JPH07164823A - Pneumatic tire for heavy load - Google Patents

Pneumatic tire for heavy load

Info

Publication number
JPH07164823A
JPH07164823A JP5343975A JP34397593A JPH07164823A JP H07164823 A JPH07164823 A JP H07164823A JP 5343975 A JP5343975 A JP 5343975A JP 34397593 A JP34397593 A JP 34397593A JP H07164823 A JPH07164823 A JP H07164823A
Authority
JP
Japan
Prior art keywords
tread
tire
shoulder
arc portion
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5343975A
Other languages
Japanese (ja)
Other versions
JP3343633B2 (en
Inventor
Yoshirou Sumiya
吉朗 住矢
Hiroaki Sugimoto
裕昭 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP34397593A priority Critical patent/JP3343633B2/en
Priority to US08/350,957 priority patent/US5647925A/en
Publication of JPH07164823A publication Critical patent/JPH07164823A/en
Application granted granted Critical
Publication of JP3343633B2 publication Critical patent/JP3343633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the generation of eccentric abrasion and improve durability by suppressing the projection of the TW point having a specific value of a tread. CONSTITUTION:As for the tread profile in the case where the internal pressure of a tire 1 is not charged, the outer shape of a tread center region 5 is formed from the first arcuate part 6A consisting of a curvature radius R1, and further, the outer shape of a shoulder rib 4 is formed from the second arcuate part 6B consisting of a curvature radius of R2. Accordingly, the outer shape is formed, satisfying the following relations: 1/4TW<TW1<TW, 0<=h1<=10mm, 0<=h2<=3mm (however, TW is all the tread development width, TW1 is twice larger than the tread width between the cross point P1 of the first and the second arcuate parts and the tread center axis, 1/4TW is 1/4 times of all the tread development width, h1 is the step difference between the first and the second arcuate parts at the shoulder edge, and h2 is the step difference in the radial direction between both the arcs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、重荷重用空気入りタ
イヤのタイヤ走行中におけるトレッド外面の偏摩耗の発
生を抑制し、これを改良した重荷重用空気入りタイヤに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heavy duty pneumatic tire which suppresses uneven wear of the outer surface of the tread of the heavy duty pneumatic tire during running of the tire and which is improved.

【0002】[0002]

【従来の技術】従来、この種重荷重用空気入りタイヤ
は、図2(イ)に示した如く、一つの円弧部R1 によっ
てトレッド部31の外形が形成されている、いわゆるシ
ングルクラウン方式が採用されていたが、この方式によ
りモールドを形成し、加硫成形したタイヤでは、内圧の
充填に伴う、いわゆる成長タイヤでは、タイヤセンター
軸CLの外形成長とトレッド部31のショルダー端部3
2のコードプライで発生する内圧の張力によって、トレ
ッドショルダー端部32に最も近い主溝33を起点にし
てショルダーリブ34の肩落ち現象が起こる。即ち、図
2(イ)では、内圧充填したタイヤでは、タイヤセンタ
ー軸CL部分のタイヤ外径A1 とショルダー端部32部
分のタイヤ外径B1 とは、A1 >B1 となって段差量h
分だけが肩落ちすることとなる。しかし、走行・発信・
停止またはハンドル操作を頻繁に行う市街地走行では、
上記ショルダーリブ34の肩落ちタイヤであっても、ト
レッド面(路面部)の強制摩耗が促進されるので偏摩耗
発生は比較的少ない。しかしその反面、最近の輸送事情
に因る長距離高速走行にみられる、いわゆる定常走行を
主体とする市場では、前記市街地の如くトレッド外面内
の強制摩耗が作用せず、負荷時の変形に基づくトレッド
部内の前後圧力および横力の影響をより受け易くなる。
例えば、先に示した図2(イ)の如きタイヤ金型の断面
では、そのタイヤセンター、即ちトレッドセンター軸C
Lとショルダー端部32のタイヤ外径では、金型はトレ
ッドクラウンの円弧部R1 を有するためにA1 >B1
なっており、この関係に応じて接地形状のトレッドセン
ター軸CLおよびショルダー端部32の接地長も図3
(イ)および(ロ)に示す如く、成長前の接地形状
(イ)に対し、成長後(ロ)では変形して成長前の接地
長A2 とB2 とはA2 >B2 の関係であったものが、
A′2 >B′2 とはなるものの特にB2 とB′2 の差が
顕著となる。即ち、トレッド断面(ハおよびニ)によれ
ば外径成長差Sが拡大している。しかし、転動中のタイ
ヤでは、トレッドセンター軸CLおよびショルダー端部
も同一速度の運動が強制されることとなって、タイヤ接
地長(外周長)の小さいトレッド部のショルダー端部で
は、トレッドセンター部と同速度の運動を保つために
は、いきおいスリップを発生しなければならず、本来、
スリップが発生する箇所では路面とタイヤの間に十分な
る接地が得られていないので、路面部が路面に削り取ら
れるような摩耗が起こり、これが局部的な偏摩耗の原因
となり得るほか、摩耗速度の遅い定常高速走行では、か
かる局部的偏摩耗が原因で振動問題などを惹き起こし、
その結果タイヤの早期取外しとなるので十分なるタイヤ
ライフを得ることはできなかった。
2. Description of the Related Art Conventionally, this type of heavy duty pneumatic tire employs a so-called single crown system in which the outer shape of the tread portion 31 is formed by one arc portion R 1 as shown in FIG. However, in a tire in which a mold is formed and vulcanization molded by this method, in the so-called growing tire that is accompanied by filling of internal pressure, the outer shape growth of the tire center axis CL and the shoulder end portion 3 of the tread portion 31 are performed.
Due to the tension of the internal pressure generated by the cord ply No. 2, the shoulder rib 34 falls from the main groove 33 closest to the tread shoulder end 32 as a starting point. That is, in FIG. 2 (b), the tires internal pressure, the tire outside diameter B 1 of the tire outer diameter A 1 and the shoulder end 32 portion of the tire center axis CL portion, becomes A 1> B 1 step Quantity h
Only the minutes will fall. However, traveling / transmission /
In urban driving where you frequently stop or operate the steering wheel,
Even in the tire with the shoulder ribs 34 falling off, the forced wear of the tread surface (road surface portion) is promoted, so that uneven wear occurs relatively little. However, on the other hand, in the market mainly for so-called steady running, which is seen in long-distance high-speed running due to recent transportation circumstances, forced wear on the outer surface of the tread does not work like in the above-mentioned urban area, and it is based on deformation under load. It becomes more susceptible to the longitudinal pressure and lateral force in the tread portion.
For example, in the cross section of the tire mold as shown in FIG. 2A, the tire center, that is, the tread center axis C
At the tire outer diameters of L and the shoulder end portion 32, the mold has A 1 > B 1 because it has the arc portion R 1 of the tread crown. According to this relationship, the tread center axis CL of the ground contact shape and the shoulder The ground length of the end 32 is also shown in FIG.
As shown in (a) and (b), the contact shape before growth (ii) is deformed after growth (ii) and the contact length A 2 and B 2 before growth is A 2 > B 2 . What was
A conspicuous particularly difference B 2 and B '2 but become the' 2> B '2. That is, the outer diameter growth difference S is enlarged according to the tread cross sections (C and D). However, in the rolling tire, the tread center axis CL and the shoulder end are also forced to move at the same speed, so that the tread center is reduced at the shoulder end of the tread having a small tire contact length (outer circumference length). In order to keep the movement at the same speed as the part, it is necessary to generate a great slip, and originally,
At the place where slip occurs, sufficient ground contact is not obtained between the road surface and the tires, so wear that the road surface part is scraped off to the road surface may occur, which may cause local uneven wear and In slow steady high speed running, such localized uneven wear causes vibration problems and the like,
As a result, the tires were removed early, and it was not possible to obtain a sufficient tire life.

