JPH0716429B2 - Method for producing L-threonine - Google Patents

Method for producing L-threonine

Info

Publication number
JPH0716429B2
JPH0716429B2 JP60230996A JP23099685A JPH0716429B2 JP H0716429 B2 JPH0716429 B2 JP H0716429B2 JP 60230996 A JP60230996 A JP 60230996A JP 23099685 A JP23099685 A JP 23099685A JP H0716429 B2 JPH0716429 B2 JP H0716429B2
Authority
JP
Japan
Prior art keywords
threonine
plasmid
rettgeri
dna
transformant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60230996A
Other languages
Japanese (ja)
Other versions
JPS6291192A (en
Inventor
顯 矢内
吉純 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60230996A priority Critical patent/JPH0716429B2/en
Priority to DE86114285T priority patent/DE3689437T2/en
Priority to EP86114285A priority patent/EP0219808B1/en
Priority to US06/919,993 priority patent/US4945058A/en
Publication of JPS6291192A publication Critical patent/JPS6291192A/en
Publication of JPH0716429B2 publication Critical patent/JPH0716429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はL−スレオニンの生産を司る遺伝子を含む組換
え体DNAを有する形質転換体によるL−スレオニンの製
造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing L-threonine by a transformant having a recombinant DNA containing a gene controlling the production of L-threonine.

[従来の技術] プロビデンシア レッドゲリ(Providencia rettgeri、
以下P.rettgeriと略す)の突然変異株を用いたL−スレ
オニン発酵法が知られている。これらのL−スレオニン
発酵菌株に遺伝子操作を適用すればL−スレオニンの生
産性の向上が期待される。
[Prior Art] Providencia redtteri (Providencia rettgeri,
An L-threonine fermentation method using a mutant strain of P. rettgeri) is known. If genetic engineering is applied to these L-threonine fermenting strains, the productivity of L-threonine is expected to be improved.

[発明が解決しようとする問題点] 本発明者らは、かかる状況に鑑み創意工夫を成し、P.re
ttgeriのプラスミドを用いてL−スレオニン発酵生産を
司る遺伝子をセルフクローニングし、L−スレオニン発
酵生産を司る遺伝子を有する複合プラスミドを作製し、
この複合プラスミドでプロビデンシア(Providencia)
属の菌もしくはエシェリヒヤ(Echerihia)属の菌を形
質転換し、この形質転換体を用いてL−スレオニンの発
酵生産能を向上させることに成功し、かくして本発明を
完成させるに至った。
[Problems to be Solved by the Invention] The inventors of the present invention devised an original idea in view of such a situation,
A gene controlling L-threonine fermentation production is self-cloned using a plasmid of ttgeri to prepare a composite plasmid having a gene controlling L-threonine fermentation production,
With this composite plasmid, Providencia
A bacterium of the genus or a bacterium of the genus Echerihia was transformed, and the fermentative productivity of L-threonine was successfully improved using this transformant, thus completing the present invention.

[問題点を解決する手段] すなわち本発明は、プロビデンシア属の菌株由来のL−
スレオニン生産を司る遺伝子を含む、第1図の制限地図
で表されるプラスミドpYU300の組換え体DNAを有するプ
ロビデンシア属もしくはエシェリヒア属の菌の形質転換
体を培養し、培地中に生成蓄積されたL−スレオニンを
採取することを特徴とするL−スレオニンの製造法を提
供するものである。
[Means for Solving Problems] That is, the present invention provides L-derived strains of Providencia.
A transformant of a bacterium of the genus Providencia or Escherichia having a recombinant DNA of the plasmid pYU300 represented by the restriction map of FIG. 1 containing a gene controlling threonine production was cultured, and L produced and accumulated in the medium was cultured. -Providing a method for producing L-threonine, which comprises collecting threonine.

以下本発明に関し逐次詳細に説明する。The present invention will be sequentially described in detail below.

ベクターとして使用するプラスミドはP.rettgeri由来の
ものを用いる。例えばP.rettgeri ATCC25932、ATCC991
9、ATCC29944から抽出できるが、P.rettgeri ATCC25932
から抽出したプラスミドpYU300によりP.rettgeri21118
を形質転換して得られたP.rettgeri ATCC21118(pYU30
0)(微工研条寄第1174号)からプラスミドpYU300を抽
出し使用する方が便利である。
A plasmid derived from P. rettgeri is used as a vector. For example, P.rettgeri ATCC25932, ATCC991
9 、 It can be extracted from ATCC 29944, but P.rettgeri ATCC25932
Plasmid pYU300 extracted from P. rettgeri 21118
Obtained by transforming P. rettgeri ATCC21118 (pYU30
It is more convenient to extract and use the plasmid pYU300 from (0) (Microtechnology Research Institute No. 1174).

