JPH07162732A - Automatic focus adjusting device and video camera - Google Patents

Automatic focus adjusting device and video camera

Info

Publication number
JPH07162732A
JPH07162732A JP5307935A JP30793593A JPH07162732A JP H07162732 A JPH07162732 A JP H07162732A JP 5307935 A JP5307935 A JP 5307935A JP 30793593 A JP30793593 A JP 30793593A JP H07162732 A JPH07162732 A JP H07162732A
Authority
JP
Japan
Prior art keywords
lens
focus
output
focus adjustment
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5307935A
Other languages
Japanese (ja)
Inventor
Yosuke Yamane
洋介 山根
Keizo Ishiguro
敬三 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5307935A priority Critical patent/JPH07162732A/en
Publication of JPH07162732A publication Critical patent/JPH07162732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform an automatic focus adjustment with high stability and high responsiveness, regarding a video camera having an automatic focus adjusting device. CONSTITUTION:This device has an AF control means 6 which is provided with a 30Hz vibration means 6a vibrating a lens 1d for focus adjustment which is the part of an image pickup lens 1 and has a focus adjusting function by a 30Hz frequency and a modulation means 6b modulating the output of focus signal detection means 5, instructs the direction and the speed that the lens 1d for focus adjustment should be driven and performs an AF control, and a lens driving means 7 driving the electromagnetic driving type voice coil type linear actuator interlocking with the lens 1d for focus adjustment by the output signal of the AF control means 6, vibrates the lens 1d for focus adjustment by 30Hz frequency and determines the driving direction and the driving speed of the lens for focus adjustment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラやスチル
カメラなどの焦点調節をする際に、撮影すべき被写体の
像を最適な焦点位置に自動的にフォーカシングする自動
焦点調節装置並びにそれを用いたビデオカメラに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focus adjusting device for automatically focusing an image of a subject to be photographed to an optimum focus position when adjusting the focus of a video camera, a still camera, etc. It was about a video camera that I had.

【0002】[0002]

【従来の技術】ビデオカメラなどの撮像システムにおい
て、重要な機能である自動焦点調節装置(オートフォー
カス、以下AFと称す)については、既に何種類かの方
式が提案・実施されている。その中の一つであるビデオ
カメラの映像信号を利用する方式(「映像信号方式」と
称する)については、例えば「山登りサーボ方式による
ビデオカメラの自動焦点調整」([NHK技術研究」第
17巻 第1号 21頁昭和40年発行石田他)の論文
に詳細に発表されている。以下に映像信号方式で構成さ
れるビデオカメラの実施例について説明する。図7は従
来の映像信号方式で構成されるビデオカメラ装置のブロ
ック図である。
2. Description of the Related Art In an image pickup system such as a video camera, several types of methods have been already proposed and implemented for an automatic focusing device (autofocus, hereinafter referred to as AF), which is an important function. Regarding one of them, a method using a video signal of a video camera (referred to as “video signal method”) is, for example, “automatic focus adjustment of a video camera by a hill climbing servo method” ([NHK Technology Research] Vol. 17). No. 1, p. 21, 1965, published by Ishida et al.). An embodiment of a video camera configured by the video signal system will be described below. FIG. 7 is a block diagram of a video camera device configured by a conventional video signal system.

【0003】図7において、22はズームレンズであ
り、4個のレンズ群より構成され、22dはズームレン
ズの一部であってピント調整機能を有する焦点調節用レ
ンズである。なお、各レンズ群は便宜上各々1枚の凸レ
ンズ、あるいは凹レンズにて示すが、実際には複数個の
凸レンズ、あるいは凹レンズより構成され、図7におい
て、各々22a〜22dにて示している。
In FIG. 7, reference numeral 22 denotes a zoom lens, which is composed of four lens groups. Reference numeral 22d denotes a part of the zoom lens which is a focus adjusting lens having a focus adjusting function. Although each lens group is shown as one convex lens or one concave lens for convenience, it is actually composed of a plurality of convex lenses or concave lenses, which are shown by 22a to 22d in FIG.

【0004】23は撮影する被写体、24はCCDなど
の撮像素子、25は撮像素子24より得られる電気信号
に各種信号処理を施し、所定の映像信号(例えばNTS
C信号)Coを出力するカメラプロセス回路、26はカ
メラプロセス回路25より出力される輝度信号Yの内、
一定値以上の周波数成分を抽出し、ズームレンズ22の
ピント状態に対応した焦点信号(以下、焦点電圧と称す
る)をフィールド周期で演算する焦点信号検出手段、2
7は焦点信号検出手段26の出力信号より合焦に関する
情報を得て焦点調節用レンズ22dの駆動方向や速度を
演算しAFの制御を行うAF制御手段、28は焦点調節
用レンズ22dを駆動するステッピングモータ、29は
AF制御手段27の出力信号によりステッピングモータ
28を駆動するモーター駆動手段である。
Reference numeral 23 is a subject to be photographed, 24 is an image pickup device such as a CCD, and 25 is a predetermined video signal (for example, NTS) obtained by subjecting an electric signal obtained from the image pickup device 24 to various signal processes.
C signal) A camera process circuit for outputting Co, 26 is a luminance signal Y output from the camera process circuit 25,
A focus signal detecting means for extracting a frequency component of a certain value or more and calculating a focus signal (hereinafter referred to as a focus voltage) corresponding to the focus state of the zoom lens 22 in a field cycle.
Reference numeral 7 denotes AF control means for obtaining AF information from the output signal of the focus signal detection means 26 to calculate the driving direction and speed of the focus adjustment lens 22d to control AF, and 28 drives the focus adjustment lens 22d. A stepping motor, 29 is a motor driving means for driving the stepping motor 28 by the output signal of the AF control means 27.

