JPH07164086A - Method and device for hole piercing work - Google Patents

Method and device for hole piercing work

Info

Publication number
JPH07164086A
JPH07164086A JP23382694A JP23382694A JPH07164086A JP H07164086 A JPH07164086 A JP H07164086A JP 23382694 A JP23382694 A JP 23382694A JP 23382694 A JP23382694 A JP 23382694A JP H07164086 A JPH07164086 A JP H07164086A
Authority
JP
Japan
Prior art keywords
hole
sphere
work
ball
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23382694A
Other languages
Japanese (ja)
Other versions
JP3149701B2 (en
Inventor
Takafumi Asada
隆文 浅田
Masato Morimoto
正人 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23382694A priority Critical patent/JP3149701B2/en
Publication of JPH07164086A publication Critical patent/JPH07164086A/en
Application granted granted Critical
Publication of JP3149701B2 publication Critical patent/JP3149701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To finish the inside diameter, of which the diameter and cylindricity are hard to be machined, to high precision. CONSTITUTION:Balls 3 of plural kinds of diameter are placed on an upper stage 2 free to slide and rotate, the ball selected from among these so as to coincide with the diameter of a prepared hole is pushed into a bearing hole 1A by a pin 5B. By this method, when there is a variance in the diameter of the prepared hole, a variance for the finished hole is contained to a minimum, a high precision sleeve and high performance bearing is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ワークの穴に対して、
該穴と同一の外径又は若干大きい外径を有する加工球を
押し通すことにより上記穴の内面加工を行うワークの穴
加工装置及びその方法に関する。特に、近年、事務機器
および民生機器等に使われる軸受は高速、高精度化して
おり、動圧型の流体軸受や、特別に精度良く加工された
特殊な滑り軸受の必要性が高まっている。本発明は、こ
れら高精度な軸受のスリーブの内径の仕上げ加工をおこ
なうことができる加工装置及びその加工方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a hole of a work,
The present invention relates to a hole drilling apparatus and method for a workpiece, which punches an inner surface of the hole by pushing a working ball having the same outer diameter or a slightly larger outer diameter as the hole. In particular, in recent years, bearings used in office equipment, consumer equipment, etc. have become faster and more accurate, and there is an increasing need for hydrodynamic bearings and special plain bearings that have been specially processed with high precision. The present invention relates to a processing apparatus and a processing method capable of finishing the inner diameter of a sleeve of these highly accurate bearings.

【0002】[0002]

【従来の技術】以下に図面に従いながら、従来のワーク
の穴加工装置の構造について説明する。図8〜図10に
おいて、11はワークの一例としての軸受のスリーブ、
11Aは軸受穴、12は動圧発生溝、13は残留突起、
14は焼き入れ鋼等の材質から成る加工球、15はピン
である。
2. Description of the Related Art The structure of a conventional work hole drilling apparatus will be described below with reference to the drawings. 8 to 10, 11 is a sleeve of a bearing as an example of the work,
11A is a bearing hole, 12 is a dynamic pressure generating groove, 13 is a residual protrusion,
Reference numeral 14 is a processed ball made of a material such as hardened steel, and 15 is a pin.

【0003】以下に図面に従いながら従来のワークの穴
加工装置の動作について説明する。従来、溝付き動圧型
流体軸受等、精密軸受の内径加工プロセスは、図9に示
すように、まず、スリーブ11の軸受穴11Aを切削加
工等により、図中D1の寸法に加工し、その後図示しな
い加工ツール(例えば特公平3−68768号公報に示
す製造装置等)により複数の動圧発生溝12を加工す
る。この加工の際に隆起した残留突起13を図9に示す
ように焼き入れ鋼等からなる、ある一定の径Dbを有す
る球14をピン15により圧入気味に押し通して行な
う、ボールバニッシュと呼ばれる加工により除去してい
た。
The operation of the conventional work hole drilling apparatus will be described below with reference to the drawings. Conventionally, in the inner diameter processing process of precision bearings such as a hydrodynamic bearing with a groove, as shown in FIG. 9, first, the bearing hole 11A of the sleeve 11 is processed into a dimension of D1 in the drawing by cutting, and then shown. A plurality of dynamic pressure generating grooves 12 are machined by a machining tool (for example, a manufacturing apparatus disclosed in Japanese Patent Publication No. 3-68768). As shown in FIG. 9, the residual protrusion 13 raised during this processing is formed by quenching a ball 14 made of hardened steel or the like and having a certain diameter Db with a pin 15 so as to press it into place. Had been removed.

【0004】尚、このボールバニッシュ加工によりスリ
ーブ11の穴内径は、切削加工後の内径(下穴径)D1
よりわずかに大きい径D2に仕上がるものであった。
尚、図10においてスリーブ11の内径11Aの両端近
傍は、構造的に強度が弱く、図中D3に示すように、ボ
ールバニッシュ加工による塑性変化量が多く、これによ
って円筒度が悪くなるものであった。
The hole inner diameter of the sleeve 11 by this ball burnishing is the inner diameter (prepared hole diameter) D1 after cutting.
The diameter D2 was slightly larger.
In FIG. 10, structural strength is weak in the vicinity of both ends of the inner diameter 11A of the sleeve 11, and as shown by D3 in the figure, the plastic change amount due to the ball burnishing is large, which deteriorates the cylindricity. It was

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構造では、図11に示すようにスリーブ11の下穴
径D1が切削加工条件によって基準径に対し6ミクロン
程度のバラツキ(例えば基準径に対して−5〜+1ミク
ロン)を持つのであるが、仕上がり径D2もこの下穴の
バラツキにより同程度のバラツキを持ってしまい、精密
軸受のスリーブとして必要な1〜3ミクロン(具体例で
は−1〜+1ミクロン)程度の公差に仕上がり径D2を
加工するのは、量産上極めて困難であった。
However, in the above structure, as shown in FIG. 11, the prepared hole diameter D1 of the sleeve 11 varies by about 6 microns with respect to the reference diameter depending on the cutting conditions (for example, with respect to the reference diameter). -5 to +1 micron), but the finished diameter D2 also has a similar variation due to the variation of the prepared hole, and it is 1 to 3 microns (-1 to 1 in the specific example) required for the sleeve of the precision bearing. It was extremely difficult in mass production to machine the finished diameter D2 to a tolerance of about +1 micron.