L−スレオニン発酵生産を司る遺伝子の供与菌として、
プロビデンシア属の菌を用いることができ、例えばP.re
ttgeri ATCC21118を用いることができるがこの株に限定
されるものではなく、またL−スレオニンの調節変異株
など各種変異株も使用できる。染色体DNAの抽出は、例
えば文献1などの通常の方法に従って行なうことができ
る。この場合溶菌過程は30〜65℃、20〜60分で行なう
と、DNAの収量を高めることができるが、これに限定は
されない。
As a donor of a gene that controls L-threonine fermentation production,
Bacteria of the genus Providencia can be used, for example P.re
Although ttgeri ATCC21118 can be used, it is not limited to this strain, and various mutant strains such as L-threonine regulatory mutant strain can also be used. Extraction of the chromosomal DNA can be carried out according to a usual method such as Reference 1. In this case, if the lysis process is performed at 30 to 65 ° C. for 20 to 60 minutes, the yield of DNA can be increased, but it is not limited thereto.

L−スレオニン発酵生産を司る遺伝子のセルフクローニ
ングは、例えば文献2の通常のオーキソトロフィ・コン
プリメンテイション(auxotrophy complementation)を
用いたショットガン(Shot gun)法で行なう。宿主とし
てはP.rettgeriのL−スレオニン要求性変異株を用いる
ことができ、染色体DNAの断片化やプラスミドのベクタ
ー化のための切断は、例えばHind IIIのような制限酵素
を用いた通常の酵素反応で行なうことができる。DNAの
断片とベクターとの連結は例えばT4DNAリガーゼのよう
な酵素を用いた通常のライゲーション反応で行なうこと
ができ、また、宿主のコンピテント化と形質転換は例え
ば文献3のような通常の方法が適用できる。形質転換体
のスクリーニングは宿主のL−スレオニン要求性のマー
カー・レスキユー(marker rescue)を指標として行な
えるが、ベクターの薬剤耐性の選択圧をもかけると能率
が良い。またベクターの制限末端は、例えば文献4のよ
うなアルカリフォスファターゼ処理をしておくと、ベク
ターの自己環化を防げる。
The self-cloning of the gene that controls L-threonine fermentation production is performed by, for example, the shot gun method using the usual auxotrophy complementation of Reference 2. An L-threonine-requiring mutant strain of P. rettgeri can be used as a host, and the fragmentation of chromosomal DNA or the cleavage for vectorization of a plasmid can be carried out using a conventional enzyme using a restriction enzyme such as Hind III. It can be carried out by reaction. The ligation of the DNA fragment and the vector can be carried out by an ordinary ligation reaction using an enzyme such as T 4 DNA ligase, and the host is made competent and transformed by an ordinary ligation reaction such as that of Reference 3. The method can be applied. Screening of transformants can be carried out using the marker rescue of L-threonine auxotrophy of the host as an index, but it is efficient if selective pressure for vector drug resistance is also applied. If the restriction ends of the vector are treated with alkaline phosphatase as described in Reference 4, for example, self-cyclization of the vector can be prevented.

得られた形質転換体から組換え体プラスミドを例えば文
献6の方法で抽出し、この組換え体プラスミドを用いて
L−スレニオン発酵性を有するP.rettgeri株を形質転換
する。形質転換体はプラスミドの有する薬剤耐性もしく
は高L−スレオニン発酵性を指標として選抜する。この
場合の宿主は栄養要求性変異株やL−スレオニン合成系
のフィードバック阻害や抑制が低減された株あるいはL
−スレオニン分解能が低減された株あるいはこれら形質
を備えた株を使うとL−スレオニン発酵性をより高める
ことができる。
A recombinant plasmid is extracted from the obtained transformant by, for example, the method of Reference 6, and the recombinant plasmid is used to transform a P. rettgeri strain having L-threnion fermentability. Transformants are selected by using drug resistance or high L-threonine fermentability of the plasmid as an index. The host in this case is an auxotrophic mutant strain, a strain in which feedback inhibition or suppression of the L-threonine synthesis system is reduced, or L.
-L-threonine fermentability can be further enhanced by using a strain having a reduced threonine degrading ability or a strain having these traits.