【0005】以上のように構成された従来のビデオカメ
ラ装置について、以下AFの動作方法について説明す
る。映像信号方式AFは映像信号中の高周波成分の量
(焦点電圧)を利用して焦点調節を行う方法である。ズ
ームレンズ22は撮影する画像に対しローパスフィルタ
特性を示す特徴があり、撮影画像の合焦時にローパスフ
ィルタの遮断周波数が最大になり、焦点電圧の量も最大
になる。ズームレンズがデフォーカスするに従い遮断周
波数は低域側に移行しその結果焦点電圧の量も減少して
いく傾向にある。
With respect to the conventional video camera device configured as described above, the AF operation method will be described below. The video signal method AF is a method of performing focus adjustment by using the amount of high frequency components (focus voltage) in the video signal. The zoom lens 22 has a characteristic of exhibiting a low-pass filter characteristic with respect to an image to be captured. When the captured image is focused, the cutoff frequency of the low-pass filter is maximized and the amount of focus voltage is also maximized. As the zoom lens defocuses, the cutoff frequency tends to shift to the low frequency side, and as a result, the amount of focus voltage tends to decrease.

【0006】図8に焦点電圧と焦点調整用レンズの位置
との関係を示す。図8において、横軸は焦点調節用レン
ズのデフォーカス量を示す焦点調節用レンズの位置、縦
軸は焦点電圧を示す。ここで焦点調節用レンズの位置に
対して描く焦点電圧のカーブを山登り曲線と呼ぶ。図中
焦点調節用レンズ位置P点において焦点電圧は最大値を
示す。焦点調節用レンズ位置P点の前後Q点、R点にお
いては焦点電圧は単調増加、単調減少する。
FIG. 8 shows the relationship between the focus voltage and the position of the focus adjustment lens. In FIG. 8, the horizontal axis represents the position of the focus adjustment lens that represents the defocus amount of the focus adjustment lens, and the vertical axis represents the focus voltage. Here, the curve of the focus voltage drawn with respect to the position of the focus adjustment lens is called a hill climbing curve. The focus voltage shows the maximum value at the point P of the focus adjusting lens in the figure. The focus voltage monotonically increases and monotonically decreases at points Q and R before and after the focus adjustment lens position P.

【0007】この山登り方式のAFはレンズを一定方向
に向けて移動させながら、たとえば1フィールドごとに
焦点電圧を求め前フィールドの焦点電圧と比較し焦点電
圧が最大となる点まで山を登っていく事で焦点調節が行
われる。ところがこの方式のAFではレンズが静止して
いる状態では山登り曲線の頂上、則ち合焦点への駆動方
向がわからない為、レンズあるいはCCDなどの撮像素
子を光軸方向に15Hzの周期で振動させ(この振動制
御を補助振動制御と呼ぶ)焦点電圧を変調し山登り曲線
の微係数を求めその正負でもって方向を決定している。
In the hill-climbing AF, while moving the lens in a fixed direction, the focus voltage is obtained for each field, for example, and compared with the focus voltage of the previous field to climb the mountain to the point where the focus voltage becomes maximum. Focus adjustment is done by the thing. However, in this type of AF, when the lens is stationary, the top of the hill climbing curve, that is, the driving direction to the in-focus point is unknown, so the lens or CCD or other image sensor is vibrated at a cycle of 15 Hz in the optical axis direction ( This vibration control is called auxiliary vibration control.) The focus voltage is modulated to obtain the differential coefficient of the hill climbing curve, and the direction is determined by its positive or negative.

【0008】図9に補助振動制御のための振動指令の例
を示す。図9において、T1〜T8は焦点電圧の取り出
し期間を示しそれぞれフィールド走査期間に相当する。
T1〜T8の内、T2、T4、T6、T8は変調する場
合に使用する焦点電圧の取り出し期間を示す。一般に補
助振動の位相は変調する場合に使用する焦点電圧の取り
出し期間が振幅のピーク付近になるように設定され、ま
た振幅は撮像レンズの焦点深度内でありレンズ駆動モー
タの限界駆動スピードを越えない範囲で且つ十分に変調
出力が得られるような大きさに設定されている。
FIG. 9 shows an example of a vibration command for auxiliary vibration control. In FIG. 9, T1 to T8 indicate focal voltage extraction periods, each of which corresponds to a field scanning period.
Of T1 to T8, T2, T4, T6, and T8 indicate the extraction period of the focus voltage used for modulation. Generally, the phase of auxiliary vibration is set so that the extraction period of the focus voltage used when modulating is near the peak of the amplitude, and the amplitude is within the depth of focus of the imaging lens and does not exceed the limit drive speed of the lens drive motor. The size is set within the range so that a sufficient modulation output can be obtained.