【0006】従って、本発明の目的は、従来一般的に精
度が出にくかった切削加工や研磨加工を用いることな
く、制御された特殊な塑性加工により高精度に穴内面を
仕上げ加工することができるワークの穴加工装置及びそ
の方法を提供することである。
Therefore, the object of the present invention is to perform highly precise finishing of the inner surface of a hole by a controlled special plastic working without using a cutting work or a polishing work, which has generally been difficult to obtain accuracy. An object of the present invention is to provide a work hole drilling apparatus and method.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明のワークの穴加工装置は、ワークの穴内径
によりわずかに大きくかつ微妙に直径差を有する複数個
の球を備え、この中から選択された径の球をワークの穴
に押し通して穴加工を行う。
In order to solve the above problems, a hole drilling apparatus for a workpiece according to the present invention comprises a plurality of spheres slightly larger and slightly different in diameter depending on the hole inner diameter of the workpiece. A hole having a diameter selected from the above is pushed through a hole of a work to perform hole processing.

【0008】すなわち、本発明の1つの態様にかかるワ
ークの穴加工装置は、ワークの穴に加工球を挿入するこ
とにより該穴の内面加工を行うワークの穴加工装置にお
いて、複数の異なる径寸法を有する加工球を備える加工
球供給装置と、上記球供給装置に備えられた上記加工球
の中から、上記ワークの穴の内径をD1としたとき、外
径が(1〜1.02)×D1の範囲内の寸法を有する加
工球を1つ選択する加工球選択装置と、上記選択装置に
より選択された加工球を上記加工球供給装置から上記ワ
ークの穴に押し通させる加工球押し通し装置とを備える
ようにしている。
That is, a work hole drilling apparatus according to an aspect of the present invention is a work hole drilling apparatus that inserts a work ball into a hole of a work to machine the inner surface of the hole. When the inner diameter of the hole of the work is set to D1 from the processing sphere supply device provided with the processing sphere having the processing sphere and the processing sphere provided in the sphere supply device, the outer diameter is (1-1.02) × A machining sphere selecting device for selecting one machining sphere having a size within the range of D1, and a machining sphere pushing device for pushing the machining sphere selected by the selecting device from the machining sphere supplying device into the hole of the workpiece. To prepare for.

【0009】また、本発明の他の態様にかかるワークの
穴加工装置は、ワークの穴に加工球を挿入することによ
り該穴の内面加工を行うワークの穴加工装置において、
上記ワークの穴に上記加工球を挿入する前に、上記ワー
クの穴に対して、該ワークの穴の内径をD1としたとき
外径Db1がD1≦Db1≦(1.003×D1)の範
囲内の測定球を押し通し、この測定球の押し通し時の荷
重の大小を検出する測定球挿入装置と、複数の異なる径
寸法を有する加工球を備える加工球供給装置と、上記測
定球挿入装置により押し通された測定球の検出された荷
重を元に、上記加工球供給装置に備えられた上記加工球
の中から、上記ワークの穴の内径をD1とするとともに
上記測定球の外径をDb1としたとき、外径DbがDb
1<Db≦(1.02×D1)の範囲内の寸法を有する
加工球を1つ選択する加工球選択装置と、上記選択装置
により選択された加工球を上記加工球供給装置から上記
ワークの穴に押し通させる加工球押し通し装置とを備え
るようにしている。
A hole drilling apparatus for a work according to another aspect of the present invention is a hole drilling apparatus for a work, which inserts a working ball into a hole of a work to machine an inner surface of the hole.
Before inserting the processing sphere into the hole of the work, the outer diameter Db1 is D1 ≦ Db1 ≦ (1.003 × D1) when the inner diameter of the hole of the work is D1 with respect to the hole of the work. Push through the measuring sphere inside, and the measuring sphere insertion device that detects the magnitude of the load at the time of pushing through this measuring sphere, the processing sphere supply device equipped with a plurality of processing spheres having different diameter dimensions, and the above measuring sphere insertion device. Based on the detected load of the passed measurement sphere, the inner diameter of the hole of the workpiece is set to D1 and the outer diameter of the measurement sphere is set to Db1 from the processing spheres provided in the processing sphere supply device. When the outer diameter Db is
A machining sphere selecting device for selecting one machining sphere having a dimension within the range of 1 <Db ≦ (1.02 × D1), and a machining sphere selected by the selecting device from the machining sphere supplying device for the work. And a processing ball pushing device for pushing through the hole.

【0010】また、本発明のさらに他の態様のワークの
穴加工方法は、ワークの穴に加工球を挿入することによ
り該穴の内面加工を行うワークの穴加工方法において、
上記ワークの穴に上記加工球を挿入する前に、上記ワー
クの穴に対して、該ワークの穴の内径をD1としたとき
外径Db1がD1≦Db1≦(1.003×D1)の範
囲内の測定球を押し通し、この測定球の押し通し時の荷
重の大小を検出するステップと、複数の異なる径寸法を
有する加工球を備えるステップと、上記測定球挿入装置
により押し通された測定球の検出された荷重を元に、上
記加工球供給装置に備えられた上記加工球の中から、上
記ワークの穴の内径をD1とするとともに上記測定球の
外径をDb1としたとき、外径DbがDb1<Db≦
(1.02×D1)の範囲内の寸法を有する加工球を1
つ選択するステップと、上記選択装置により選択された
加工球を上記加工球供給装置から上記ワークの穴に押し
通させるステップとを備えるようにしている。
Further, a hole drilling method for a work according to still another aspect of the present invention is a method for drilling a hole in a work, wherein an inner surface of the hole is drilled by inserting a working ball into the hole.
Before inserting the processing sphere into the hole of the work, the outer diameter Db1 is D1 ≦ Db1 ≦ (1.003 × D1) when the inner diameter of the hole of the work is D1 with respect to the hole of the work. Pushing through the measuring sphere inside, the step of detecting the magnitude of the load at the time of pushing through this measuring sphere, the step of providing a processing sphere having a plurality of different diameter dimensions, of the measuring sphere pushed through by the measuring sphere insertion device When the inner diameter of the hole of the workpiece is D1 and the outer diameter of the measuring sphere is Db1 among the machining spheres provided in the machining sphere supply device based on the detected load, the outer diameter Db Is Db1 <Db ≦
1 machining sphere having a size within the range of (1.02 × D1)
And a step of pushing the machining sphere selected by the selecting device from the machining sphere supplying device into the hole of the work.

【0011】[0011]

【作用】本発明は、この構成によって、ステージに配列
された複数個の球の中から、ワークの下穴径を必要寸法
に仕上げるために最良の1種類の径の球を選択し、押圧
部材により、ワークの穴内径に押し通すことにより、穴
内面に塑性変形を起こさせ、その内径を所定の寸法に仕
上げるものである。
According to the present invention, according to this structure, the best one type of sphere is selected from the plurality of spheres arranged on the stage so as to finish the prepared hole diameter of the work to the required size, and the pressing member is selected. By pushing through the hole inner diameter of the work, the inner surface of the hole is plastically deformed and the inner diameter is finished to a predetermined size.