【0003】そこで、上記問題の解決策として、図2
(ロ)に示す如く、トレッドセンター部領域の外形を形
成する第1円弧部R1 に外接し、トレッド部のショルダ
ー端部にて肩上げ量(h)のみ肩上げしたショルダー端
部32を通る第2円弧部R2 によって構成される、いわ
ゆるダブルクラウン方式が試みられている。しかし、こ
の両者における肩落ち現象としても図4(イ),(ロ)
のトレッド断面図および接地形状にて示した如く、内圧
充填後のダブルクラウン方式(実線)とシングルクラウ
ン方式(点線)との対比では、内圧充填に伴うトレッド
センター部における外径成長と、両側域のベルト層端域
で発生する内圧の張力によって、トレッド端部に最も近
い溝33を起点としてショルダーリブの肩落ち現象が起
こる。
Therefore, as a solution to the above problem, FIG.
As shown in (b), a second circumscribing the first arc portion R 1 forming the outer shape of the tread center portion area and passing through the shoulder end portion 32 shoulder-raised by the shoulder raising amount (h) at the shoulder end portion of the tread portion. A so-called double crown method, which is constituted by the arcuate portion R 2 , has been tried. However, the shoulder drop phenomenon in both cases is shown in Fig. 4 (a) and (b).
As shown in the tread cross-section and the ground contact shape of Fig. 2, when comparing the double crown method (solid line) and the single crown method (dotted line) after the internal pressure filling, the outer diameter growth in the tread center part due to the internal pressure filling and the double-sided area Due to the tension of the internal pressure generated in the belt layer end region, the shoulder drop phenomenon of the shoulder rib occurs starting from the groove 33 closest to the tread end.

【0004】ところで、このダブルクラウン方式による
肩上げによって、タイヤは内圧充填によるトレッド外形
の変形あるいは接地形状を修正できるが、市場で使用さ
れる場合、転動および荷重にさらされて外径成長が起こ
る。例えば、市場で見られるタイヤの成長に伴う、寸法
変化では、図5のグラフに示す如く、ある時点で飽和状
態となる。即ち、タイヤサイズ11 R 24.5 14P
R(リムサイズ8.25×24.5)のタイヤの外径とトレッド
幅の寸法変化を見た測定結果では、走行前(NEW)で
は外径1103mm、タイヤ総幅280mmであったも
のが走行後(S.G)では外径1107mm、タイヤ総
幅278mmの点で飽和することとなる。しかしなが
ら、さきの図3(イ)〜(ニ)に示した如く、タイヤ寸
法変化と共にトレッド外形、強いては接地形状まで変形
することとなり、強制摩耗においてトレッド部が浸食さ
れる市街地走行条件では、成長後の接地形状変化が摩耗
の形態に与える影響は差程大きくない。他方、摩耗速度
の遅い定常走行を主体とする高速市場では、トレッド外
形および接地形状変化が与える影響は大きい。ここで、
トレッドセンター軸CLの接地長A2 ,B2 を対比する
と、A2 >B2 の傾向が成長前に比べ成長後では一層顕
著となり、タイヤのスリップによるトレッド部のショル
ダー端部32の局部的な偏摩耗が懸念される一方で、ト
レッドショルダー端部に近い最側端部主溝33を起点と
して屈曲が起きて該主溝33のタイヤ軸方向両外側端部
33A、33Bが突出した形状となる。そしてこの箇所
は、トレッド幅(TW)の1/4 の位置に相当する、いわ
ゆる1/4 TW点である。摩耗速度が極端に遅い高速市場
では、市街地の強制摩耗とは相異してトレッド部に作用
するラジアル方向の横力(サイドウォース)とタイヤ周
方向の前・後進力(前進方向の力をドライブフォース、
後進方向の力をブレーキングフォースと呼ばれる。)の
作用が主体となって屈曲点E、即ち、図3(ロ)におけ
る最外側主溝33のタイヤ軸方向内・外側端部33A・
33Bに応力が集中してこの力を受けて、該33A・3
3Bの角部が摩耗してくると、トレッド面の浸食が各リ
ブの幅方向に進みこれがリバーウエアの原因となる。
By the way, by the shoulder-raising by the double crown system, the tire can correct the deformation of the tread outer shape or the ground contact shape due to the internal pressure filling, but when it is used in the market, the outer diameter growth is caused by being exposed to rolling and load. . For example, as shown in the graph of FIG. 5, the dimensional change accompanying the growth of tires seen in the market is saturated at some point. That is, tire size 11 R 24.5 14P
According to the measurement results of the dimensional changes of the outer diameter and the tread width of the R (rim size 8.25 × 24.5), the tire having an outer diameter of 1103 mm and the total tire width of 280 mm before traveling (NEW) has a tire after traveling (S.G. ), The outer diameter is 1107 mm and the tire has a total width of 278 mm. However, as shown in FIGS. 3 (a) to 3 (d), as the tire dimensions change, the tread outer shape, or even the ground contact shape, is deformed, and under the urban driving conditions in which the tread portion is eroded by the forced wear, the growth occurs. The influence of the subsequent contact shape change on the form of wear is not so great. On the other hand, in the high-speed market, which mainly involves steady running with a slow wear rate, changes in the tread outer shape and the ground contact shape have a great influence. here,
Comparing the ground contact lengths A 2 and B 2 of the tread center axis CL, the tendency of A 2 > B 2 becomes more remarkable after the growth than before the growth, and the shoulder end portion 32 of the tread portion due to the tire slip is locally localized. While uneven wear is a concern, bending occurs from the outermost end main groove 33 close to the tread shoulder end, and the tire groove axially outer ends 33A and 33B of the main groove 33 have a protruding shape. . This portion is a so-called 1/4 TW point, which corresponds to a position 1/4 of the tread width (TW). In high-speed markets where the wear speed is extremely slow, unlike radial forced wear in urban areas, the radial lateral force (side wars) acting on the tread and the tire circumferential forward / backward force (forward force) Drive force,
The force in the reverse direction is called the braking force. ), The bending point E, that is, the inner and outer end portions 33A of the outermost main groove 33 in the tire axial direction in FIG.
The stress concentrates on 33B and receives this force.
When the corners of 3B become worn, the erosion of the tread surface advances in the width direction of each rib, which causes river wear.