こうして得た再形質転換体をL−スレオニン発酵培地中
で培養することにより、好収率でL−スレオニンを培地
中に蓄積せしめることが可能となる。培地としては炭素
源、窒素源、無機イオン、さらに必要に応じアミノ酸を
含む通常のもので良い。ただしプラスミドの脱落を抑え
るため、前培養時には薬剤を加え選択圧をかけておくこ
とが望ましい。炭素源としてはグルコース、ショ糖等お
よびこれらを含有する澱粉加水分解物、糖密加水分解物
等が用いられる。窒素源としてはアンモニア水、アンモ
ニア塩等が使用できる。培養は好気条件下で培地のpHお
よび温度を適宜調節しつつ行なえばよい。
By culturing the retransformant thus obtained in an L-threonine fermentation medium, it becomes possible to accumulate L-threonine in the medium in good yield. The medium may be a normal medium containing a carbon source, a nitrogen source, inorganic ions, and optionally an amino acid. However, in order to prevent loss of the plasmid, it is desirable to add a drug and apply selective pressure during the preculture. As the carbon source, glucose, sucrose and the like, and starch hydrolysates and sugar-condensed hydrolysates containing them are used. Ammonia water, ammonia salt, etc. can be used as the nitrogen source. The culture may be performed under aerobic conditions while appropriately adjusting the pH and temperature of the medium.

培養液中に生成蓄積したL−スレオニンの分解、精製は
通常の方法が適用できる。
A usual method can be applied to the decomposition and purification of L-threonine produced and accumulated in the culture solution.

本発明の形質転換体微生物を用いることにより、従来知
られているP.rettgeriのL−スレオニン生産菌を用いる
場合に比べ、L−スレオニンの蓄積濃度が高いばかりで
なく、培養時間が短縮できる。
By using the transformant microorganism of the present invention, not only the accumulated concentration of L-threonine is high but also the culture time can be shortened as compared with the case of using the conventionally known L-threonine-producing bacterium of P. rettgeri.

以下、実施例を挙げて本発明をさらに具体的に説明す
る。
Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 (1)プラスミドの抽出分離 P.rettgeri ATCC21118(pYU300)(微工研条寄第1174
号)をLB培地(トリプトン1%、酵母エキス0.5%、塩
化ナトリウム1%、pH7.5)1中37℃、17時間好気培
養した菌体を15mgリゾチーム塩酸塩を含んだ3mlの0.5MN
aCl−0.1MEDTA−50mMTris・HCl(pH8)に懸濁し、37
℃、15分間インキユベートした後、凍結融解し次に25ml
の0.1MTris・HCl(pH9)−1%SDS−0.1M NaClを加え6
0℃、20分インキュベートし溶解した。溶菌液を30,000r
pm、30分間遠心して得た上清に10mg/ml RNase Aの10μ
lを添加し、37℃、1時間インキュベートした後、フェ
ノール抽出、エタノール沈澱により粗DNAを得た。これ
をバイオゲル・カラムクロマトグラフィーとセシウムク
ロライド−エチジウムブロマイド密度勾配平衡遠心にか
け、55μgのプラスミドDNA(pYU300)を得た。
Example 1 (1) Extraction and isolation of plasmid P.rettgeri ATCC21118 (pYU300)
No.) was aerobically cultivated in LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride, pH 7.5) at 37 ° C for 17 hours in 1 ml of 3 ml of 0.5 MN containing 15 mg lysozyme hydrochloride.
Suspend in aCl-0.1M EDTA-50mM Tris · HCl (pH8), 37
Incubate for 15 minutes at ℃, freeze and thaw, then 25ml
Add 0.1M Tris-HCl (pH9) -1% SDS-0.1M NaCl 6
It was dissolved by incubating at 0 ° C for 20 minutes. Lysis solution 30,000r
Centrifuge at pm for 30 minutes and add 10 μg of 10 mg / ml RNase A to the supernatant.
l was added and incubated at 37 ° C. for 1 hour, and then crude DNA was obtained by phenol extraction and ethanol precipitation. This was subjected to biogel column chromatography and cesium chloride-ethidium bromide density gradient equilibrium centrifugation to obtain 55 μg of plasmid DNA (pYU300).