【0012】[0012]

【実施例】以下、本発明の実施例にかかるワークの穴加
工装置及びその装置を使用して実施する穴加工方法につ
いて、図1〜図7を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hole drilling apparatus for a workpiece and a hole drilling method carried out using the apparatus according to an embodiment of the present invention will be described below with reference to FIGS.

【0013】図1は本発明の第1実施例にかかるワーク
の穴加工装置を示す。図1において、1はワークの一例
として動圧型流体軸受を構成する軸受穴1Aを有し非加
工物となるスリーブである。スリーブ1は塑性変形可能
な材料、例えば銅合金などの金属等で構成され、その軸
受穴1Aの内周面には、図2に示すように、必要に応じ
て動圧発生溝1Bが加工されている。2は図中A方向
に、摺動または回動自在な上部ステージであり、複数の
ガイド穴2Aとそれぞれのガイド穴2Aにはストッパー
23を有し、ガイド穴2Aには複数の径の焼き入れ鋼等
から成る加工球3、具体的には3B、3C、3D、3E
が配置されて、これら加工球3B、3C、3D、3Eは
シュート状またはチューブ状の加工球供給手段である加
工球供給装置4により供給される。5Bは図中B方向に
摺動する加工球押圧部材としてのピン、6は上部ステー
ジ2と一体的に移動し、かつ、上記上部ステージ2の穴
2Aに対応して配置されてスリーブ1を取り抜けた加工
球3B,3C,3D,3Eを受け取るための穴6Aを有
する下部ステージであって、各穴6Aには加工球3B,
3C,3D,3Eを回収するためのシュート7を配置し
ている。このシュート7で回収された加工球3B,3
C,3D,3Eは、図示しない洗浄装置で洗浄したの
ち、再び、上記加工球供給装置4に供給されて再使用さ
れる。また、上記ストッパー23は、図3に示すよう
に、上部ステージ2の各穴2Aの軸方向とは直交する方
向の凹部2B内にバネ24により穴2A内に常時押圧さ
れており、ストッパー23が穴2A内に突出しているこ
とにより加工球3B,3C,3D,3Eは落下せずに穴
2A内で保持されている。そして、加工球が上記ピン5
Bで下方向に押圧されると、ストッパー23がバネ24
の付勢力に抗して上記凹部2B内に押し込まれ、加工球
3B,3C,3D,3Eが穴2Aから落下して、スリー
ブ1に供給される。
FIG. 1 shows a work hole drilling apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 is a sleeve which has a bearing hole 1A which constitutes a dynamic pressure type fluid bearing as an example of a work and which is a non-processed object. The sleeve 1 is made of a plastically deformable material, for example, a metal such as a copper alloy, etc., and a dynamic pressure generating groove 1B is formed on the inner peripheral surface of the bearing hole 1A as needed as shown in FIG. ing. Reference numeral 2 is an upper stage that is slidable or rotatable in the direction A in the figure, and has a plurality of guide holes 2A and stoppers 23 in each of the guide holes 2A, and the guide holes 2A have a plurality of diameters for quenching. Processed balls 3 made of steel, etc., specifically 3B, 3C, 3D, 3E
Are arranged, and these processed spheres 3B, 3C, 3D, 3E are supplied by a processed sphere supply device 4 which is a chute-shaped or tube-shaped processed sphere supply means. 5B is a pin as a processing sphere pressing member that slides in the B direction in the figure, 6 moves integrally with the upper stage 2, and is arranged corresponding to the hole 2A of the upper stage 2 to remove the sleeve 1. A lower stage having holes 6A for receiving the processed balls 3B, 3C, 3D, 3E that have been removed, and each of the holes 6A has a processing ball 3B,
A chute 7 for collecting 3C, 3D and 3E is arranged. The processed balls 3B, 3 collected by the chute 7
C, 3D, and 3E are cleaned by a cleaning device (not shown), and then supplied again to the processing ball supply device 4 for reuse. Further, as shown in FIG. 3, the stopper 23 is constantly pressed into the hole 2A by the spring 24 in the recess 2B in the direction orthogonal to the axial direction of each hole 2A of the upper stage 2, and the stopper 23 is By being projected into the hole 2A, the processed balls 3B, 3C, 3D, 3E are held in the hole 2A without dropping. And the processing ball is the pin 5
When pressed downward by B, the stopper 23
The spheres 3B, 3C, 3D and 3E are pushed into the concave portion 2B against the urging force of, and the processing balls 3B, 3C, 3D and 3E are dropped from the hole 2A and supplied to the sleeve 1.

【0014】上記のように構成されたワークの穴加工装
置について、図1,2を用いてその動作を説明する。
The operation of the work hole drilling apparatus configured as described above will be described with reference to FIGS.