【0005】かかる如き、リバーウエア発生の原因の一
つは、図6(イ),(ロ)に示す如く、タイヤ転動に伴
う接地部の負荷変形では接地面に侵入する際、ショルダ
ー部の接地によってタイヤ中心部が陥没し、ベルト層3
5は、逆反り変形しながら、タイヤ中心部に向かって収
縮する。そして、このベルトラジアル方向の収縮を受け
てベルト層35外方のトレッドゴムは、接地面中心に巻
込まれてラジアル方向の横力(F)が生じる。因って、
転動による負荷変形を考えた場合には、タイヤの成長後
のトレッド形状で突出した、いわゆる1/4 TW点に対し
主溝33とこれのタイヤ軸方向外側端部33Aおよび同
内側端部33Bに応力が集中せざるを得ない。また一
方、図7(イ),(ロ)において偏摩耗成長過程を示し
如く、内圧充填前のタイヤに内圧を充填させて成長させ
た後に変化したトレッド部および接地形状においては、
同図(ロ),(ハ)に示す如く、トレッド部のショルダ
ー領域にサイドフォースとドライブ・ブレーキングフォ
ースが作用することによりショルダーリブ34のタイヤ
軸方向外側端部33Aが次第に侵食をうけて、やがては
偏摩耗として同図(ニ)に示し如く、ショルダーリブ全
面が偏摩耗することとなる。即ち、一度前記最外側主溝
33のタイヤ軸方向外側端部33Aが丸味を帯びてくる
と、接地時のタイヤトレッド部内では、前・後進力が作
用してラジアル方向の段差摩耗がショルダーリブ34に
発生し、やがては同図(ニ)に示す如くショルダー全面
が侵食されてフルショルダーウエアにまで成長すること
となる。今、この前・後進力の測定例を図8に示すと、
成長前の状態では、トレッドセンター軸CLに向かう
程、接地性は向上し、後進力(ブレーキングフォース)
(斜線部分)の割合が減少していることが分かる。しか
し、成長後のタイヤでは1/4TW点の突出によって、最
外側主溝33の接地性が局部的に向上する結果、接地継
続中においてはトレッドゴム内の該主溝33の内・外側
端部33B,33Aに作用する前進力(ドライブフォー
ス)のみ増加することとなる。このために、前進力が後
進力に変位する転位点が近傍領域のトレッド面とずれる
こととなって、逆方向の動きが強いられて、トレッド路
面部にある前記33A近傍領域で剪断力が発生する。し
たがって、33Aの部分が磨耗して丸くなるとこの剪断
力を受けてラジアル方向に段差摩耗が成長することとな
るのが一般的である。
One of the causes of the occurrence of such river wear is that, as shown in FIGS. 6 (a) and 6 (b), the load deformation of the ground contact portion caused by rolling of the tire causes the shoulder portion to contact the ground contact surface. The center of the tire is depressed due to the ground contact, and the belt layer 3
The sample No. 5 contracts toward the center of the tire while undergoing reverse warp deformation. Then, in response to the contraction in the belt radial direction, the tread rubber outside the belt layer 35 is wound around the contact surface center and a lateral force (F) in the radial direction is generated. Therefore,
When considering load deformation due to rolling, the main groove 33 and its axially outer end portion 33A and inner end portion 33B are projected with respect to the so-called 1/4 TW point which is projected in the tread shape after the growth of the tire. There is no choice but to concentrate stress on. On the other hand, as shown in the uneven wear growth process in FIGS. 7A and 7B, in the tread portion and the ground contact shape changed after the tire before the internal pressure filling was filled with the internal pressure to grow,
As shown in (b) and (c) of the figure, the tire axially outer end portion 33A of the shoulder rib 34 is gradually eroded by the side force and the driving / braking force acting on the shoulder region of the tread portion, Eventually, uneven wear will result in uneven wear of the entire shoulder ribs as shown in FIG. That is, once the outer end portion 33A of the outermost main groove 33 in the axial direction of the tire is rounded, the forward and backward forces act in the tire tread portion at the time of contact with the shoulder rib 34 due to the step wear in the radial direction. Then, as shown in (d) of the same figure, the entire surface of the shoulder is eroded and grows into full-shoulder wear. Now, as shown in FIG. 8, an example of measurement of the forward / reverse force is
In the pre-growth state, the ground contact property is improved toward the tread center axis CL, and the reverse force (braking force)
It can be seen that the ratio of (shaded area) is decreasing. However, in the tire after growth, the protrusion at the 1/4 TW point locally improves the ground contact property of the outermost main groove 33, and as a result, the inner and outer end portions of the main groove 33 in the tread rubber are continued during the ground contact. Only the forward force (drive force) acting on 33B and 33A is increased. For this reason, the dislocation point at which the forward force is displaced to the backward force is displaced from the tread surface in the near area, and the movement in the opposite direction is forced, and the shear force is generated in the area near the 33A on the tread road surface portion. To do. Therefore, when the portion 33A is worn and becomes round, the step wear is generally grown in the radial direction due to the shearing force.