【0009】次に、図8中S点でAF状態にあるときま
ず補助振動を開始しレンズの駆動方向判定する。方向が
わかればこの後レンズをP点へ向けて一気に駆動する。
P点を越えると焦点電圧は減少方向に向かうがこれを検
出した後レンズを反転駆動しP点近傍に止め一連のAF
動作が完了する。
Next, in the AF state at point S in FIG. 8, first, the auxiliary vibration is started to judge the driving direction of the lens. If the direction is known, then the lens is driven toward point P at once.
After the point P, the focus voltage goes in a decreasing direction, but after detecting this, the lens is driven in reverse and stopped in the vicinity of the point P, and a series of AF is performed.
The operation is completed.

【0010】また山登りの途中やP点(合焦点)近傍に
おいても前述の補助振動を適用する場合がある。これは
レンズ駆動の方向判断を行う事以外に山登りの途中段階
においては変調出力の量に応じて山登りの速度を決めた
り合焦近傍においては山が平坦になることを利用し変調
出力があるしきい値以下ではレンズを停止させAF制御
を完了させるためである。また山登りの途中で補助振動
制御を常時行うと常に変調成分をフィードバックする事
になるため極めて高精度な合焦が可能になるなどの利点
もある。
Further, the above-mentioned auxiliary vibration may be applied during the hill climbing or near the point P (focus point). In addition to determining the direction of lens drive, this is because there is modulation output when the hill climbing speed is determined according to the amount of modulation output during the course of hill climbing and the mountain is flat near the in-focus point. This is because the lens is stopped and the AF control is completed at a threshold value or less. Further, if the auxiliary vibration control is always performed during the mountain climbing, the modulation component is always fed back, so that there is an advantage that focusing can be performed with extremely high accuracy.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
た山登り曲線はピントの大きくずれた位置や、コントラ
ストの低い被写体では山登り曲線の微係数が低くなり変
調成分の量も減少するためレンズの駆動方向を間違う場
合があった。さらに上記の従来の構成であれば焦点電圧
は1フィールド間隔で得られるが、変調周波数は補助振
動周波数と同じ15Hzであるため振動開始からレンズ
駆動の方向を演算するためには3フィールド以上必要と
なる。山登り中の変調動作においても3フィールド毎の
山登りの動作となるため合焦点に到達するまでに施行さ
れる変調回数に比例して時間遅れが累積し合焦速度が制
約されていた。
However, the above-described hill climbing curve has a large differential coefficient of the hill climbing curve at a position where the focus is greatly deviated and a subject with low contrast, and the amount of the modulation component is also reduced, so that the lens driving direction is changed. There were times when I made a mistake. Further, with the above conventional configuration, the focus voltage can be obtained at 1-field intervals, but since the modulation frequency is 15 Hz, which is the same as the auxiliary vibration frequency, it is necessary to have 3 fields or more to calculate the lens driving direction from the start of vibration. Become. Even in the modulation operation during the hill climbing, since the hill climbing operation is performed every three fields, time delays are accumulated in proportion to the number of modulations performed until reaching the in-focus point and the focusing speed is restricted.

【0012】本発明は上記従来の問題点を解決するもの
で、焦点調節用レンズ駆動の方向間違いを著しく減ら
し、安定性、応答性の高いAF制御が可能な自動焦点調
節装置とビデオカメラを提供する事を目的とする。
The present invention solves the above-mentioned conventional problems, and provides an automatic focusing device and a video camera capable of significantly reducing the direction error of driving the focusing lens and performing AF control with high stability and responsiveness. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達す
るため、撮像レンズを介して得られる被写体像の光信号
を光電変換する撮像素子と、その撮像素子出力に一定の
信号処理を施した映像信号を出力するカメラプロセス回
路と、前記カメラプロセス回路にて生成される前記映像
信号の内、一定値以上の周波数成分を抽出し、前記撮像
レンズのピント状態に対応した焦点信号を演算する焦点
信号検出手段と、前記焦点信号に基づいてピント調節機
能を有する焦点調節用レンズを駆動すべき方向、駆動速
度を指示しオートフォーカスの制御を行うAF制御手段
と、前記AF制御手段の出力に基づいて、前記焦点調節
用レンズを前記撮像レンズの光軸上に沿って移動させる
レンズ駆動手段とを有し、前記AF制御手段は、30H
zの周波数で前記焦点調節用レンズを光軸方向に振動さ
せる30Hz振動手段と前記30Hz振動手段により前
記焦点信号検出手段の出力を変調する変調手段を備えた
構成である。
In order to achieve the above object, the present invention provides an image pickup device for photoelectrically converting an optical signal of an object image obtained through an image pickup lens, and a certain signal processing is performed on the output of the image pickup device. A camera process circuit that outputs a video signal, and a focus that calculates a focus signal corresponding to the focus state of the imaging lens by extracting a frequency component of a certain value or more from the video signal generated by the camera process circuit. Based on the output of the signal detection means, the AF control means for instructing the driving direction and the driving speed of the focus adjustment lens having the focus adjustment function based on the focus signal to control the autofocus, and the output of the AF control means. Lens drive means for moving the focus adjustment lens along the optical axis of the image pickup lens, and the AF control means includes 30H.
A 30 Hz vibrating means for vibrating the focus adjustment lens in the optical axis direction at a frequency of z and a modulating means for modulating the output of the focus signal detecting means by the 30 Hz vibrating means.