【0015】図2は第1実施例にかかるワークの穴加工
装置により加工されたワークの一例としての軸受用スリ
ーブを示す。図1において、加工球3B、3C、3D、
3Eはほぼ同一径(具体例では3ミリメートル)である
が、1〜3ミクロンずつ、(具体例としては2ミクロン
ずつ)段階的に異なる5種類の直径の加工球であり、加
工球3Bの径Db2より3C、3D,3Eの径Db3、
Db4,Db5へと順に径が大きくなるよう設定されて
いる。これら球3B、3C、3D、3Eは加工急供給装
置である上部ステージ2のガイド穴2Aにそれぞれ配置
され、各穴2A内に出入り自在な各ストッパー23によ
り自然落下しない程度に軽く支えられている。ここで、
スリーブ1は上部ステージ2と下部ステージ6との間に
供給されるが、その軸受穴1Aの内径は予め予測されて
いる。具体例では、この軸受穴1Aの下穴(切削加工後
の穴)は基準内径に対して−5〜+1ミクロンの6ミク
ロンの公差内に切削加工されている。その径が公差内で
小さめの場合は、上部ステージ2と下部ステージ6が一
体的に摺動させ、例えば比較的径の小さい球3Bがピン
5Bとスリーブ1の真上に移動することにより選択さ
れ、この球3Bが、ピン5Bの下降動作により、ストッ
パー23の付勢力に打ち勝つ力でスリーブ1の軸受穴1
Aに押し通され、軸受穴1Aは所定の内径D2(具体例
では基準径の−1〜+1ミクロンの2ミクロンの公差
内)にサイジング、すなわち内径D2に仕上げ加工され
る。この時、球3Bの径Db2は軸受穴1Aの下穴内径
D1より3〜60ミクロン(具体例では約20ミクロ
ン)大きく設定されている。また、供給されたスリーブ
1の軸受穴1Aが大きい場合は、上部ステージ2と下部
ステージ6が摺動され、例えば比較的大きい径Db5を
有する球3Eが選択されて、ピン5Bの下降動作により
軸受穴1Aに押し込まれ、スリーブ1の穴1Aは所定の
内径寸法D2まで塑性加工によりサイジングされる。ま
た軸受穴1Aを通過した後の球3B等は、下部ステージ
6の複数のシュート7に回収され、球供給手段4から再
度供給されて繰り返し使用される。仕上げ加工後のスリ
ーブ1は図2に示すようにその内径はD2(具体例では
基準径に対して−1〜+1ミクロン)に仕上げられ、図
中D3に示す軸受穴1Aの両端部の大きな変形も、最適
な径の球3が選択されるとにより従来より少なくするこ
とができる。よって、この第1実施例では、スリーブ1
の軸受穴(下穴)1Aの内径D1に対して、(1〜1.
02)×D1の外径の加工球3、言い換えれば、下穴1
Aの内径D1と同一か又は最大で2%大きい外径の加工
球3の中から適切な加工球3を選択して仕上げ加工させ
るようにしている。
FIG. 2 shows a bearing sleeve as an example of a workpiece machined by the workpiece hole machining apparatus according to the first embodiment. In FIG. 1, processed balls 3B, 3C, 3D,
3E has substantially the same diameter (3 millimeters in the concrete example), but is a machining sphere of 5 kinds of diameters which are different step by step from 1 to 3 microns (2 micrometer in the concrete example). Diameter Db3 of 3C, 3D, 3E from Db2,
The diameters are set to increase in order from Db4 to Db5. These balls 3B, 3C, 3D and 3E are respectively arranged in the guide holes 2A of the upper stage 2 which is a rapid processing supply device, and are lightly supported by the stoppers 23 that can freely move in and out of the holes 2A so that they do not fall naturally. . here,
The sleeve 1 is supplied between the upper stage 2 and the lower stage 6, and the inner diameter of the bearing hole 1A is predicted in advance. In the specific example, the prepared hole (hole after cutting) of this bearing hole 1A is cut within a tolerance of -6 to -5 to +1 micron with respect to the reference inner diameter. When the diameter is small within the tolerance, the upper stage 2 and the lower stage 6 are integrally slid, and for example, the ball 3B having a relatively small diameter is moved directly above the pin 5B and the sleeve 1 to be selected. , The ball 3B is moved downward by the pin 5B to overcome the urging force of the stopper 23, and the bearing hole 1 of the sleeve 1
The bearing hole 1A is pushed through A, and is sized to a predetermined inner diameter D2 (within a specific example, within a tolerance of 2 microns of a reference diameter of −1 to +1 micron), that is, finished to have an inner diameter D2. At this time, the diameter Db2 of the sphere 3B is set to be larger than the prepared hole inner diameter D1 of the bearing hole 1A by 3 to 60 microns (about 20 microns in the specific example). When the supplied bearing hole 1A of the sleeve 1 is large, the upper stage 2 and the lower stage 6 are slid, and, for example, a ball 3E having a relatively large diameter Db5 is selected, and the bearing is moved by the descending operation of the pin 5B. Pressed into the hole 1A, the hole 1A of the sleeve 1 is sized by plastic working to a predetermined inner diameter dimension D2. Further, the balls 3B and the like that have passed through the bearing hole 1A are collected by the plurality of chutes 7 of the lower stage 6 and supplied again from the ball supply means 4 to be used repeatedly. As shown in FIG. 2, the sleeve 1 after finishing is finished to have an inner diameter of D2 (-1 to +1 micron with respect to the reference diameter in the specific example), and a large deformation of both ends of the bearing hole 1A shown by D3 in the drawing. However, by selecting the sphere 3 having the optimum diameter, the number can be reduced as compared with the conventional case. Therefore, in this first embodiment, the sleeve 1
With respect to the inner diameter D1 of the bearing hole (prepared hole) 1A of (1 to 1.
02) × D1 outer diameter machining ball 3, in other words, prepared hole 1
An appropriate working sphere 3 is selected from the working spheres 3 having an outer diameter that is the same as the inner diameter D1 of A or larger by 2% at the maximum, and finish processing is performed.

【0016】図3は本発明の第2実施例にかかるワーク
の穴加工装置を示し、図4その装置を使用して実施する
ワークの穴加工方法のフローチャートである。この第2
実施例は、加工球3を選択するとき、測定球3Aを最初
にスリーブの軸受穴1Aに押し通してそのときの必要な
荷重を測定し、その測定データに基づいて加工球3を選
択して仕上げ加工を行う点で第1実施例と異なる。な
お、上記測定球3Aは、スリーブ1の軸受穴1Aの内面
に仕上げ加工すなわち塑性加工を生じさせない程度、言
い換えれば、弾性変形のみを生じさせる外径寸法のもの
を使用する。
FIG. 3 shows a work hole drilling apparatus according to a second embodiment of the present invention, and FIG. 4 is a flow chart of a work hole drilling method carried out using the apparatus. This second
In the embodiment, when the processing sphere 3 is selected, the measurement sphere 3A is first pushed through the bearing hole 1A of the sleeve to measure the necessary load at that time, and the processing sphere 3 is selected and finished based on the measurement data. It differs from the first embodiment in that it is processed. The measuring sphere 3A has such an outer diameter that does not cause finishing, that is, plastic working, on the inner surface of the bearing hole 1A of the sleeve 1, in other words, has an outer diameter dimension that causes only elastic deformation.

【0017】図5において、8はピン5Aの基部に設け
られ測定球3Aをスリーブ1の軸受穴1Aに押し通させ
るときに必要な荷重を測定するロードセル、9は該ロー
ドセル8により検出された荷重が入力されて所定の演算
を行う制御部を有するコンピュータ、10はコンピュー
タ9の出力に基づき上部ステージ2と下部ステージ6を
一体的に摺動または回転させるための駆動手段であっ
て、モータ10と該モータ10の回転軸に固定されて部
ステージ2を摺動又は回転させる駆動ローラ10Aであ
る。上記モータ10はコンピュータ9の制御部により駆
動制御される。この駆動手段は第1実施例においても適
用可能なものである。
In FIG. 5, 8 is a load cell which is provided at the base of the pin 5A and measures the load required when the measuring ball 3A is pushed through the bearing hole 1A of the sleeve 1, and 9 is the load detected by the load cell 8. Is provided as a driving means for integrally sliding or rotating the upper stage 2 and the lower stage 6 on the basis of the output of the computer 9, and the computer 10 has a control unit for performing a predetermined calculation. The drive roller 10A is fixed to the rotating shaft of the motor 10 and slides or rotates the stage 2. The motor 10 is driven and controlled by the control unit of the computer 9. This driving means can be applied to the first embodiment as well.