【0006】[0006]

【発明が解決しようとする課題】因って、この発明者
は、上記諸知見に基づき、更に従来のダブルクラウン構
成のタイヤについて、シングルクラウン構成のタイヤと
の対比において、更に偏摩耗発生の機構を解明すべく、
トレッド部の1/4 TW点に注目し、特にショルダー部端
部の肩落ち現象とショルダーリブの外形との相関性、お
よびショルダー端部における肩落ち段差量とダブルクラ
ウン構成のタイヤの外面形状との関連性等について検討
した結果、従来のシングルクラウン構成はもとより、ダ
ブルクラウン構成のタイヤでは成長後の接地形状、トレ
ッド外形の修正まで考慮すると、図9に示す如く、金型
時の肩上げ量h、またはショルダー端部における曲率半
径R2による第2円弧部37Bが過大となり、タイヤ金
型トレッド幅TWの1/4 TW点よりタイヤ軸方向内側の
外接点Qで曲率半径R1 による第1円弧部37Aが接す
ることとなる。その結果成長後のタイヤのフットプリン
ト形状において、トレッド部のショルダー端部の肩落ち
の段差量hを修正するために、ショルダー部の接地長の
増加をしても肩上げ37Bの接点Qが1/4 TW点より内
側に位置するので、1/4 TW点の接地長も相対的に増加
することとなって、トレッド部の1/4 TW点の突出を修
正しても自ら限度がある、という事実をも知見するに至
った。
Therefore, based on the above-mentioned findings, the present inventor has found that, in comparison with a conventional tire having a double-crown structure, a mechanism causing further uneven wear in comparison with a tire having a single-crown structure. To clarify
Paying attention to the 1/4 TW point of the tread part, especially the correlation between the shoulder drop phenomenon at the end of the shoulder part and the outer shape of the shoulder rib, and the shoulder drop step amount at the shoulder end and the outer surface shape of the tire with a double crown structure As a result of studying the relevance and the like, considering not only the conventional single-crown configuration tire but also the modified ground contact shape and tread outer shape after growth in the tire having the double-crown configuration, as shown in FIG. , Or the second arc portion 37B due to the radius of curvature R 2 at the shoulder end becomes excessively large, and the first arc due to the radius of curvature R 1 at the outer contact Q on the inner side in the tire axial direction from the 1/4 TW point of the tire mold tread width TW. The portion 37A comes into contact with the portion. As a result, in the footprint shape of the tire after growth, in order to correct the shoulder drop step height h at the shoulder end of the tread portion, even if the contact length of the shoulder portion is increased, the contact point Q of the shoulder raising 37B is 1 / Since it is located inside the 4 TW point, the contact length at the 1/4 TW point will also increase relatively, and even if the protrusion of the 1/4 TW point on the tread portion is corrected, there is a limit. I came to know the facts.

【0007】そこで、この発明は、上述の従来タイヤの
課題に基づき、これに対処しこれを解決するには、タイ
ヤの外径成長による1/4 TW点近傍のリブ端部の突出を
最小限にとどめながらトレッド外形または接地形状の変
形を改良する必要があり、そのためには、従来のダブル
クラウン構成を更に発展させてR2 による肩上げをショ
ルダーリブ、またはこれを1/4 TW点の範囲にまでに限
定すると共に、接地形状の肩落ちを修正しながら、タイ
ヤ成長後のトレッド外形に見られる該1/4 TW点の突出
を押さえて偏摩耗の発生を阻止すると共にタイヤの耐久
性の向上をはかることをその目的とするものである。
Therefore, the present invention is based on the above-mentioned problem of the conventional tire, and in order to address and solve the problem, the protrusion of the rib end portion in the vicinity of the 1/4 TW point due to the outer diameter growth of the tire is minimized. It is necessary to improve the deformation of the tread outer shape or the ground contact shape while keeping it at the same time, and in order to do so, the conventional double crown structure is further developed to raise the shoulder by R 2 to the shoulder rib, or this to the range of 1/4 TW point. In addition to the above, while correcting the shoulder drop of the ground contact shape, the protrusion of the 1/4 TW point seen in the tread outer shape after tire growth is suppressed to prevent uneven wear and improve tire durability. Its purpose is to measure.

【0008】[0008]

【課題を解決するための手段】かくして、上記目的に適
合するこの発明の重荷重用空気入りタイヤの特徴とする
ところは、トレッド外面上において、タイヤ周方向に配
設された複数の該周方向の主溝と、該トレッド外面の両
側のショルダー端とで区画された陸部とを有する重荷重
用空気入りタイヤの内圧未充填時のトレッドプロフアイ
ルにおいて、トレッドセンター軸のタイヤ回転軸芯側に
曲率中心を有する曲率半径R1 よりなる第1円弧部によ
りトレッド中央領域の外形を形成し、更に、曲率半径R
2 よりなる第2円弧部により、該第2円弧部と上記第1
円弧部との交点P1 とショルダー端P2 とを結んでショ
ルダーリブの外形を形成するにあたり、以下の式
Thus, the feature of the heavy duty pneumatic tire of the present invention which meets the above-mentioned object is that a plurality of circumferential tires arranged in the tire circumferential direction are provided on the outer surface of the tread. In a tread profile at the time of unfilled internal pressure of a heavy duty pneumatic tire having a main groove and a land portion defined by shoulder ends on both sides of the tread outer surface, a center of curvature on a tire rotation axis side of a tread center shaft The outer shape of the tread central region is formed by the first arc portion having the radius of curvature R 1 having
The second circular arc portion made of 2, the second arcuate portion and the first
In connecting the intersection point P 1 with the arcuate portion and the shoulder end P 2 to form the outer shape of the shoulder rib, the following formula is used.

【0009】[0009]

【数2】1/4 TW<TWI<TW 0≦h1 ≦10mm 0≦h2 ≦3mm (ただし、TWは全トレッド展開幅、TWIは、点P1
とトレッドセンター軸間のトレッド上幅の2倍の幅、1/
4 TWは、ショルダーリブに隣接するトレッドセンター
軸寄りリブのタイヤ軸方向外方の肩端部P3 からトレッ
ドセンター軸までのトレッド上の幅であり、また、h1
はショルダー端P2 における第1円弧部の延長線と第2
円弧部とのタイヤ半径方向の段差量であり、h2 は点P
1 と点P3のタイヤ半径方向の段差量をそれぞれ示
す。)
## EQU2 ## 1/4 TW <TWI <TW 0 ≦ h 1 ≦ 10 mm 0 ≦ h 2 ≦ 3 mm (where TW is the total tread development width and TWI is the point P 1
2 times the width of the tread between the tread center and the tread center axis, 1 /
4 TW is the width on the tread from the shoulder end portion P 3 on the tire axial direction outer side of the rib close to the tread center axis adjacent to the shoulder rib to the tread center axis, and h 1
Is the extension line of the first arc portion at the shoulder end P 2 and the second
It is the step difference in the tire radial direction from the arc portion, and h 2 is the point P
The amounts of steps in the tire radial direction between 1 and point P 3 are shown respectively. )

【0010】を満足する外形を形成したことをその構成
とする。そして、前記第1円弧部の曲率半径R1 を30
0〜2000mmの範囲に設定すると好ましく、また、
第2円弧部の曲率半径R2 を、第1円弧部の曲率半径R
1 と同等またはそれ以上の範囲であって、4000mm
よりも、小なる曲率半径に設定することが、より好まし
い。
The configuration is such that an outer shape satisfying the above condition is formed. Then, the radius of curvature R 1 of the first arc portion is set to 30
It is preferable to set it in the range of 0 to 2000 mm.
The radius of curvature R 2 of the second arc portion is the radius of curvature R 2 of the first arc portion.
Range equal to or greater than 1 and 4000 mm
It is more preferable to set the radius of curvature smaller than that.