【0014】[0014]

【作用】本発明は上記した構成により、30Hzの周波
数で前記焦点調節用レンズを光軸方向に振動させ、信号
検出手段の出力信号を変調してレンズ駆動方向、レンズ
駆動速度を決定することで安定性、応答性の高い自動焦
点調節を実現する。
According to the present invention, by virtue of the above construction, the focus adjusting lens is vibrated in the optical axis direction at a frequency of 30 Hz and the output signal of the signal detecting means is modulated to determine the lens driving direction and the lens driving speed. It realizes stable and responsive automatic focus adjustment.

【0015】[0015]

【実施例】以下、本発明の自動焦点調節装置の一実施例
について図面を参照しながら説明する。図1に本実施例
の構成を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the automatic focus adjusting device of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of this embodiment.

【0016】図1において、1はズームレンズであり、
4個のレンズ群(各レンズ群は便宜上各々1枚の凸レン
ズ、あるいは凹レンズにて示すが、実際には複数個の凸
レンズ、あるいは凹レンズより構成される。図1におい
て各々1a〜1dにて示す)より構成されており、1d
はズームレンズの一部であってピント調整機能を有する
焦点調節用レンズである。被写体2はズームレンズ1を
介し、CCD3に入力される。カメラプロセス回路4は
CCD3より得られる電気信号に各種信号処理を施し、
所定の映像信号(例えばNTSC信号)Coを出力す
る。
In FIG. 1, reference numeral 1 is a zoom lens,
Four lens groups (each lens group is shown as a single convex lens or a concave lens for the sake of convenience, but actually it is composed of a plurality of convex lenses or concave lenses. Each is shown as 1a to 1d in FIG. 1) It is composed of 1d
Is a focus adjusting lens which is a part of the zoom lens and has a focus adjusting function. The subject 2 is input to the CCD 3 via the zoom lens 1. The camera process circuit 4 performs various signal processing on the electric signal obtained from the CCD 3,
A predetermined video signal (for example, NTSC signal) Co is output.

【0017】焦点信号検出手段5はカメラプロセス回路
4より出力される輝度信号Yの内、一定値以上の周波数
成分を抽出し、ズームレンズ1のピント状態に対応した
焦点信号(以下、焦点電圧と称する)をフィールド周期
で演算する。焦点信号検出手段5の内部を図2に示す。
図2に示すように、帯域フィルタ8により一定の範囲の
周波数成分を抽出し、絶対値回路9により絶対値を取
り、ピーク検波回路10でピークを検出して焦点電圧を
出力する。
The focus signal detecting means 5 extracts a frequency component of a certain value or more from the luminance signal Y output from the camera process circuit 4, and a focus signal corresponding to the focus state of the zoom lens 1 (hereinafter referred to as focus voltage (Referred to) is calculated in the field cycle. The inside of the focus signal detection means 5 is shown in FIG.
As shown in FIG. 2, the bandpass filter 8 extracts a frequency component in a certain range, the absolute value circuit 9 takes an absolute value, and the peak detection circuit 10 detects a peak and outputs a focus voltage.

【0018】AF制御手段6は焦点調節用レンズ1dを
光軸方向に30Hzで振動する30Hz振動手段6aと
30Hz振動手段6aを施したときに焦点信号検出手段
5の出力である焦点電圧を変調する変調手段6bを設け
ており、焦点電圧及び変調手段6bの出力より合焦に関
する情報を得て焦点調節用レンズ1dの駆動方向や速度
を演算するAFの制御を行い、レンズ駆動手段7はAF
制御手段6の出力信号により焦点調節用レンズ1dを駆
動する。
The AF control means 6 modulates the focus voltage which is the output of the focus signal detection means 5 when the focus adjusting lens 1d is provided with a 30 Hz vibrating means 6a and a 30 Hz vibrating means 6a which vibrate at 30 Hz in the optical axis direction. The modulation means 6b is provided, and AF information is obtained by obtaining information regarding focusing from the focus voltage and the output of the modulation means 6b to calculate the driving direction and speed of the focus adjustment lens 1d.
The focus adjusting lens 1d is driven by the output signal of the control means 6.

【0019】以上のように構成されたビデオカメラ装置
においてAF制御手段6で行われる映像信号方式AFの
制御方法について以下説明を行う。
The control method of the video signal type AF performed by the AF control means 6 in the video camera device configured as described above will be described below.

【0020】図3は焦点調節用レンズ位置と焦点電圧と
の関係を示すものである。図3において合焦点からはず
れた位置Qで焦点調節用レンズ1dが静止状態にある場
合でのAF制御を考える。まず30Hz振動手段6aに
より補助振動制御を開始し変調手段6bの出力より焦点
調節用レンズ1dの駆動すべき方向の判断を行う。
FIG. 3 shows the relationship between the focus adjustment lens position and the focus voltage. Consider the AF control when the focus adjustment lens 1d is in a stationary state at a position Q deviated from the in-focus point in FIG. First, the auxiliary vibration control is started by the 30 Hz vibrating means 6a, and the direction in which the focus adjusting lens 1d should be driven is determined from the output of the modulating means 6b.