【0018】この第2実施例においては、まず、ステッ
プ#1で非加工物であるスリーブ1の軸受穴1Aの下穴
加工を行う。ついで、ステップ#2で上部ステージ2と
下部ステージ6との間にスリーブ1を供給する。ステッ
プ#3で、スリーブ1の軸受穴1Aの下穴の内径D1を
測定するために、塑性変形は生じさせず弾性変形のみ生
じさせる外径Db1、例えば軸受穴1A(下穴)が5m
m程度の場合には該軸受穴1Aより1〜10ミクロン大
きい径(具体例では下穴の基準径より1ミクロン大きい
径)の球3Aをピン5Aにより一定速度(例えば5mm
/秒)で押し通し、このときの軸方向の抵抗力をロード
セル8で検出する(ステップ#4)。この時、スリーブ
1の下穴1Aの内径D1がもし、基準値より1ミクロン
大きく、球3Aと同一であれば、軸方向の抵抗力はゼロ
か、もしくは数グラムの微小な荷重が検出される。もし
下穴D1がそれより小さければ径差に応じて軸方向の荷
重(具体例では径差1ミクロンに対して1.1キログラ
ム)が検出される。この検出結果がコンピュータ9の制
御部に入力されたのち、所望の演算処理の結果(ステッ
プ#5)、コンピュータ9の制御部よりモータ10に駆
動制御指令が発せられる。この駆動制御指令に基づき、
モータ10により、上部ステージ2と下部ステージ5が
一体的に摺動又は回転され、球3B、3C、3D、3E
の中から最適な1種の径の球、例えば図5では球3Dが
選択される(ステップ#6)。そして、選択された球3
Dがピン5Bにより下穴1Aに押し通され(ステップ#
7)、この結果、例えば6ミクロンのバラツキを有する
下穴1Aが、自動的にミクロンの公差内にサイジングさ
れ、精密軸受とし望まれる性能、精度を発揮することが
できる。尚、ピン5Aと5Bは別々に構成しても、また
1本で兼用してもよい。なお、ピン5Aと5Bの球3と
の接触面は平面でもよいが、球3を保持しやすくするた
めスリバチ状のくぼんだ球面とするのが好ましい。
In the second embodiment, first, in step # 1, the prepared hole of the bearing hole 1A of the sleeve 1 which is a non-machined object is machined. Then, in step # 2, the sleeve 1 is supplied between the upper stage 2 and the lower stage 6. In step # 3, in order to measure the inner diameter D1 of the prepared hole of the bearing hole 1A of the sleeve 1, the outer diameter Db1 which does not cause plastic deformation but only elastic deformation, for example, the bearing hole 1A (prepared hole) is 5 m.
In the case of about m, a ball 3A having a diameter 1 to 10 μm larger than the bearing hole 1A (in the specific example, a diameter 1 μm larger than the reference diameter of the prepared hole) is fixed at a constant speed (for example, 5 mm by a pin 5A).
/ Sec.) And the axial resistance at this time is detected by the load cell 8 (step # 4). At this time, if the inner diameter D1 of the prepared hole 1A of the sleeve 1 is larger than the reference value by 1 micron and is the same as the sphere 3A, the axial resistance is zero or a minute load of several grams is detected. . If the prepared hole D1 is smaller than that, a load in the axial direction (1.1 kg for a diameter difference of 1 micron in the specific example) is detected according to the diameter difference. After the detection result is input to the control unit of the computer 9, the control unit of the computer 9 issues a drive control command to the motor 10 as a result of the desired arithmetic processing (step # 5). Based on this drive control command,
The upper stage 2 and the lower stage 5 are integrally slid or rotated by the motor 10, and the balls 3B, 3C, 3D, 3E
Among them, a sphere having an optimum diameter, for example, sphere 3D in FIG. 5 is selected (step # 6). And the selected sphere 3
D is pushed through the prepared hole 1A by the pin 5B (step #
7) As a result, the prepared hole 1A having a variation of, for example, 6 microns is automatically sized within the tolerance of microns, and the performance and precision desired as a precision bearing can be exhibited. The pins 5A and 5B may be configured separately or may be used as one pin. The contact surface of the pins 5A and 5B with the sphere 3 may be a flat surface, but it is preferable that the contact surface of the pin 5A and 5B is a dented spherical surface in the shape of a rib to make it easier to hold the sphere 3.

【0019】上記測定球3Aの外径Db1は、一般に、
スリーブ1の軸受穴(下穴)1Aの内径D1に対して、
D1≦Db1≦(1.003×D1)となるもの、言い
換えれば、軸受穴内径D1と同一か又は内径D1より最
大で0.3%大きい外径を有することが望ましい。そし
て、加工球3B,3C,3D,3Eの外径Db2〜Db
5は、Db1<(Db2〜Db5)≦(1.02×D
1)となるもの、言い換えれば、Db1と同一か、軸受
内径D1より最大で2.0%大きい外径を有することが
望ましい。
The outer diameter Db1 of the measuring sphere 3A is generally
For the inner diameter D1 of the bearing hole (prepared hole) 1A of the sleeve 1,
D1 ≦ Db1 ≦ (1.003 × D1), in other words, it is desirable to have the same outer diameter as the inner diameter D1 of the bearing hole or 0.3% larger than the inner diameter D1. Then, the outer diameters Db2 to Db of the processed balls 3B, 3C, 3D, 3E.
5 is Db1 <(Db2 to Db5) ≦ (1.02 × D
1), in other words, it is desirable that the outer diameter is the same as Db1 or is larger than the bearing inner diameter D1 by at most 2.0%.

【0020】図6は本発明の第3実施例にかかる加工装
置と該加工装置による速度制御グラフの図である。この
第3実施例は、ピン5Bで球3を下穴1A内に押し通す
とき、下穴1Aの加工部分によってピン5Bの下降速度
を異ならせる点で第1,第2実施例と異なるものであ
る。
FIG. 6 is a diagram of a processing apparatus according to the third embodiment of the present invention and a speed control graph by the processing apparatus. This third embodiment is different from the first and second embodiments in that when the ball 5 is pushed through the prepared hole 1A by the pin 5B, the descending speed of the pin 5B differs depending on the processed portion of the prepared hole 1A. .