プラスミドpYU300の長さは4.2Kbで薬剤耐性はTcR、CmR
であった。またpYU300の制限地図は第1図に示す通りで
ある。
The length of plasmid pYU300 is 4.2 Kb and drug resistance is Tc R , Cm R
Met. The restriction map of pYU300 is shown in Fig. 1.

(2)染色体DNAの抽出 1のLB培地で培養したP.rettgeri ATCC21118の菌体を
第1項の方法で溶解した後、Saito−Miuraの方法(文献
1)を用いて4mgの染色体DNAを得た。
(2) Extraction of chromosomal DNA After lysing the cells of P. rettgeri ATCC 21118 cultivated in the LB medium of 1 by the method of the first paragraph, 4 mg of chromosomal DNA was obtained by the method of Saito-Miura (Reference 1). It was

(3)制限酵素によるDNAの消化と分画文献5の反応条
件下0.25μg/μlの(2)で取得したDNAを0.12unit/μ
lの制限酵素Hind IIIで2時間分解した分解物(DNA量
で125μg)を12mlの10−40%ショ糖密度勾配中遠心し
0.5mlずつ分画採取した。遠心は日立RPS40Tローターを
用い、20℃、25,000rpm24時間行なった。電気泳動で各
画分のDNAの長さを測定し、2〜10Kbの画分をプラスミ
ドに連結した。制限酵素は宝酒造(株)製を用い、活性
単位は付属説明書の定義によった。
(3) Digestion and fractionation of DNA with restriction enzyme 0.25 μg / μl of the DNA obtained in (2) under the reaction conditions of Reference 5 was 0.12 unit / μ
Degradation product (125 µg in terms of DNA amount) digested with 1 l of Hind III for 2 hours was centrifuged in 12 ml of 10-40% sucrose density gradient.
Fractions of 0.5 ml were collected. Centrifugation was performed using a Hitachi RPS40T rotor at 20 ° C and 25,000 rpm for 24 hours. The DNA length of each fraction was measured by electrophoresis, and the fraction of 2 to 10 Kb was ligated to the plasmid. Takara Shuzo Co., Ltd. was used as the restriction enzyme, and the activity unit was defined in the attached instruction manual.

(4)ベクターDNAの調整 プラスミド・ベクターpYU300は大腸菌MM294内で複製し
た。複製ならびに菌体からの抽出精製は文献7に従い、
30mg/lのクロラムフェニコールを含むLB培地で培養した
プラスミド含有菌体をリゾチーム・SDSで溶菌した後、
フェノール抽出し、セシウムクロライド−エチジウムブ
ロマイド密度勾配平衡遠心とバイオゲル・カラムクロマ
トグラフィーで精製した。培地1当り、pYU300が50μ
g得られた。ベクターとして供するため、制限酵素Hind
IIIを用い文献4の反応条件下完全分解した後、文献4
に従いアルカリフォスファターゼ処理を施した。
(4) Preparation of vector DNA The plasmid vector pYU300 was replicated in E. coli MM294. Replication and extraction / purification from bacterial cells are according to Reference 7,
After lysing the plasmid-containing cells cultured in LB medium containing 30 mg / l chloramphenicol with lysozyme / SDS,
It was extracted with phenol and purified by cesium chloride-ethidium bromide density gradient equilibrium centrifugation and biogel column chromatography. 50μ of pYU300 per medium
g was obtained. Since it serves as a vector, the restriction enzyme Hind
After completely decomposing using III under the reaction conditions of Reference 4, Reference 4
Alkaline phosphatase treatment was performed according to the above.

(5)宿主の作製 5mlのLB培地中で37℃、3時間培養した対数期のP.rettg
eri ATCC21118とE.coli MM294とを文献8に従い、TM緩
衝液中で100μg/mlのNTGを用いて変異誘発した後、両菌
株のスレオニン要求性変異株を単離した。
(5) Preparation of host P.rettg in logarithmic phase cultured in 5 ml of LB medium at 37 ° C for 3 hours
According to Reference 8, eri ATCC21118 and E. coli MM294 were mutagenized with 100 μg / ml of NTG in TM buffer, and then threonine-auxotrophic mutants of both strains were isolated.