【0021】図4に30Hz振動手段の出力である振動
指令の例を示す。図4において、T1、T2、T3、T
4、T5は変調手段6bで使用される焦点電圧の取り出
し期間であり、それぞれフィールド走査期間に相当す
る。振動指令の位相は、変調手段6bの出力が最大とな
るように焦点電圧の取り出し期間の中心において振動振
幅のピークの中心が来るよう制御する。
FIG. 4 shows an example of a vibration command output from the 30 Hz vibrating means. In FIG. 4, T1, T2, T3, T
Reference numerals 4 and T5 are periods for extracting the focus voltage used in the modulator 6b, which correspond to field scanning periods. The phase of the vibration command is controlled so that the peak of the vibration amplitude is located at the center of the focus voltage extraction period so that the output of the modulation means 6b is maximized.

【0022】振動の形状は変調手段6bの減少を抑える
ようにできるだけ矩形波に近い形状であってもよい。ま
た人間の目の視覚特性から明るさにより多少の変動はあ
るが15Hzの振動による動画面のちらつきに比べ30
Hzでの振動によるちらつきは著しく少ないことを利用
し、振動振幅の大きさはコントラストの低い被写体や大
ボケの被写体のときでも十分な変調成分が取れ、かつ動
画面上でのちらつきが認識できない大きさに設定する。
The shape of the vibration may be as close as possible to a rectangular wave so as to suppress the decrease of the modulation means 6b. In addition, the visual characteristics of the human eye may cause some fluctuation depending on the brightness, but compared to the flickering of the moving screen due to the vibration of 15 Hz, it is 30
Utilizing the fact that the flicker due to the vibration at Hz is extremely small, the magnitude of the vibration amplitude is large enough to take a sufficient modulation component even in the case of a low contrast subject or a subject with large blurring, and the flicker on the moving screen cannot be recognized. Set to

【0023】尚、この30Hzは、現在使われているテ
レビ信号のフィールド周波数の半分に相当しており、テ
レビ信号のフィールド周波数が変われば、人間の目の視
覚特性を考慮して、振動周波数を定めればよいことはい
うまでもない。
Note that this 30 Hz corresponds to half the field frequency of the television signal currently used, and if the field frequency of the television signal changes, the vibration frequency is changed in consideration of the visual characteristics of the human eye. It goes without saying that it is only necessary to set it.

【0024】次に、合焦P点への方向が判断できれば、
その方向へ山登り動作をさせながら引き続き30Hz振
動手段6aにより補助振動制御を行う。図5に山登り動
作中に30Hz振動手段6aによる補助振動制御が加わ
った場合の駆動指令の例を示す。図5において、T1〜
T8は焦点電圧の取り出し期間であり、それぞれフィー
ルド走査期間に相当する。
Next, if the direction to the in-focus point P can be determined,
While performing a hill climbing operation in that direction, auxiliary vibration control is continuously performed by the 30 Hz vibrating means 6a. FIG. 5 shows an example of the drive command when the auxiliary vibration control by the 30 Hz vibration means 6a is applied during the hill climbing operation. In FIG. 5, T1
T8 is a focus voltage extraction period, and each corresponds to a field scanning period.

【0025】まず30Hz振動手段6aにより補助振動
制御を開始しT1及びT2で出力される焦点電圧を変調
手段6bで変調する。T1で出力される焦点電圧のほう
がT2で出力される焦点電圧よりも大きくなるため変調
手段6bの出力は正となりAF制御手段6はレンズ駆動
手段7へ焦点調節用レンズ1dを山登り方向に駆動する
よう指令が出される。T3では30Hz振動手段による
補助振動制御に山登りのための移動量が加わる。
First, the auxiliary vibration control is started by the 30 Hz vibrating means 6a, and the focus voltage output at T1 and T2 is modulated by the modulating means 6b. Since the focus voltage output at T1 is higher than the focus voltage output at T2, the output of the modulation means 6b becomes positive and the AF control means 6 drives the lens drive means 7 to drive the focus adjustment lens 1d in the hill climbing direction. Order is issued. At T3, the amount of movement for hill climbing is added to the auxiliary vibration control by the 30 Hz vibration means.

【0026】次にT3で出力される焦点電圧とT4で出
力される焦点電圧の変調出力によりレンズの駆動方向が
算出されT5で山登りのための移動量が加えられる。そ
の後次々と2フィールドごとにレンズの駆動方向の算出
並びにレンズの移動制御を行う。ここで山登りの駆動速
度は変調成分の量に応じて切り替える方法を取ってもよ
い。例えば山の傾斜の急峻なところでは速度を大きく、
合焦点近傍などの傾斜の少ないところでは速度を小さく
設定するなどである。
Next, the driving direction of the lens is calculated by the modulation output of the focus voltage output at T3 and the focus voltage output at T4, and the movement amount for hill climbing is added at T5. After that, the driving direction of the lens is calculated and the movement of the lens is controlled every two fields. Here, the method of switching the hill-climbing drive speed according to the amount of the modulation component may be adopted. For example, if the slope of the mountain is steep, increase the speed,
For example, the speed is set to be small in a place where the inclination is small such as near the focal point.