【0021】この第3実施例にかかる加工装置におい
て、回転速度が可変自在なパルスモータ26の回転軸に
固定されたピニオン25が、ピン5Bのラック部5Cに
かみ合っている。モータ26は駆動回路27によって駆
動制御され、駆動回路27は、例えば図6の速度制御グ
ラフのデータが記憶されたメモリ28に接続されてお
り、該メモリ28に記憶されたデータに基づいて駆動回
路27より駆動パルスがモータ26に送られ、該モータ
26が所望のタイミングで駆動制御される。よって、モ
ータ26の正逆回転によりピン5Bが所望のタイミング
でその送り速度が変更されて上下動される。上記駆動回
路27及びメモリ28は例えば第2実施例である図5の
加工装置のコンピュータ9に内蔵又は接続してコンピュ
ータ9により制御することができる。
In the processing apparatus according to the third embodiment, the pinion 25 fixed to the rotation shaft of the pulse motor 26 whose rotation speed is variable is engaged with the rack portion 5C of the pin 5B. The motor 26 is drive-controlled by a drive circuit 27, and the drive circuit 27 is connected to, for example, a memory 28 in which the data of the speed control graph of FIG. 6 is stored, and the drive circuit is based on the data stored in the memory 28. A drive pulse is sent from 27 to the motor 26, and the motor 26 is drive-controlled at a desired timing. Therefore, the forward / reverse rotation of the motor 26 changes the feed speed of the pin 5B at a desired timing to move the pin 5B up and down. The drive circuit 27 and the memory 28 can be controlled by the computer 9 by being built in or connected to the computer 9 of the processing apparatus of FIG.

【0022】この駆動制御の一例を以下に説明する。す
なわち、スリーブ1の軸受穴1Aにいずれか1種の球3
Cをピン5Bで押し通す場合、軸受穴1Aの開口付近の
両端部1Dでは、スリーブ1に応力をあまり与えないよ
うにするため、図6にS2(例えば1mm/秒)で示す
ように低速で球3Cを押し通す一方、両端部1D以外の
中間部では、応力を与えても上記両端部D1ほど支障が
ないので、S3(例えば10mm/秒)の中速で球3C
を押し通して、スリーブ1を塑性加工する。速度S1
(例えば20mm/秒)は、中間部のうちの塑性加工し
ない部分1Cで早送りする速度を示している。なお、両
端部1D以外で塑性加工しない部分1Cの近傍部分1E
では、上記S2とS3との間の速度とする。
An example of this drive control will be described below. That is, any one type of ball 3 in the bearing hole 1A of the sleeve 1
When C is pushed through by the pin 5B, the balls are slowly moved at a low speed as shown by S2 (for example, 1 mm / sec) in FIG. 6 at both ends 1D near the opening of the bearing hole 1A so as not to give much stress to the sleeve 1. 3C is pushed through, while at the intermediate portion other than both end portions 1D, even if stress is applied, it does not hinder as much as the above both end portions D1, so the ball 3C at a medium speed of S3 (for example, 10 mm / sec)
Is pushed through and the sleeve 1 is plastically processed. Speed S1
(For example, 20 mm / sec) indicates the speed of fast-forwarding in the portion 1C of the intermediate portion that is not plastically worked. In addition, a portion 1E in the vicinity of a portion 1C which is not plastically worked except for both end portions 1D
Then, the speed is between S2 and S3.

【0023】図7のグラフはこの時の球3Cを押し通す
速度(バニッシュ速度)とスリーブ1の軸受穴1Aの内
径の変化量の関係を球の径Dbと下穴径D1が一定の関
係を有する場合について表した図である。図中に示すよ
うに送り速度が早いと内径変化量はわずかに大きくな
る。これは送り速度が速い程、スリーブ1に与えられる
加工応力が高くなり、それにより塑性加工量が増加する
ためと推定されている。このように球3Cの送り速度を
軸受穴1Aの両端部1Dにおいて遅くすることにより、
加工後の軸受穴1Aの円筒度を良くすることができる。
The graph of FIG. 7 shows the relationship between the speed of pushing the ball 3C (vanishing speed) and the amount of change in the inner diameter of the bearing hole 1A of the sleeve 1 in which the diameter Db of the ball and the diameter D1 of the prepared hole are constant. It is the figure showing about the case. As shown in the figure, when the feed rate is high, the change in inner diameter becomes slightly large. It is presumed that this is because the higher the feed rate, the higher the processing stress applied to the sleeve 1, and the plastic working amount increases accordingly. In this way, by slowing the feed speed of the ball 3C at both ends 1D of the bearing hole 1A,
The cylindricity of the bearing hole 1A after processing can be improved.

【0024】なお、軸受穴1Aの内周面には動圧発生溝
1Bは無くても同じである。本発明が適用されるワーク
の穴としては、スリーブ1の軸受穴1Aに限らず、板部
材の穴などでもよい。
The same applies even if the dynamic pressure generating groove 1B is not provided on the inner peripheral surface of the bearing hole 1A. The hole of the workpiece to which the present invention is applied is not limited to the bearing hole 1A of the sleeve 1 and may be a hole of a plate member.

【0025】以上のように本実施例は、精密軸受の軸受
穴1Aに複数の径3の球から1種の選択された径の球3
を押し通すことにより、軸受穴1Aの内径のバラツキを
少なく抑えることができ、高性能な精密軸受を得ること
ができる。
As described above, in this embodiment, the ball 3 of the selected diameter is selected from the plurality of balls of the diameter 3 in the bearing hole 1A of the precision bearing.
By pushing through, it is possible to suppress variations in the inner diameter of the bearing hole 1A, and it is possible to obtain a high-performance precision bearing.

【0026】[0026]

【発明の効果】以上のように本発明のワークの穴加工装
置及び方法は、予じめ用意された複数の径の球の中から
選択された球をワークの穴に押し通すことにより、穴の
内径のバラツキを数ミクロンに抑え高精度にサイジング
加工する事を可能にし、高精度なワークの加工を行うこ
とができる。
INDUSTRIAL APPLICABILITY As described above, the device and method for drilling a hole of a workpiece according to the present invention are capable of forming a hole by pushing a ball selected from a plurality of balls having a plurality of diameters prepared in advance into the hole of the workpiece. It is possible to perform sizing processing with high accuracy by suppressing variations in inner diameter to several microns, and it is possible to perform highly accurate work processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかるワークの穴加工装
置の一部断面図
FIG. 1 is a partial sectional view of a work hole drilling apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例の加工装置により加工され
た後のスリーブの縦断面図
FIG. 2 is a vertical cross-sectional view of the sleeve after being processed by the processing device according to the first embodiment of the present invention.

【図3】上記第1実施例の加工装置のストッパー部分の
拡大断面図
FIG. 3 is an enlarged sectional view of a stopper portion of the processing apparatus according to the first embodiment.

【図4】上記第1実施例にかかる加工方法のフローチャ
ート
FIG. 4 is a flowchart of a processing method according to the first embodiment.

【図5】本発明の第2実施例にかかるワークの穴加工装
置の一部断面図
FIG. 5 is a partial cross-sectional view of a work hole drilling apparatus according to a second embodiment of the present invention.