(6)DNAの連結と形質転換 (3)で得たDNA断片10μgと、(4)で得たベクターD
NA10μgとを、文献4の方法を基に0.5単位のT4DNAリガ
ーゼと供に100μlの6mMMg Cl2−6mMB−メルカプトエタ
ノール−0.5mMATP−6mMTris・HCl(pH7.6)中で14℃−
晩インキュベートした後、この反応液の10μlを(5)
で作製したP.rettgeriの宿主を文献3の方法でコンピテ
ント化した菌液200μlと混ぜ4℃、45分間、次いで42
℃、90秒間、そして4℃、1分間インキュベートした
後、LB培地を加えて1mlとし、37℃、1時間振とう培養
して形質転換を行なった。
(6) Ligation and transformation of DNA 10 μg of DNA fragment obtained in (3) and vector D obtained in (4)
NA 10 μg was added to 0.5 unit of T 4 DNA ligase based on the method of Reference 4 and 100 μl of 6 mM MgCl 2 -6 mM B-mercaptoethanol-0.5 mM ATP-6 mM Tris · HCl (pH 7.6) at 14 ° C.
After incubating overnight, add 10 μl of this reaction mixture (5).
The P. rettgeri host prepared in 1. was mixed with 200 μl of the bacterial solution that had been made competent by the method of Reference 3, and then mixed at 4 ° C. for 45 minutes, then 42
After incubation at 90 ° C. for 90 seconds and at 4 ° C. for 1 minute, LB medium was added to make 1 ml, and the mixture was shake-cultured at 37 ° C. for 1 hour for transformation.

(7)スクリーニング 前項(6)で調製した形質転換体ミクスチャーの菌を7.
5μg/mlのクロラムフェニコールを含む最小培地(0.2%
グルコース、0.1%硫酸アンモニウム、0.2%KH2PO4、0.
7%K2HPO4、0.01%MgSO4・7H2O、0.05%クエン酸ソー
ダ、20ppmイソロイシン)上に撒き、37℃での静置培養
で形質転換体の選択培養を行なった。培養3日目で生じ
たコロニーを再度クロラムフェニコールを含む最小培地
に移植して増殖能を再確認した後、文献6の方法に従い
プラスミドを抽出し、Hind IIIの消化物を電気泳動にか
けた。プラスミド中のインサートDNAの長さが8.7Kbであ
るpYU300の複合体プラスミドには第2図に示すようにイ
ンサートDNAの挿入方向が互に逆向きである2種類の存
在が認められ、図のようにpYU302、pUY302と名づけた。
(7) Screening The transformant mixture fungus prepared in (6) above was used in 7.
Minimal medium (0.2% containing chloramphenicol at 5 μg / ml)
Glucose, 0.1% ammonium sulfate, 0.2% KH 2 PO 4 , 0.
7% K 2 HPO 4 , 0.01% MgSO 4 · 7H 2 O, 0.05% sodium citrate, 20 ppm isoleucine), and the selective culture of the transformant was performed by static culture at 37 ° C. The colonies formed on the 3rd day of culture were transplanted again to the minimal medium containing chloramphenicol to reconfirm the growth ability, and then the plasmid was extracted according to the method of Reference 6 and the digested product of Hind III was electrophoresed. . As shown in Fig. 2, there are two types of existence of insert DNAs in opposite directions to each other in the complex plasmid of pYU300 in which the length of the insert DNA in the plasmid is 8.7Kb. We named them pYU302 and pUY302.

(8)遺伝子の確認 pYU302の8.7Kb Hind III断片をpBR322のHind IIIに組込
んで作製した複合プラスミドはE.coli CGSC5075、同507
6、同5077株を形質転換し、いずれの株のスレオン要求
性マーカーをレスキューした。従ってこの複合プラスミ
ドはthrA、thrB、thrC遺伝子を遺伝子を有していると推
定された。
(8) Confirmation of gene The composite plasmid prepared by incorporating the 8.7 Kb Hind III fragment of pYU302 into Hind III of pBR322 is E. coli CGSC5075 and 507.
6 and 5077 strains were transformed, and the threonon-requiring marker of either strain was rescued. Therefore, this composite plasmid was presumed to have the thrA, thrB, and thrC genes.