【0027】上述による山登り動作により図3において
合焦点であるP点を通過し、山を幾分か越えたR点で変
調手段6bの出力は負となり再度P点に向かうようレン
ズは反対方向に駆動される。その後P点近傍で反転動作
を何回か繰り返した後に変調手段6bの出力があるしき
い値以下になったところでレンズ駆動を停止し、一連の
AF動作を終了する。
By the hill-climbing operation described above, the lens passes in the opposite direction so that the output of the modulation means 6b becomes negative at point R, which passes through the point P which is the in-focus point in FIG. Driven. Then, after repeating the reversing operation several times near the point P, the lens drive is stopped when the output of the modulating means 6b becomes a certain threshold value or less, and a series of AF operations are ended.

【0028】次に図1のレンズ駆動手段7の詳細を図6
に示す。図6において、11はボイスコイル型のリニア
アクチュエータであり、永久磁石12a、12bと駆動
用コイル13とヨーク14a、14b、14c,14d
と軸受け15a、15bによって構成される。尚、駆動
用コイル13はヨーク14b、ヨーク14c及び軸受け
15a,15bを取り巻く構成であり、ヨーク14a,
14bは永久磁石12a及び駆動用コイル13の周囲
を、またヨーク14c、14dは永久磁石12b及び駆
動用コイル13の周囲を取り囲むよう構成され、それぞ
れ磁気回路を構成している。
Next, details of the lens driving means 7 of FIG. 1 will be described with reference to FIG.
Shown in. In FIG. 6, reference numeral 11 denotes a voice coil type linear actuator, which includes permanent magnets 12a and 12b, a driving coil 13, and yokes 14a, 14b, 14c and 14d.
And bearings 15a and 15b. The driving coil 13 is configured to surround the yoke 14b, the yoke 14c, and the bearings 15a and 15b.
14b surrounds the permanent magnet 12a and the driving coil 13, and the yokes 14c and 14d surround the permanent magnet 12b and the driving coil 13 to form magnetic circuits.

【0029】軸16aはリニアアクチュエータを保持す
る軸であり、リニアアクチュエータの軸受け部15a,
15bと接触する滑り軸受け方式となっている。リニア
アクチュエータ11は軸16aの中心方向に磁界を生じ
る構成になっており、駆動用コイル13に電流を流すと
フレミングの左手法則により軸16a方向に推力が発生
し、リニアアクチュエータ11のうち駆動用コイル13
及び軸受け部15a,15bが軸16a方向に移動す
る。17はリニアアクチュエータ11の軸受け部15
a,15bと一体化しているレンズ固定枠18に取り付
けられた焦点調節用レンズであり、19は焦点調節用レ
ンズ17が軸16aを中心に回転するのを抑える回転止
め部であり、16bは回転止め部19を付勢する為に設
けられた軸である。
The shaft 16a is a shaft for holding the linear actuator, and the bearing portion 15a of the linear actuator,
It is a sliding bearing system that contacts with 15b. The linear actuator 11 is configured to generate a magnetic field in the direction of the center of the shaft 16a, and when a current is passed through the driving coil 13, a thrust is generated in the direction of the shaft 16a according to Fleming's left-hand rule, and the driving coil of the linear actuator 11 is driven. Thirteen
Also, the bearings 15a and 15b move in the direction of the shaft 16a. Reference numeral 17 is a bearing portion 15 of the linear actuator 11.
Reference numeral 19 is a focus adjustment lens attached to a lens fixing frame 18 integrated with a and 15b, reference numeral 19 is a rotation stopping portion for preventing the focus adjustment lens 17 from rotating around the axis 16a, and 16b is a rotation stopper. It is a shaft provided to urge the stop portion 19.

【0030】20は焦点調節用レンズ17の位置情報を
提供する位置検出手段であり、移動しないLED20a
およびフォトダイオード20b及びレンズ固定枠18に
連動して取り付けられた移動スリット20cさらにはフ
ォトダイオード20bの出力を処理するフォトダイオー
ド出力信号処理手段20d、フォトダイオード信号処理
手段20dの出力を内挿し、デジタルの位置情報に変換
する内挿手段20eより構成される。
Reference numeral 20 is a position detecting means for providing position information of the focus adjusting lens 17, and the LED 20a does not move.
Also, the moving slit 20c mounted in conjunction with the photodiode 20b and the lens fixing frame 18, and further the photodiode output signal processing means 20d and the output of the photodiode signal processing means 20d for processing the output of the photodiode 20b are interpolated and digitalized. It is composed of an interpolating means 20e for converting into position information.

【0031】21は図1のAF制御手段6の出力信号と
位置検出手段20の出力信号よりリニアアクチュエータ
11の位置制御を行うリニアアクチュエータ位置制御手
段である。ここでは30Hz振動手段6aの振動指令や
山登りの指令に対し十分応答できるサーボ特性を持つよ
うに構成される。
Reference numeral 21 is a linear actuator position control means for controlling the position of the linear actuator 11 based on the output signals of the AF control means 6 and the position detection means 20 of FIG. Here, it is configured so as to have a servo characteristic capable of sufficiently responding to a vibration command of the 30 Hz vibrating means 6a and a hill climbing command.