【図6】本発明の第3実施例の加工装置の説明図及びそ
の速度制御グラフ
FIG. 6 is an explanatory view of a processing apparatus according to a third embodiment of the present invention and its speed control graph.

【図7】本発明の第3実施例にかかる加工装置における
スリーブの軸受穴の内径変化量とバニッシュ速度との関
係を示すグラフ
FIG. 7 is a graph showing the relationship between the amount of change in the inner diameter of the bearing hole of the sleeve and the vanishing speed in the processing apparatus according to the third embodiment of the present invention.

【図8】動圧流体軸受けの穴加工工程解説図[Figure 8] Explanatory drawing of the hole drilling process for hydrodynamic bearings

【図9】従来の軸受けの穴加工装置による穴加工の説明
FIG. 9 is an explanatory diagram of drilling by a conventional drilling device for bearings.

【図10】従来の加工後のスリーブ断面図FIG. 10 is a sectional view of a conventional sleeve after processing.

【図11】従来の加工装置における仕上がり径と下穴径
との関係を示すグラフ
FIG. 11 is a graph showing the relationship between the finished diameter and the prepared hole diameter in the conventional processing apparatus.

【符号の説明】[Explanation of symbols]

1 スリーブ 1A 軸受穴 1B 動圧発生溝 2 上部ステージ 3,3B,3C,3D,3E 加工球 3A 測定球 4 加工球供給装置 5A ピン 5B ピン 6 下部ステージ 7 シュート 8 ロードセル 9 コンピュータ 10 ステージ駆動手段 23 ストッパー 24 バネ 25 ピニオン 26 パルスモータ 27 駆動回路 28 メモリ 1 sleeve 1A bearing hole 1B dynamic pressure generating groove 2 upper stage 3,3B, 3C, 3D, 3E processing sphere 3A measuring sphere 4 processing sphere supply device 5A pin 5B pin 6 lower stage 7 chute 8 load cell 9 computer 10 stage driving means 23 Stopper 24 Spring 25 Pinion 26 Pulse motor 27 Drive circuit 28 Memory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ワーク(1)の穴(1A)に加工球
(3)を挿入することにより該穴の内面加工を行うワー
クの穴加工装置において、 複数の異なる径寸法を有する加工球を備える加工球供給
装置(4)と、 上記球供給装置に備えられた上記加工球の中から、上記
ワークの穴の内径をD1としたとき外径が(1〜1.0
2)×D1の範囲内の寸法を有する加工球を1つ選択す
る加工球選択装置(2,9,10)と、 上記選択装置により選択された加工球を上記加工球供給
装置から上記ワークの穴に押し通させる加工球押し通し
装置(5B,25,26,27)とを備えるようにした
ワークの穴加工装置。
1. A hole drilling device for a work, which inserts a working ball (3) into a hole (1A) of a work (1) to machine the inner surface of the hole, and is provided with a plurality of working balls having different diameters. Out of the machining sphere feeder (4) and the machining sphere provided in the sphere feeder, the outer diameter is (1 to 1.0) when the inner diameter of the hole of the workpiece is D1.
2) A machining sphere selecting device (2, 9, 10) for selecting one machining sphere having a size within the range of D1 and a machining sphere selected by the selecting device from the machining sphere supplying device to the workpiece. A workpiece hole punching device having a punching ball pushing device (5B, 25, 26, 27) for pushing through a hole.
【請求項2】 上記加工球押し通し装置は、上記選択さ
れた球を押圧部材(5B)により押圧して上記ワークの
穴に押し通すとともに、上記ワークの穴の開口付近より
も上記ワークの穴の両穴開口付近の中間部での加工球通
過速度を速くした請求項1に記載のワークの穴加工装
置。
2. The processing ball pushing device pushes the selected ball with a pressing member (5B) to push it into the hole of the work, and to push both the holes of the work rather than near the opening of the hole of the work. The hole drilling device for a workpiece according to claim 1, wherein a machining ball passing speed at an intermediate portion near the hole opening is increased.
【請求項3】 ワーク(1)の穴(1A)に加工球(3
B,3C,3D,3E)を挿入することにより該穴の内
面加工を行うワークの穴加工装置において、 上記ワークの穴に上記加工球を挿入する前に、上記ワー
クの穴に対して、該ワークの穴の内径をD1としたとき
外径Db1がD1≦Db1≦(1.003×D1)の範
囲内の測定球(3A)を押し通し、この測定球の押し通
し時の荷重の大小を検出する測定球挿入装置(8,5
A,9)と、 複数の異なる径寸法を有する加工球(3B,3C,3
D,3E)を備える加工球供給装置(4)と、 上記測定球挿入装置により押し通された測定球の検出さ
れた荷重を元に、上記加工球供給装置に備えられた上記
加工球の中から、上記ワークの穴の内径をD1とすると
ともに上記測定球の外径をDb1としたとき、外径Db
がDb1<Db≦(1.02×D1)の範囲内の寸法を
有する加工球を1つ選択する加工球選択装置(2,9,
10)と、 上記選択装置により選択された加工球を上記加工球供給
装置から上記ワークの穴に押し通させる加工球押し通し
装置(5B,25,26,27)とを備えるようにした
ワークの穴加工装置。
3. A work ball (3) is provided in a hole (1A) of a work (1).
B, 3C, 3D, 3E), the hole drilling apparatus for a workpiece for machining the inner surface of the hole, before inserting the machining ball into the hole of the workpiece, When the inner diameter of the hole of the workpiece is D1, the outer diameter Db1 is pushed through the measuring sphere (3A) within the range of D1 ≦ Db1 ≦ (1.003 × D1), and the magnitude of the load when the measuring sphere is pushed through is detected. Measuring ball insertion device (8, 5
A, 9) and processing spheres (3B, 3C, 3) having a plurality of different diameter dimensions.
D, 3E) provided with the processing sphere supply device (4) and the processing sphere provided in the processing sphere supply device based on the detected load of the measurement sphere pushed by the measurement sphere insertion device. Therefore, when the inner diameter of the hole of the work is D1 and the outer diameter of the measuring sphere is Db1, the outer diameter Db
Is a machining ball selection device (2, 9 ,, which selects one machining sphere having a dimension within the range of Db1 <Db ≦ (1.02 × D1).
10) and a work ball pushing device (5B, 25, 26, 27) for pushing the work ball selected by the selection device from the work ball supply device into the work hole. Processing equipment.
【請求項4】 上記加工球押し通し装置は、上記選択さ
れた球を押圧部材(5B)により押圧して上記ワークの
穴に押し通すとともに、上記ワークの穴の開口付近より
も上記ワークの穴の両穴開口付近の中間部での加工球通
過速度を速くした請求項3に記載のワークの穴加工装
置。
4. The processing sphere pushing device pushes the selected sphere with a pressing member (5B) to push the sphere into the hole of the work, and to press both of the holes of the work rather than the vicinity of the opening of the hole of the work. The hole drilling device for a workpiece according to claim 3, wherein a machining ball passing speed at an intermediate portion near the hole opening is increased.
【請求項5】 ワーク(1)の穴(1A)に加工球(3
B,3C,3D,3E)を挿入することにより該穴の内
面加工を行うワークの穴加工方法において、 上記ワークの穴に上記加工球を挿入する前に、上記ワー
クの穴に対して、該ワークの穴の内径をD1としたとき
外径Db1がD1≦Db1≦(1.003×D1)の範
囲内の測定球(3A)を押し通し、この測定球の押し通
し時の荷重の大小を検出するステップと、上記押し通さ
れた測定球の検出された荷重を元に、複数の異なる径寸
法を有する加工球(3B,3C,3D,3E)の中か
ら、上記ワークの穴の内径をD1とするとともに上記測
定球の外径をDb1としたとき、外径DbがDb1<D
b≦(1.02×D1)の範囲内の寸法を有する加工球
を1つ選択するステップと、上記選択された加工球を上
記ワークの穴に押し通させるステップとを備えるように
したワークの穴加工方法。
5. A processing ball (3) is provided in a hole (1A) of a work (1).
B, 3C, 3D, 3E), the inner surface of the hole is machined by inserting the inner surface of the hole into the hole of the workpiece before inserting the machining ball into the hole of the workpiece. When the inner diameter of the hole of the workpiece is D1, the outer diameter Db1 is pushed through the measuring sphere (3A) within the range of D1 ≦ Db1 ≦ (1.003 × D1), and the magnitude of the load when the measuring sphere is pushed through is detected. Based on the step and the detected load of the pushed measuring sphere, the inner diameter of the hole of the work is defined as D1 from the machining spheres (3B, 3C, 3D, 3E) having a plurality of different diameter dimensions. When the outer diameter of the measuring sphere is Db1, the outer diameter Db is Db1 <D
of the work, the step of selecting one machining sphere having a dimension within the range of b ≦ (1.02 × D1), and the step of pushing the selected machining sphere into the hole of the work. Hole processing method.
【請求項6】 上記加工球を押し通すステップでは、上
記選択された球を押圧部材(5B)により押圧して上記
ワークの穴に押し通すとともに、上記ワークの穴の開口
付近よりも上記ワークの穴の両穴開口付近の中間部での
加工球通過速度を速くした請求項5に記載のワークの穴
加工方法。
6. The step of pushing the processed sphere through the step of pushing the selected sphere by a pressing member (5B) to push it into the hole of the work, and The hole boring method for a workpiece according to claim 5, wherein a passing speed of a boring ball at an intermediate portion near the openings of both holes is increased.
JP23382694A 1993-09-30 1994-09-28 Hole drilling device and method for workpiece Expired - Lifetime JP3149701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23382694A JP3149701B2 (en) 1993-09-30 1994-09-28 Hole drilling device and method for workpiece