(9)スレオニン発酵生産性 (7)項の方法で作製したpYU302を含有する形質転換体
P.rettgeri ATCC21118Thr-(pYU302)を10mg/lのクロラ
ムフェニコールを含むLB培地で培養し、文献7の方法
で、培養液400ml当りpYU302を10μg得た。これを用い
て実施例2(5)項の方法でP.rettgeri ATCC21118を形
質転換した後、10mg/lのクロラムフェニコールを含むLB
培地上に生育するクローンを取得した。菌体内含有プラ
スミドがpYU302であることを制限分析により確認しpYU3
02がP.rettgeri ATCC21118に入った事を確認した。
(9) Threonine fermentation productivity Transformant containing pYU302 prepared by the method of the item (7)
P.rettgeri ATCC21118Thr - a (pYU302) was cultured in LB medium containing chloramphenicol 10 mg / l, in the methods of the literature 7, the culture solution 400ml per PYU302 give 10 [mu] g. Using this, P. rettgeri ATCC21118 was transformed by the method of Example 2 (5), and then LB containing 10 mg / l chloramphenicol was added.
A clone that grows on the medium was obtained. It was confirmed by restriction analysis that the plasmid contained in the bacterial cell was pYU302.
I confirmed that 02 entered P.rettgeri ATCC 21118.

10mg/lのクロラムフェニコールを含む500mlの坂口フラ
スコに、培地(8%グルコース、2%硫酸アンモニウ
ム、0.1%KH2PO4、0.04%MgSO4・7H2O、10ppm FeSO4・7
H2O、7ppm MnCl2・4H2O、50ppm L−イソロイシン、4%
CaCO3、pH7)50ml中30℃53時間培養し、培養液中のスレ
オニン含量をアミノ酸自動分析機で定量したところP.re
ttgeri ATCC21118のスレオニン含量は0.20g/l、一方pYU
302を含むP.rettgeri ATCC21118(pYU302)(微工研条
寄第1175号)は0.68g/lであり、スレオニン発酵生産性
が3.4倍だった。
A 500 ml Sakaguchi flask containing 10 mg / l chloramphenicol was placed in a medium (8% glucose, 2% ammonium sulfate, 0.1% KH 2 PO 4 , 0.04% MgSO 4 .7H 2 O, 10 ppm FeSO 4 .7).
H 2 O, 7ppm MnCl 2 · 4H 2 O, 50ppm L- isoleucine, 4%
After culturing in 50 ml of CaCO 3 (pH 7) at 30 ° C for 53 hours, the threonine content in the culture broth was quantified by an amino acid automatic analyzer.
The threonine content of ttgeri ATCC 21118 is 0.20 g / l, while pYU
P. rettgeri ATCC21118 (pYU302) containing 302 (Microtechnology Research Institute Article No. 1175) was 0.68 g / l, and threonine fermentation productivity was 3.4 times.

実施例2 P.rettgeri ATCC21118のスレオニンアナログAHV耐性変
異株(微工研菌寄第8079号)の染色体DNAを用い、実施
例1に示したオーキソトロフィ・コンプリメンテイショ
ン法に基づき、宿主のスレニオン要求性を相補する遺伝
子をセルフクローニングした。この時できた複合プラス
ミドpYU310、pUY310は第3図に示す大きさと制限地図を
有していた。これら両複合プラスミドはインサートDNA
の挿入方向が互いに逆向きであった。
Example 2 Using the chromosomal DNA of a threonine analog AHV resistant mutant of P. rettgeri ATCC 21118 (Ministry of Industrial Science and Technology No. 8079), based on the orthotrophic complementation method shown in Example 1, the host threnion was used. The gene complementing the requirement was self-cloned. The composite plasmids pYU310 and pUY310 produced at this time had the size and restriction map shown in FIG. Both of these composite plasmids are insert DNA
Were inserted in opposite directions.

P.rettgeriのAHV耐性菌(微工研菌寄第8079号)のpYU31
0による形質転換体につき、実施例1第(9)項の方法
で45時間培養しスレオニンの発酵生産性をみたところ、
非形質転換体の生産性が2.31g/lであるのに対し、3.14g
/lとなり1.4倍だった。
PYU31 of AHV resistant bacterium of P. rettgeri (Microtechnology Research Institute No. 8079)
The transformant of 0 was cultured for 45 hours by the method described in Example 1 (9), and the fermentative productivity of threonine was examined.
The productivity of non-transformants is 2.31 g / l, while 3.14 g
/ l was 1.4 times that.

実施例3 (1)ベクターDNAの調製 宝酒造(株)製のpBR322を、制限酵素Hind IIIで完全分
解した後、文献4に従いアルカリフォスターゼ処理を施
した。
Example 3 (1) Preparation of vector DNA pBR322 manufactured by Takara Shuzo Co., Ltd. was completely digested with a restriction enzyme Hind III, and then treated with alkaline phosphatase according to Reference 4.