【0032】以上のように本実施例によれば、30Hz
の周波数で焦点調節用レンズ1dを光軸方向に振動さ
せ、焦点信号検出手段5の出力信号を変調してレンズ駆
動方向及びレンズ駆動速度を決定することで、安定性、
応答性の高い自動焦点調節を実現することができ、本実
施例の自動焦点調節装置をビデオカメラに適用すれば高
速、高品位な映像を容易に得ることができる。
As described above, according to this embodiment, 30 Hz
The focus adjustment lens 1d is vibrated in the optical axis direction at the frequency of, and the output signal of the focus signal detection means 5 is modulated to determine the lens drive direction and the lens drive speed, thereby stabilizing the stability,
A highly responsive automatic focus adjustment can be realized, and by applying the automatic focus adjustment device of this embodiment to a video camera, a high-speed and high-quality image can be easily obtained.

【0033】[0033]

【発明の効果】以上のように本発明は、焦点調節用レン
ズの駆動アクチュエータにリニアアクチュエータを用い
て30Hzの周波数による補助振動制御を行うことによ
り、焦点調節用レンズ駆動の方向間違いの少ない安定で
且つ応答性の良好な焦点調節を可能とし、自動焦点調節
装置に極めて優れた効果を発揮するものである。
As described above, according to the present invention, a linear actuator is used as a drive actuator for a focus adjustment lens to perform auxiliary vibration control at a frequency of 30 Hz, so that the focus adjustment lens can be driven stably with little error in direction. In addition, it is possible to perform focus adjustment with good responsiveness, and to exert an extremely excellent effect in the automatic focus adjustment device.

【0034】さらに上記した自動焦点調節装置をビデオ
カメラに適用すれば高速、高品位な映像を得られるもの
が実現できる。
Further, by applying the above-mentioned automatic focus adjusting device to a video camera, a device capable of obtaining high-speed and high-quality images can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の自動焦点調節装置のブロッ
ク図
FIG. 1 is a block diagram of an automatic focusing device according to an embodiment of the present invention.

【図2】本発明の一実施例の焦点検出手段のブロック図FIG. 2 is a block diagram of focus detection means according to an embodiment of the present invention.

【図3】本実施例の焦点調節用レンズ位置と焦点電圧と
の関係と動作を示す図
FIG. 3 is a diagram showing a relationship between a focus adjustment lens position and a focus voltage and an operation according to the present embodiment.

【図4】本発明の一実施例の補助振動指令の例を示す図FIG. 4 is a diagram showing an example of an auxiliary vibration command according to an embodiment of the present invention.

【図5】本発明の一実施例の補助振動指令と山登りの指
令の複合の例を示す図
FIG. 5 is a diagram showing an example of a composite of an auxiliary vibration command and a hill climbing command according to an embodiment of the present invention.

【図6】本発明の一実施例のレンズ駆動手段の詳細な構
成を示すブロック図
FIG. 6 is a block diagram showing a detailed configuration of lens driving means according to an embodiment of the present invention.

【図7】従来の自動焦点調節装置のブロック図FIG. 7 is a block diagram of a conventional automatic focusing device.

【図8】焦点調節用レンズ位置と焦点電圧との関係を示
す図
FIG. 8 is a diagram showing a relationship between a focus adjustment lens position and a focus voltage.

【図9】従来の補助振動指令の例を示す図FIG. 9 is a diagram showing an example of a conventional auxiliary vibration command.

【符号の説明】[Explanation of symbols]