【0011】[0011]

【作用】この発明に係る重荷重用空気入りタイヤでは、
タイヤの内圧充填による成長に伴って起こるベルト層の
逆反り変形を防止するために、予めショルダー端部にお
けるベルト上トレッド部厚みを同等かまたはこれを上回
るようにショルダーリブのみに限定した肩上げを行った
ので、従来タイヤに見られた成長による1/4 TW点にま
で及んだこの部分の突出は修正された。即ち、図2
(ロ)に示し如く、従来のダブルクラウン方式では2つ
の円弧部の外接点Qは1/4 TW点より内側に位置してい
たのでショルダー端部の肩上げ効果は十分には機能しな
かったが、この発明ではショルダーリブの内側肩部、即
ち、最外側主溝のタイヤ軸方向外側端部がショルダーリ
ブ肩上げの起点となるので、均一成長が可能となり、こ
のことによってトレッド外面の偏摩耗に対する発生阻止
とタイヤの耐久性の向上がはかられることとなる。
In the heavy duty pneumatic tire according to the present invention,
In order to prevent reverse warp deformation of the belt layer that accompanies the growth caused by filling the tire with internal pressure, the shoulder ribs are limited to the shoulder ribs so that the thickness of the tread on the belt at the shoulder end is equal to or greater than this. Therefore, the protrusion of this part, which extends to the 1/4 TW point due to the growth observed in the conventional tire, is corrected. That is, FIG.
As shown in (b), in the conventional double-crown method, the outer contacts Q of the two arc portions were located inside the 1/4 TW point, so the shoulder-raising effect at the shoulder end did not function sufficiently. In the present invention, since the inner shoulder portion of the shoulder rib, that is, the outer end portion of the outermost main groove in the tire axial direction serves as the starting point for raising the shoulder rib shoulder, uniform growth is possible, which causes uneven wear of the outer surface of the tread. The prevention and improvement of tire durability will be achieved.

【0012】[0012]

【実施例】次に、この発明を具体的に図面に基づき説明
するが、この発明は、これらに限定されるものでないの
は云うまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be specifically described with reference to the drawings, but it goes without saying that the present invention is not limited to these.

【0013】図1は、この発明に係るタイヤの内圧充填
前の状態におけるタイヤ右半部のトレッド外形の構成を
示した要部断面図である。図において、1は重荷重用空
気入りラジアルタイヤであり、2はトレッド部、3は該
トレッド部の外面上でタイヤ周方向に配設された該周方
向に延びる最外側の主溝である。また、4はトレッド部
2の両端部にあるショルダー端部P2 の最外側の主溝3
とによって区画された陸部であるショルダーリブであ
る。そして、トレッド部2は、トレッドセンター軸CL
からショルダーリブ4のトレッドセンター軸寄りのタイ
ヤ軸方向外側端P1 に至るトレッド中央領域5のトレッ
ド外面は該第1円弧部6Aで形成される。(このP1
は第1円弧部6Aと第2円弧部6Bとの交点に相当す
る。)また、第1円弧部6Aはタイヤ中心側のトレッド
センター軸CL上にその曲率中心を有し、その曲率半径
1 は、内圧充填前においては300〜3000mmに
設定される。一方、トレッド部2における上記P1 から
ショルダー端部P2 に至るトレッド外面、即ち、ショル
ダーリブ4の外面は第2円弧部6Bで形成されており、
この第2円弧部6Bは必ずしもタイヤ回転軸芯側にその
曲率中心を有するとは限らず、該軸芯外に位置すること
もある。即ち、この場合の外形はやや凹状となる。その
曲率半径R2 は内圧充填前においては、R1 と同等、ま
たは4000mm未満とされている。そして、この両円
弧部R1 とR2 の交点は、ショルダーリブ4のタイヤ軸
方向の内方肩端部に相当し、この交点P1 はこの発明に
おいては重要であって、ショルダーリブ4の肩上げの起
点となる。次に、トレッド部2の全展開幅TWとトレッ
ド部2外面上にあって、トレッドセンター軸CLから上
記点P1 までのトレッド幅TW1と、更に第1円弧部6
A上にあってトレッドセンター軸から最外側の主溝3の
タイヤ軸方向の内側端部、即ち、ショルダーリブ4に隣
接するリブ7のタイヤ軸方向外方の肩端部P3 までの長
さであって、全トレッド展開幅の1/4 幅に相当する1/4
TWとの間には、1/4 TW<TW1<TWの関係を有す
る。更に、ショルダー端部P2 における第2円弧部6B
と第1円弧部6Aの延長線とのタイヤ半径方向の段差量
1 (斜線部)は0〜10mmの範囲に設定され、好ま
しくは5mm以下である。10mmを越えるとショルダ
ー端部P2 の接地長が主溝3の1/4 TW点の接地長を上
まわり、リブパンチ等、偏摩耗の原因となる。また、シ
ョルダーリブ4の肩上げの起点となるP1 と1/4 TWの
点P3 におけるタイヤ半径方向の段差量h2 (斜線部)
は、0〜3mmの範囲に設定される。この場合、0mm
未満ではP3 (1/4 TW点)におけるリブの肩部の陥没
により、いわゆるリブパンチが問題となり、また3mm
を越えると両円弧部6A,6Bの曲率半径差が大となり
過ぎてショルダーリブ4の肩部においてより偏摩耗の発
生が助長される。
FIG. 1 is a cross-sectional view of essential parts showing the configuration of the outer shape of the tread of the right half of the tire according to the present invention before being filled with internal pressure. In the figure, 1 is a heavy-duty pneumatic radial tire, 2 is a tread portion, and 3 is an outermost main groove that is arranged in the tire circumferential direction on the outer surface of the tread portion and extends in the circumferential direction. Further, 4 is the outermost main groove 3 of the shoulder end portion P 2 at both ends of the tread portion 2.
It is a shoulder rib which is a land part divided by. The tread portion 2 has a tread center axis CL.
The outer tread surface of the tread central region 5 extending from the shoulder rib 4 to the tire axially outer end P 1 near the tread center axis is formed by the first arc portion 6A. (The point P 1 corresponds to the intersection of the first arc portion 6A and the second arc portion 6B.) The first arc portion 6A has its center of curvature on the tread center axis CL on the tire center side, The radius of curvature R 1 is set to 300 to 3000 mm before the internal pressure filling. On the other hand, the tread outer surface of the tread portion 2 from the above P 1 to the shoulder end portion P 2 , that is, the outer surface of the shoulder rib 4 is formed by the second arc portion 6B,
The second arc portion 6B does not always have its center of curvature on the tire rotation axis side, and may be located outside the axis. That is, the outer shape in this case is slightly concave. The radius of curvature R 2 is equal to R 1 or less than 4000 mm before the internal pressure filling. The intersection of the two arcuate portions R 1 and R 2 corresponds to the inner shoulder end of the shoulder rib 4 in the tire axial direction, and the intersection P 1 is important in the present invention. This is the starting point for raising your shoulders. Next, the total developed width TW of the tread portion 2 and the tread width TW1 on the outer surface of the tread portion 2 from the tread center axis CL to the point P 1 and further the first arc portion 6
The length from A of the tread center axis to the inner end of the outermost main groove 3 in the tire axial direction, that is, the shoulder end P 3 of the rib 7 adjacent to the shoulder rib 4 in the axial direction of the tire. 1/4 of the total tread width
The relationship with TW is 1/4 TW <TW1 <TW. Furthermore, the second arc portion 6B in the shoulder end portion P 2
And a step amount h 1 (hatched portion) in the tire radial direction between the extension line of the first arc portion 6A and the extension line of the first arc portion 6A is set in a range of 0 to 10 mm, and preferably 5 mm or less. If it exceeds 10 mm, the ground contact length of the shoulder end P 2 exceeds the ground contact length of the 1/4 TW point of the main groove 3, causing uneven wear such as rib punch. Also, P 1 and 1/4 step amount in the tire radial direction in the P 3 point TW h 2 as the starting point of Kataage of the shoulder rib 4 (hatched portion)
Is set in the range of 0 to 3 mm. In this case, 0 mm
If it is less than P, the so-called rib punch becomes a problem due to the depression of the rib shoulder at P 3 (1/4 TW point).
If it exceeds, the difference in radius of curvature between the arcuate portions 6A and 6B becomes too large, which promotes the occurrence of uneven wear at the shoulder portion of the shoulder rib 4.