(2)L−スレオニン遺伝子のクローニング実施例1の
方法に従い、P.rettgeri ATCC21118のHind III染色体DN
A断片を(1)項で調製したスベクターにライゲーショ
ンした後、ライゲーションミクスチャーで宿主E.coli M
M294のL−スレニオン要求性変異株を形質転換した後、
L−スレオニン・マーカーがレスキューされた形質転換
体クローンを得た。菌体内プラスミドのうち最小のもの
は、外来遺伝子断片は8.7Kbだった。
(2) Cloning of L-threonine gene According to the method of Example 1, Hind III chromosomal DN of P. rettgeri ATCC 21118
After ligating the A fragment to the vector prepared in section (1), the ligation mixture was used to transform the host E. coli M
After transformation of an L-threonion-requiring mutant of M294,
A transformant clone in which the L-threonine marker was rescued was obtained. The smallest of the intracellular plasmids had a foreign gene fragment of 8.7 Kb.

(3)L−スレニオン発酵生産菌の作成 前項(2)で得た8.7Kb断片を、実施例1第(6)項の
方法に従い、pYU300のHind III部位に入れて複合プラス
ミドpYU302を成し、これをP.rettgeri ATCC21118に導入
した。
(3) Preparation of L-threnion fermentation-producing bacterium The 8.7 Kb fragment obtained in the above (2) was inserted into the Hind III site of pYU300 according to the method of Example 1 (6) to form a composite plasmid pYU302, This was introduced into P. rettgeri ATCC 21118.

実施例1第(9)項に記した方法でこの複合プラスミド
を有する形質転換体を48時間培養し、L−スレオニンの
発酵生産性をみたところ、非形質転換体の生産性が、0.
18g/lであるのに対し、0.70g/lとなり、3.9倍だった。
The transformant having this composite plasmid was cultured for 48 hours by the method described in Example 1 (9), and the fermentation productivity of L-threonine was examined. As a result, the productivity of the non-transformant was 0.
While it was 18 g / l, it was 0.70 g / l, which was 3.9 times.

参考文献 1.斉藤日向:蛋白質・核酸・酸素 11,446〜450(196
6) 2.V.Hershfield et al:Proc.Natl.Acad.Sci,U.S.A.71,p
3455〜3459(1974) 3.重定勝哉:細胞工学2,616〜626(1983) 4.R.W.Davisら編:Advanced Bacterial Genetics,A Ma
nual for Genetic Engineering p738〜739(1980) 5.同上p227〜230 6.H.C.Birnboim and J.Doly:Nucleic Acid Res7,1513〜
1523(1979) 7.T.Maniatisら編:Molecular Cloning,A Laboratory
Manual p86〜96(1982)Cold Spring Harbor Laborator
y,New York 8.石川辰夫編“微生物遺伝子学実験法"p86〜88(1982)
共立出版
References 1. Saito Hinata: Protein, nucleic acid, oxygen 11,446〜450 (196
6) 2.V.Hershfield et al: Proc.Natl.Acad.Sci, USA71, p
3455 ~ 3459 (1974) 3. Katsuya Shigetada: Cell Engineering 2,616 ~ 626 (1983) 4. RW Davis et al .: Advanced Bacterial Genetics, A Ma
nual for Genetic Engineering p738〜739 (1980) 5.Ibid p227〜230 6.HC Birnboim and J.Doly: Nucleic Acid Res7,1513〜
1523 (1979) 7. T. Maniatis et al .: Molecular Cloning, A Laboratory
Manual p86-96 (1982) Cold Spring Harbor Laborator
y, New York 8. Tatsuo Ishikawa, Ed., "Microbial Genetics Experimental Method," p86-88 (1982)
Kyoritsu Publishing

【図面の簡単な説明】[Brief description of drawings]