1 ズームレンズ 1d 焦点調節用レンズ 2 被写体 3 CCD 4 カメラプロセス回路 5 焦点信号検出手段 6 AF制御手段 7 レンズ駆動手段 8 帯域フィルタ 9 絶対値回路 10 ピーク検波回路 11 リニアアクチュエータ 12 永久磁石 13 駆動用コイル 14 ヨーク 15 軸受け部 16 軸 17 焦点調節用レンズ 18 レンズ固定枠 19 回転止め部 20 位置検出手段 20a LED 20b フォトダイオード 20c 移動スリット 20d フォトダイオード出力信号処理手段 20e 内挿手段 21 リニアアクチュエータ位置制御手段 DESCRIPTION OF SYMBOLS 1 zoom lens 1d focus adjustment lens 2 subject 3 CCD 4 camera process circuit 5 focus signal detection means 6 AF control means 7 lens drive means 8 bandpass filter 9 absolute value circuit 10 peak detection circuit 11 linear actuator 12 permanent magnet 13 drive coil 14 Yoke 15 Bearing part 16 Axis 17 Focus adjustment lens 18 Lens fixing frame 19 Rotation stop part 20 Position detecting means 20a LED 20b Photodiode 20c Moving slit 20d Photodiode output signal processing means 20e Interpolation means 21 Linear actuator position control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被写体を撮像する撮像レンズと、前記撮像
レンズを介して得られる被写体像の光信号を光電変換す
る撮像素子と、その撮像素子出力に一定の信号処理を施
した映像信号を出力するカメラプロセス回路と、前記カ
メラプロセス回路にて生成される前記映像信号の内、一
定値以上の周波数成分を抽出し、前記撮像レンズのピン
ト状態に対応した焦点信号を演算する焦点信号検出手段
と、前記焦点信号検出手段の出力より前記撮像レンズの
一部であってピント調節機能を有する焦点調節用レンズ
を駆動すべき方向、駆動速度を指示しオートフォーカス
の制御を行うAF制御手段と、前記AF制御手段の出力
より、前記焦点調節用レンズを前記撮像レンズの光軸上
に沿って移動させるレンズ駆動手段とを有し、 前記AF制御手段は、前記焦点調節用レンズの合焦点へ
の方向検出を行うために30Hzの周波数で前記焦点調
節用レンズを光軸方向に振動させる30Hz振動手段と
前記30Hz振動手段により前記焦点信号検出手段の出
力を変調する変調手段を備えていることを特徴とする自
動焦点調節装置。
1. An image pickup lens for picking up an image of a subject, an image pickup device for photoelectrically converting an optical signal of a subject image obtained through the image pickup lens, and a video signal obtained by subjecting the output of the image pickup device to a certain signal processing. And a focus signal detection unit that extracts a frequency component of a certain value or more from the video signal generated by the camera process circuit and calculates a focus signal corresponding to the focus state of the imaging lens. AF control means for instructing the direction and drive speed of the focus adjustment lens, which is a part of the imaging lens and has a focus adjustment function, from the output of the focus signal detection means, and controls the autofocus, Lens driving means for moving the focus adjusting lens along the optical axis of the imaging lens based on the output of the AF controlling means. The output of the focus signal detecting means is modulated by a 30 Hz vibrating means for vibrating the focus adjusting lens in the optical axis direction at a frequency of 30 Hz to detect the direction of the focus adjusting lens to the in-focus point and the 30 Hz vibrating means. An automatic focus adjustment device comprising a modulation means.
【請求項2】30Hz振動手段は、変調手段の出力が最
大となるように振動の位相を制御することを特徴とする
請求項1記載の自動焦点調節装置
2. The automatic focus adjustment device according to claim 1, wherein the 30 Hz vibrating means controls the phase of the vibration so that the output of the modulating means becomes maximum.
【請求項3】レンズ駆動手段は、焦点調節用レンズに連
動し駆動するコイル及びマグネットを有する電磁駆動式
のボイスコイル型リニアアクチュエータを使用する事を
特徴とする請求項1記載の自動焦点調節装置。
3. The automatic focus adjusting device according to claim 1, wherein the lens driving means uses an electromagnetically driven voice coil type linear actuator having a coil and a magnet which are driven in conjunction with the focus adjusting lens. .
【請求項4】請求項1記載の自動焦点調節装置を備えて
いることを特徴とするビデオカメラ。
4. A video camera comprising the automatic focusing device according to claim 1.
JP5307935A 1993-12-08 1993-12-08 Automatic focus adjusting device and video camera Pending JPH07162732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307935A JPH07162732A (en) 1993-12-08 1993-12-08 Automatic focus adjusting device and video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307935A JPH07162732A (en) 1993-12-08 1993-12-08 Automatic focus adjusting device and video camera

Publications (1)

Publication Number Publication Date
JPH07162732A true JPH07162732A (en) 1995-06-23

Family

ID=17974949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307935A Pending JPH07162732A (en) 1993-12-08 1993-12-08 Automatic focus adjusting device and video camera

Country Status (1)

Country Link
JP (1) JPH07162732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145913A (en) * 2004-07-02 2009-07-02 Sony Corp Electronic camera and automatic focusing method
US8379903B2 (en) 2009-12-31 2013-02-19 Dongwoon Anatech Co., Ltd. Apparatus for driving voice coil actuator of camera and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145913A (en) * 2004-07-02 2009-07-02 Sony Corp Electronic camera and automatic focusing method
US8379903B2 (en) 2009-12-31 2013-02-19 Dongwoon Anatech Co., Ltd. Apparatus for driving voice coil actuator of camera and method thereof

Similar Documents

Publication Publication Date Title
KR0135733B1 (en) A video camera with auto focus function and it,scontrol
US8502912B2 (en) Focusing apparatus and method for controlling the same
JP2821214B2 (en) Automatic focusing device
JP2005049577A (en) Focusing system, imaging device, and its control method
JP2002350716A (en) Automatic focusing device, and video camera and digital still camera equipped with the automatic focusing device
EP1377078B1 (en) Photographic camera comprising a recording device
JPH04280175A (en) Automatic focus adjusting device
JP3180486B2 (en) Automatic focusing device and video camera
JPS6236632A (en) Lens device for automatic focusing
JPH07162732A (en) Automatic focus adjusting device and video camera
JPH05236326A (en) Auto-focus controller
JP3758006B2 (en) Imaging device
JPH0933792A (en) Lens driving device and image pickup device
JPH0783447B2 (en) Automatic focusing method and video camera using the same
JPS6412434B2 (en)
JPH0232681A (en) Automatic focusing device
JP3507086B2 (en) camera
JP2004070037A (en) Auto-focusing device
JPS62299926A (en) Auto-focusing device
JP3079622B2 (en) Automatic focusing device
JPH0614700B2 (en) Automatic focusing device
JPH03191681A (en) Video camera
JP2603535Y2 (en) Auto focus device
JPH0648857B2 (en) Automatic focusing device
JPH04280172A (en) Automatic focus adjusting device