【0014】(具体的タイヤの対比評価)次に、この発
明タイヤと従来タイヤとの比較評価について説明する。
(Comparison Evaluation of Concrete Tire) Next, a comparative evaluation of the tire of the present invention and the conventional tire will be described.

【0015】A 供試タイヤ ・サイズ;11 R 24.5 14PR ・リム ; 8.25 ×24.5 ・クラウン構成;表1に記載のとおり。A Test tire ・ Size; 11 R 24.5 14PR ・ Rim; 8.25 × 24.5 ・ Crown structure; As shown in Table 1.

【0016】B 評価方法 それぞれトレッドセンターCL点および両ショルダー端
部4,4(図1参照)の3点を通るRについての寸法変
化および1/4 TW点を基点としてラジアス定規により測
定し、また、タイヤ取外し時(タイヤの1次限界寿命)
の走行マイルとその理由を表1に記載した。
B Evaluation Method Dimensional change about R passing through three points of the tread center CL point and both shoulder end portions 4 and 4 (see FIG. 1) and measured with a radius ruler based on the 1/4 TW point, and When the tire is removed (tire's primary life limit)
Table 1 shows the miles traveled and their reasons.

【0017】評価の結果はすべて表1に記載した。 以下余白All the evaluation results are shown in Table 1. Margin below

【0018】[0018]

【表1】 [Table 1]

【0019】表1からは、従来タイヤでは、1/4 TW点
(P3 )の突出量は本発明タイヤの同突出量を示し、ま
た、タイヤ取外しまでの走行距離も本発明タイヤは従来
タイヤに比して約2倍のスクラップライフを得ている。
これにより、第2円弧部によってショルダーリブのみを
形成して肩上げすることにより、1/4 TW点の突出が大
巾に減少すると共に、更に走行距離においても向上して
いることが分かる。
From Table 1, in the conventional tire, the amount of protrusion at the 1/4 TW point (P 3 ) shows the same amount of protrusion of the tire of the present invention, and the running distance until tire removal is the tire of the present invention. It has about twice as much scrap life as.
As a result, it can be seen that by forming only the shoulder rib by the second arc portion and raising the shoulder, the protrusion at the 1/4 TW point is greatly reduced and the traveling distance is further improved.

【0020】[0020]

【発明の効果】以上説明したように、この発明に係る重
荷重用空気入りタイヤでは、全トレッド展開幅TWの1/
4 TW点を基本としてショルダーリブのトレッドセンタ
ー軸寄りの肩部に相当するP1 点を肩上げの起点とし
て、ショルダーリブの外形を第2円弧部によって形成し
て肩落ちを修正したので、内圧充填前に見られるショル
ダーリブの肩落ち現象がよくコントロールされ、その結
果、1/4 TW点の突出がよく修正されて偏摩耗の発生が
阻止されると共に、タイヤの耐久性の向上をはかること
ができる。
As described above, in the heavy duty pneumatic tire according to the present invention, 1 / of the total tread development width TW
The P 1 point corresponding to the shoulder portion of the tread center axis side of the shoulder rib of 4 TW point as the basic starting the Kataage, so modified the shoulder drop is formed by a second arc portion of the outer shape of the shoulder rib, internal pressure The shoulder drop phenomenon of the shoulder rib seen before is well controlled, and as a result, the protrusion at the 1/4 TW point is well corrected, uneven wear is prevented, and the durability of the tire is improved. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るタイヤ金型のトレッドプロフア
イルの1例として、その右半部の要部断面説明図であ
る。
FIG. 1 is an explanatory cross-sectional view of a right half portion of an example of a tread profile of a tire mold according to the present invention.

【図2】従来タイヤのトレッドプロフアイルの右半部を
示したもので、(イ)はシングルクラウンの場合、
(ロ)はダブルクラウンの場合のそれぞれの右半部の要
部断面説明図である。
FIG. 2 shows a right half portion of a tread profile of a conventional tire, in which (a) is a single crown,
(B) is a cross-sectional view of an essential part of each right half portion in the case of a double crown.

【図3】従来タイヤのトレッド部のリバーウエアの発生
状態を示した図であり、(イ)は成長前の接地形状を、
(ロ)は成長後の接地形状、また(ハ)は(イ)に対応
する要部断面図、(ニ)は(ロ)に対応する要部断面図
である。
FIG. 3 is a view showing a state in which river wear of a tread portion of a conventional tire is generated, (a) shows a ground contact shape before growth,
(B) is a ground contact shape after growth, (C) is a main-portion cross-sectional view corresponding to (A), and (D) is a main-portion cross-sectional view corresponding to (B).