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24446393 1993-09-30
JP5-244463 1993-09-30
JP23382694A JP3149701B2 (en) 1993-09-30 1994-09-28 Hole drilling device and method for workpiece

Publications (2)

Publication Number Publication Date
JPH07164086A true JPH07164086A (en) 1995-06-27
JP3149701B2 JP3149701B2 (en) 2001-03-26

Family

ID=26531214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23382694A Expired - Lifetime JP3149701B2 (en) 1993-09-30 1994-09-28 Hole drilling device and method for workpiece

Country Status (1)

Country Link
JP (1) JP3149701B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718155A (en) * 1995-07-14 1998-02-17 Matsushita Electric Industrial Co., Ltd. Sleeve bore machining apparatus and sleeve bore machining method
CN106363342A (en) * 2016-11-30 2017-02-01 青岛德盛机械制造有限公司 Inner surface finishing device for through hole of workpiece
KR20220019561A (en) * 2020-08-10 2022-02-17 (주)앰스코 Apparatus for Precise Boring Machining by Ball Burnishing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798534B (en) * 2016-05-17 2017-10-13 宁波精益飞达轴业有限公司 The automation extruding polish processing machine of inner bore of worm

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718155A (en) * 1995-07-14 1998-02-17 Matsushita Electric Industrial Co., Ltd. Sleeve bore machining apparatus and sleeve bore machining method
US5797303A (en) * 1995-07-14 1998-08-25 Matsushita Electric Industrial Co., Ltd. Sleeve bore machining apparatus and sleeve bore machining method
CN106363342A (en) * 2016-11-30 2017-02-01 青岛德盛机械制造有限公司 Inner surface finishing device for through hole of workpiece
KR20220019561A (en) * 2020-08-10 2022-02-17 (주)앰스코 Apparatus for Precise Boring Machining by Ball Burnishing

Also Published As

Publication number Publication date
JP3149701B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
US3911707A (en) Finishing tool
US5339523A (en) Method of machining sleeve bearing
US5524464A (en) Workpiece-bore processing apparatus and method
US5718155A (en) Sleeve bore machining apparatus and sleeve bore machining method
US5758421A (en) Method for manufacturing fluid bearing
JPH07164086A (en) Method and device for hole piercing work
Sakuma et al. Study on deep-hole-drilling with solid-boring tool: the burnishing action of guide pads and their influence on hole accuracies
Egashira et al. Microcutting using a micro turn-milling machine
JP3774947B2 (en) Grooved hydrodynamic bearing processing method and apparatus
EP0002292B1 (en) Method of and device for manufacturing a hydrodynamic groove bearing
JP2006102855A (en) Honing head and manufacturing method of honing head body
Lin An application of Taguchi method on the high-speed motorized spindle system design
JP3257231B2 (en) Bearing bore machining equipment
US5095727A (en) Roller burnishing tool for effecting diminishing stress reversal on annular workpieces
JP2000107947A (en) Cylindrical surface machining device, bearing bore machining device and structure with cylindrical hole
JP2884711B2 (en) Bearing bore machining equipment
JP3700261B2 (en) Sleeve hole machining apparatus and machining method
JP2000312943A (en) Method and device for manufacturing workpiece having cylindrical face, and method and device for manufacturing dynamic pressure groove of fluid bearing
KR0184723B1 (en) Machining device for grooves bearing member
JPS62193769A (en) Burnishing tool
JP2002018543A (en) Machining jig of groove for generating dynamic pressure
JP3472069B2 (en) Grooving method and grooving device
JP3179956B2 (en) Processing method of grooved bearing member
JPS63230218A (en) Working device for groove for generating dynamic pressure
JPS61124726A (en) Manufacturing device of grooved fluid bearing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

EXPY Cancellation because of completion of term