第1図はプラスミドpYU300の制限地図を、第2図はプラ
スミドpYU302、プラスミドpUY302の制限地図を、第3図
はプラスミドpYU310、pUY310の制限地図を示す。
FIG. 1 shows a restriction map of plasmid pYU300, FIG. 2 shows a restriction map of plasmids pYU302 and pUY302, and FIG. 3 shows a restriction map of plasmids pYU310 and pUY310.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 13/08 C12R 1:185) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location (C12P 13/08 C12R 1: 185)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】プロビデンシア属の菌株由来のL−スレオ
ニン生産を司る遺伝子を含む、下記の制限地図で表され
るプラスミドpYU300の組換え体DNAを有するプロビデン
シア属もしくはエシェリヒア属の菌の形質転換体を培養
し、培地中に生成蓄積されたL−スレオニンを採取する
ことを特徴とするL−スレオニンの製造法。
1. A transformant of a bacterium of the genus Providencia or Escherichia having a recombinant DNA of a plasmid pYU300 represented by the following restriction map, which contains a gene controlling L-threonine production derived from a strain of the genus Providencia. A method for producing L-threonine, which comprises culturing and collecting L-threonine produced and accumulated in the medium.
【請求項2】形質転換体が、プロビデンシア属の菌であ
る特許請求の範囲第(1)項記載のL−スレオニンの製
造法。
2. The method for producing L-threonine according to claim 1, wherein the transformant is a bacterium of the genus Providencia.
【請求項3】L−スレオニン生産を司る遺伝子が、プロ
ビデンシア レッドゲリ由来である特許請求の範囲第
(1)項記載のL−スレオニンの製造法。
3. The method for producing L-threonine according to claim 1, wherein the gene controlling L-threonine production is derived from Providencia red geri.
JP60230996A 1985-10-18 1985-10-18 Method for producing L-threonine Expired - Lifetime JPH0716429B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60230996A JPH0716429B2 (en) 1985-10-18 1985-10-18 Method for producing L-threonine
DE86114285T DE3689437T2 (en) 1985-10-18 1986-10-15 Broad host plasmid.
EP86114285A EP0219808B1 (en) 1985-10-18 1986-10-15 Plasmid with wide host range
US06/919,993 US4945058A (en) 1985-10-18 1986-10-17 Plasmid with wide host range and process of producing L. threonine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230996A JPH0716429B2 (en) 1985-10-18 1985-10-18 Method for producing L-threonine

Publications (2)

Publication Number Publication Date
JPS6291192A JPS6291192A (en) 1987-04-25
JPH0716429B2 true JPH0716429B2 (en) 1995-03-01

Family

ID=16916598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230996A Expired - Lifetime JPH0716429B2 (en) 1985-10-18 1985-10-18 Method for producing L-threonine

Country Status (1)

Country Link
JP (1) JPH0716429B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131397A (en) * 1979-04-02 1980-10-13 Ajinomoto Co Inc Preparation of l-threonine by fermentation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131397A (en) * 1979-04-02 1980-10-13 Ajinomoto Co Inc Preparation of l-threonine by fermentation

Also Published As

Publication number Publication date
JPS6291192A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
EP0082485B1 (en) Novel vector plasmids
EP0088166A2 (en) Method for expressing a gene
JPH0353913B2 (en)
JPH06102024B2 (en) Novel promoter and gene expression method using the promoter
JPH0231956B2 (en)
JPH0129559B2 (en)
EP0803575A1 (en) Promotor DNA fragment from coryneform bacteria
Sykes et al. Molecular cloning of genes encoding branched-chain keto acid dehydrogenase of Pseudomonas putida
JPH0728749B2 (en) Method for producing L-arginine
EP0137348B1 (en) Recombinant dna, bacteria carrying said recombinant dna and a process for producing l-threonine or l-isoleucine using said bacteria
JP2002512802A5 (en) Microbial production of substances from aromatic metabolism
JPH0523750B2 (en)
EP0077196A2 (en) Aromatic amino acid-producing microorganisms
US5426050A (en) Plasmid vectors for expression of genes in coryneform bacteria
US4968609A (en) Coryneform bacteria carrying recombinant DNA and a process for producing aromatic amino acids using said bacteria
EP0215388B1 (en) Plasmid vector and a method for regulation of gene expression using the same
JPS62186795A (en) Production of amino acid
JPH07121227B2 (en) Method for producing L-glutamic acid
JPS6368091A (en) Production of amino acid
JPH0716429B2 (en) Method for producing L-threonine
JPH06125779A (en) Production of aromatic amino acid using coryneform bacterium having recombinant dna
EP0170257B1 (en) Process for producing l-tryptophan
JPS6178378A (en) Coryne-type bacteria having recombinant dna, and production of aromatic amino acid using same
EP0219808A2 (en) Plasmid with wide host range
JPH0511960B2 (en)