウムなどの
吸収液に吸収させて混合水溶液とし、再生器により同混
合水溶液を加熱して水分を蒸発させ、その水蒸気を凝縮
器で凝縮させて上記蒸発器に戻す冷凍サイクルを有する
吸収式冷凍装置において、上記蒸発器と上記吸収器内の
少なくとも一方に、疎水性多孔体と無孔性水分透過フィ
ルムとの2層からなる気液分離膜を同疎水性多孔体が液
体側に面するように配置したことを特徴とする吸収式冷
凍装置。
1. Water as a refrigerant is evaporated in an evaporator to form water vapor, and the water vapor is absorbed by an absorbing liquid such as lithium bromide in an absorber to form a mixed aqueous solution, which is heated by a regenerator. In the absorption refrigeration apparatus having a refrigeration cycle in which water is evaporated and the water vapor is condensed in a condenser and returned to the evaporator, at least one of the evaporator and the absorber has no hydrophobic porous body. An absorption type refrigerating apparatus, wherein a gas-liquid separation membrane composed of two layers of a porous water-permeable film is arranged so that the hydrophobic porous body faces the liquid side.
【請求項2】 上記疎水性多孔体の水阻止耐圧が0.0
1Kg/cm以上であり、かつ、通気度が600秒/
100cc以下であることを特徴とする請求項1に記載
の吸収式冷凍装置。
2. The water blocking pressure resistance of the hydrophobic porous body is 0.0.
1 kg / cm 2 or more, and air permeability of 600 seconds /
It is 100 cc or less, The absorption type refrigerating device of Claim 1 characterized by the above-mentioned.
【請求項3】 上記無孔性水分透過フィルムが吸水率2
0〜150容量%、固定イオン濃度0.4〜15N、イ
オン交換容量が0.5〜3.5ミリ当量/g樹脂のイオ
ン交換膜であることを特徴とする請求項1に記載の吸収
式冷凍装置。
3. The non-porous water-permeable film has a water absorption of 2
The absorption formula according to claim 1, which is an ion exchange membrane of 0 to 150% by volume, a fixed ion concentration of 0.4 to 15 N, and an ion exchange capacity of 0.5 to 3.5 meq / g resin. Refrigeration equipment.
JP5342838A 1993-12-15 1993-12-15 Absorption type refrigerator Withdrawn JPH07167521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342838A JPH07167521A (en) 1993-12-15 1993-12-15 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342838A JPH07167521A (en) 1993-12-15 1993-12-15 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH07167521A true JPH07167521A (en) 1995-07-04

Family

ID=18356889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342838A Withdrawn JPH07167521A (en) 1993-12-15 1993-12-15 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH07167521A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506212A (en) * 1999-08-06 2003-02-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Water still having pervaporation membrane and method of operating the same
JP2006529022A (en) * 2003-05-21 2006-12-28 ヴァイマール,トマス Thermodynamic apparatus and method for heat absorption
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
CN103363713A (en) * 2012-04-06 2013-10-23 荏原冷热系统株式会社 An absorption heat pump
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
JP2017030267A (en) * 2015-08-03 2017-02-09 株式会社ミマキエンジニアリング Ink container, printer and ink supply method
WO2017022653A1 (en) * 2015-08-03 2017-02-09 株式会社ミマキエンジニアリング Ink container, printing device, and ink supply method
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
KR102215927B1 (en) * 2019-08-05 2021-02-18 한국생산기술연구원 Eliminator in absorption refrigerating

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506212A (en) * 1999-08-06 2003-02-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Water still having pervaporation membrane and method of operating the same
JP2006529022A (en) * 2003-05-21 2006-12-28 ヴァイマール,トマス Thermodynamic apparatus and method for heat absorption
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
CN101939602A (en) * 2008-02-05 2011-01-05 赢创德固赛有限公司 Absorption cooling machine
JP2011511258A (en) * 2008-02-05 2011-04-07 エボニック デグサ ゲーエムベーハー Absorption refrigerator
WO2009098155A1 (en) * 2008-02-05 2009-08-13 Evonik Degussa Gmbh Absorption type refrigerating machine
US20100326126A1 (en) * 2008-02-05 2010-12-30 Evonik Degussa Gmbh Absorption Refrigeration Machine
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9221007B2 (en) 2011-11-14 2015-12-29 Evonik Degussa Gmbh Method and device for separating acid gases from a gas mixture
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
CN103363713A (en) * 2012-04-06 2013-10-23 荏原冷热系统株式会社 An absorption heat pump
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
JP2017030267A (en) * 2015-08-03 2017-02-09 株式会社ミマキエンジニアリング Ink container, printer and ink supply method
WO2017022653A1 (en) * 2015-08-03 2017-02-09 株式会社ミマキエンジニアリング Ink container, printing device, and ink supply method
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
KR102215927B1 (en) * 2019-08-05 2021-02-18 한국생산기술연구원 Eliminator in absorption refrigerating

Similar Documents

Publication Publication Date Title
JPH07167521A (en) Absorption type refrigerator
US5620500A (en) Dehumidifying method
US5147553A (en) Selectively permeable barriers
US4875908A (en) Process for selectively separating gaseous mixtures containing water vapor
EP0326083B1 (en) Vapor permselective membrane
US6635104B2 (en) Gas separation device
US4670146A (en) Composite hydrophilic membrane and method for manufacture thereof
CA2717354C (en) Hybrid membrane comprising chitosan, hydroxy ethyl cellulose, and montmorillonite
US20100326126A1 (en) Absorption Refrigeration Machine
KR20130023213A (en) Absorption heat pump with sorbent comprising lithum chloride and an organic chloride salt
US6325218B1 (en) Polyion complex separation membrane with a double structure
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP4022341B2 (en) Dehumidification method and apparatus
JPH01199625A (en) Improved dehumidification film
JPS6138208B2 (en)
JPH07108128A (en) Humidity control method of gas
JPH07111261B2 (en) Humidification method
CN112403290B (en) Hydrophilic modification treatment liquid for porous polyolefin material
JPH06106021A (en) Membrane type absorption system dehumidifier
US5164088A (en) Multilayer membrane and process of manufacturing same
JPH06218251A (en) Humidifying membrane
CN113350977A (en) Coupling membrane separation device for absorbing and separating acid gas from mixed gas
JPH082414B2 (en) Water vapor selective permeable membrane
JP2002100384A (en) Fuel cell and water vapor permeable membrane used therein
Uragami et al. Studies on syntheses and permeabilities of special polymer membranes. 25. Effects of membrane preparation method on structure and permeation characteristics of poly (vinylidene fluoride) membranes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306