【図4】従来タイヤの内圧充填時におけるトレッド部の
ショルダーリブの肩落ち現象を示した図であり、(イ)
はその接地形状を、(ロ)は(イ)に対応する要部断面
図である。
FIG. 4 is a diagram showing a shoulder drop phenomenon of a shoulder rib of a tread portion at the time of filling the internal pressure of a conventional tire.
FIG. 4A is a sectional view of a main part corresponding to FIG.

【図5】従来タイヤの成長に伴う寸法変化を示したグラ
フである。
FIG. 5 is a graph showing a dimensional change accompanying the growth of a conventional tire.

【図6】従来タイヤの転動に伴うトレッド部の接地状態
を示した図で、(イ)は接地直前を(ロ)は接地面内の
それぞれの動きを示した要部断面説明図である。
FIG. 6 is a diagram showing a ground contact state of a tread portion due to rolling of a conventional tire, FIG. .

【図7】(イ)〜(ニ)はそれぞれ従来タイヤのトレッ
ド部の偏摩耗の成長過程を示した要部斜視説明図であ
る。
7 (a) to 7 (d) are perspective views of relevant parts showing the uneven wear growth process of the tread portion of the conventional tire.

【図8】従来タイヤの成長前・成長後における接地形状
とドライブ・ブレーキングフォースとの関係を測定した
説明図である。
FIG. 8 is an explanatory diagram in which the relationship between the ground contact shape and the driving / braking force before and after the growth of the conventional tire is measured.

【図9】従来タイヤのダブルクラウン構成のトレッドプ
ロフアイルを示した右半部の要部断面説明図である。
FIG. 9 is an explanatory cross-sectional view of a main part of a right half portion showing a tread profile having a double crown structure of a conventional tire.

【符号の説明】[Explanation of symbols]

1 重荷重用空気入りラジアルタイヤ 2 トレッド部 3 最外側の主溝 4 ショルダーリブ 5 トレッド中央領域 6A 第1円弧部 6B 第2円弧部 7 リブ P1 第1円弧部と第2円弧部の交点 P2 ショルダー端部 P3 リブの肩端部1 Pneumatic radial tire for heavy load 2 Tread portion 3 Outermost main groove 4 Shoulder rib 5 Tread central area 6A 1st arc portion 6B 2nd arc portion 7 Rib P 1 Intersection point of 1st arc portion and 2nd arc portion P 2 shoulder end P 3 ribs of the shoulder end

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トレッド外面上において、タイヤ周方向
に配設された複数の該周方向の主溝と、該トレッド外面
の両側のショルダー端部とで区画された陸部とを有する
重荷重用空気入りタイヤの内圧未充填時のトレッドプロ
フアイルにおいて、トレッドセンター軸のタイヤ回転軸
芯側に曲率中心を有する曲率半径R1よりなる第1円弧
部によりトレッド中央領域の外形を形成し、更に、曲率
半径R2 よりなる第2円弧部により、該第2円弧部と上
記第1円弧部との交点P1 とショルダー端P2 とを結ん
でショルダーリブの外形を形成するにあたり、以下の式 【数1】1/4 TW<TWI<TW 0≦h1 ≦10mm 0≦h2 ≦3mm (ただし、TWは全トレッド展開幅、TWIは、点P1
とトレッドセンター軸間のトレッド上幅の2倍の幅、1/
4 TWはショルダーリブに隣接するトレッドセンター軸
寄りリブのタイヤ軸方向外方の肩端部P3 からトレッド
センター軸までのトレッド上の幅であり、また、h1
ショルダー端P2 における第1円弧部の延長線と第2円
弧部とのタイヤ半径方向の段差量であり、h2 は点P1
と点P3 のタイヤ半径方向の段差量をそれぞれ示す。)
を満足する外形を形成したことを特徴とする重荷重用空
気入りタイヤ。
1. Heavy load air having a plurality of circumferential main grooves arranged in the tire circumferential direction on the outer surface of the tread, and land portions defined by shoulder ends on both sides of the outer surface of the tread. In the tread profile when the internal pressure of the filled tire is not filled, the outer shape of the tread center region is formed by the first arc portion having the radius of curvature R 1 having the center of curvature on the tire rotation axis side of the tread center shaft, and further, the curvature In forming the outer shape of the shoulder rib by connecting the intersection point P 1 of the second arc portion and the first arc portion and the shoulder end P 2 with the second arc portion having the radius R 2 , the following formula 1/4 TW <TWI <TW 0 ≦ h 1 ≦ 10 mm 0 ≦ h 2 ≦ 3 mm (however, TW is the total tread development width, TWI is the point P 1
2 times the width of the tread between the tread center and the tread center axis, 1 /
4 TW is the width on the tread from the shoulder end portion P 3 on the tire axial direction outer side of the rib close to the tread center axis adjacent to the shoulder rib to the tread center axis, and h 1 is the first at the shoulder end P 2 . The amount of step in the tire radial direction between the extension line of the arc portion and the second arc portion, h 2 is the point P 1
And the step amount in the tire radial direction at point P 3 are respectively shown. )
A heavy-duty pneumatic tire having an outer shape satisfying the above conditions.
【請求項2】 前記第1円弧部の曲率半径R1 を300
〜2000mmの範囲に設定することを特徴とする請求
項1記載の重荷重用空気入りタイヤ。
2. The radius of curvature R 1 of the first arc portion is 300.
The pneumatic tire for heavy loads according to claim 1, wherein the pneumatic tire is set in a range of up to 2000 mm.
【請求項3】 前記第2円弧部の曲率半径R2 を、第1
円弧部の曲率半径R1 と同等またはそれ以上の範囲であ
って、4000mmよりも小なる曲率半径に設定したこ
とを特徴とする請求項1記載の重荷重用空気入りタイ
ヤ。
3. The radius of curvature R 2 of the second arc portion is
The heavy-duty pneumatic tire according to claim 1 , wherein the radius of curvature is equal to or larger than the radius of curvature R 1 of the arc portion and is smaller than 4000 mm.
JP34397593A 1993-12-17 1993-12-17 Heavy duty pneumatic tires Expired - Fee Related JP3343633B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34397593A JP3343633B2 (en) 1993-12-17 1993-12-17 Heavy duty pneumatic tires
US08/350,957 US5647925A (en) 1993-12-17 1994-12-07 Pneumatic tire for heavy-loaded vehicles, with resistance to river wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34397593A JP3343633B2 (en) 1993-12-17 1993-12-17 Heavy duty pneumatic tires

Publications (2)

Publication Number Publication Date
JPH07164823A true JPH07164823A (en) 1995-06-27
JP3343633B2 JP3343633B2 (en) 2002-11-11

Family

ID=18365682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34397593A Expired - Fee Related JP3343633B2 (en) 1993-12-17 1993-12-17 Heavy duty pneumatic tires

Country Status (1)

Country Link
JP (1) JP3343633B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159127A (en) * 1997-08-28 1999-03-02 Bridgestone Corp Pneumatic tire for light truck
WO2003053722A1 (en) 2001-12-21 2003-07-03 Sumitomo Rubber Industries, Ltd. Heavy-duty tire
JP2004051083A (en) * 2002-05-30 2004-02-19 Sumitomo Rubber Ind Ltd Tire for heavy load
EP1466759A1 (en) * 2002-01-16 2004-10-13 Sumitomo Rubber Industries, Ltd. Heavy duty tire
US6880599B2 (en) 2001-12-14 2005-04-19 Sumitomo Rubber Industries, Ltd. Heavy duty tire
US7036541B2 (en) 2001-10-19 2006-05-02 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2006298158A (en) * 2005-04-20 2006-11-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007069665A (en) * 2005-09-05 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2009075182A1 (en) * 2007-12-10 2009-06-18 Bridgestone Corporation Pneumatic tire
JP2009202706A (en) * 2008-02-27 2009-09-10 Bridgestone Corp Pneumatic radial tire
WO2013080944A1 (en) 2011-11-29 2013-06-06 住友ゴム工業株式会社 Heavy duty tire
EP2889159A2 (en) 2013-12-24 2015-07-01 Sumitomo Rubber Industries, Ltd. Heavy duty tire
WO2015145909A1 (en) * 2014-03-27 2015-10-01 横浜ゴム株式会社 Pneumatic tire
CN107399205A (en) * 2016-05-19 2017-11-28 住友橡胶工业株式会社 Tyre for heavy load
EP3415342A1 (en) 2017-06-14 2018-12-19 Sumitomo Rubber Industries, Ltd. Heavy-duty tire

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159127A (en) * 1997-08-28 1999-03-02 Bridgestone Corp Pneumatic tire for light truck
US7036541B2 (en) 2001-10-19 2006-05-02 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US6880599B2 (en) 2001-12-14 2005-04-19 Sumitomo Rubber Industries, Ltd. Heavy duty tire
WO2003053722A1 (en) 2001-12-21 2003-07-03 Sumitomo Rubber Industries, Ltd. Heavy-duty tire
US7543616B2 (en) 2002-01-16 2009-06-09 Sumitomo Rubber Industries, Ltd. Heavy duty tire with tread portion having three longitudinal main grooves
EP1466759A1 (en) * 2002-01-16 2004-10-13 Sumitomo Rubber Industries, Ltd. Heavy duty tire
EP1466759A4 (en) * 2002-01-16 2008-03-05 Sumitomo Rubber Ind Heavy duty tire
JP4629960B2 (en) * 2002-05-30 2011-02-09 住友ゴム工業株式会社 Heavy duty tire
JP2004051083A (en) * 2002-05-30 2004-02-19 Sumitomo Rubber Ind Ltd Tire for heavy load
JP2006298158A (en) * 2005-04-20 2006-11-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007069665A (en) * 2005-09-05 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
US8746304B2 (en) 2007-12-10 2014-06-10 Bridgestone Corporation Pneumatic tire
WO2009075182A1 (en) * 2007-12-10 2009-06-18 Bridgestone Corporation Pneumatic tire
JP2009137519A (en) * 2007-12-10 2009-06-25 Bridgestone Corp Pneumatic tire
JP2009202706A (en) * 2008-02-27 2009-09-10 Bridgestone Corp Pneumatic radial tire
WO2013080944A1 (en) 2011-11-29 2013-06-06 住友ゴム工業株式会社 Heavy duty tire
US9770950B2 (en) 2011-11-29 2017-09-26 Sumitomo Rubber Industries Ltd. Heavy duty tire
EP2889159A2 (en) 2013-12-24 2015-07-01 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2015120439A (en) * 2013-12-24 2015-07-02 住友ゴム工業株式会社 Tire for heavy load
US9802442B2 (en) 2013-12-24 2017-10-31 Sumitomo Rubber Industries, Ltd. Heavy duty tire
WO2015145909A1 (en) * 2014-03-27 2015-10-01 横浜ゴム株式会社 Pneumatic tire
JP2015189292A (en) * 2014-03-27 2015-11-02 横浜ゴム株式会社 pneumatic tire
US10857836B2 (en) 2014-03-27 2020-12-08 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN107399205A (en) * 2016-05-19 2017-11-28 住友橡胶工业株式会社 Tyre for heavy load
CN107399205B (en) * 2016-05-19 2020-12-08 住友橡胶工业株式会社 Heavy load tire
EP3415342A1 (en) 2017-06-14 2018-12-19 Sumitomo Rubber Industries, Ltd. Heavy-duty tire
CN109080377A (en) * 2017-06-14 2018-12-25 住友橡胶工业株式会社 Heavy duty tire
US11077715B2 (en) 2017-06-14 2021-08-03 Sumitomo Rubber Industries, Ltd. Heavy-duty tire

Also Published As

Publication number Publication date
JP3343633B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JPH07164823A (en) Pneumatic tire for heavy load
EP0602989A1 (en) Pneumatic tyre
JP4539774B2 (en) Heavy duty pneumatic tire
EP1484196B1 (en) Tire tread contour
JP2002538030A (en) Tire with sacrificial bridging
JPH0578441B2 (en)
EP0323519B1 (en) Pneumatic tire
JP3121391B2 (en) Heavy duty pneumatic tires
EP0442427A1 (en) Reduced vibration pneumatic tractor tire
JP4102151B2 (en) Pneumatic tire
JP2000225810A (en) Pneumatic radial tire for heavy load
US5394915A (en) Tire for heavy load that prevents center wear and river wear
US20030029536A1 (en) Heavy load pneumatic radial tire
JP2613448B2 (en) Pneumatic tire
JP3343634B2 (en) Heavy duty pneumatic tires
JP2698396B2 (en) Pneumatic tires for trucks and buses
JPH0872508A (en) Heavy load pneumatic tire
JPS62295702A (en) Steel radial tire improved in eccentric abrasion characteristic
JPS6259105A (en) Pneumatic tire
JP3539450B2 (en) Pneumatic radial tire for heavy loads
JP2744612B2 (en) Pneumatic tires for heavy loads that prevent uneven wear
RU2254241C2 (en) Reduced mass tire bead
JP5597350B2 (en) tire
US5119857A (en) Pneumatic radial tires including shoulder recesses
JP2007253768A (en) Pneumatic tire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees