JPH07162345A - Multi-point inputting two-wire transmitter - Google Patents
Multi-point inputting two-wire transmitterInfo
- Publication number
- JPH07162345A JPH07162345A JP34037993A JP34037993A JPH07162345A JP H07162345 A JPH07162345 A JP H07162345A JP 34037993 A JP34037993 A JP 34037993A JP 34037993 A JP34037993 A JP 34037993A JP H07162345 A JPH07162345 A JP H07162345A
- Authority
- JP
- Japan
- Prior art keywords
- nth
- local power
- sub
- transmission data
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、温度センサ等のセン
サからの検出信号を入力とし、この検出信号をディジタ
ル信号に変換して送信データを生成し、この送信データ
を電源の供給通路を兼ねる2線の伝送路を介して上位装
置へ送る2線式伝送器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention receives a detection signal from a sensor such as a temperature sensor, converts the detection signal into a digital signal to generate transmission data, and the transmission data also serves as a power supply path. The present invention relates to a two-wire type transmitter that sends data to a host device via a two-wire transmission path.
【0002】[0002]
【従来の技術】従来、この種の2線式伝送器は、図2に
示すように、A/D変換回路1と、サブCPU2と、ア
イソレーション回路3と、メインCPU4と、ドライバ
回路5と、電源生成回路(REG)6とを備えている。2. Description of the Related Art Conventionally, as shown in FIG. 2, a two-wire type transmitter of this type has an A / D conversion circuit 1, a sub CPU 2, an isolation circuit 3, a main CPU 4, and a driver circuit 5. , And a power generation circuit (REG) 6.
【0003】この2線式伝送器において、電源生成回路
6は、2線の伝送路L1からの電流(4mA)の供給を
受けて電源を生成し、その電源をA/D変換回路1,サ
ブCPU2,アイソレーション回路3,メインCPU4
へ供給する。電源の供給を受けたA/D変換回路1は、
熱電対や測温抵抗体等の温度センサTCからの検出信号
をディジタル信号に変換する。A/D変換回路1により
変換されたディジタル信号はサブCPU2へ与えられ
る。サブCPU2は、入力されるディジタル信号より、
送信データを生成する。この送信データは、メインCP
U4からの返送要求に応えて、メインCPU4へ送られ
る。In this two-wire type transmitter, the power supply generation circuit 6 receives a current (4 mA) supplied from the two-wire transmission line L1 to generate a power supply, and uses the power supply as the A / D conversion circuit 1 and the sub-circuit. CPU2, isolation circuit 3, main CPU4
Supply to. The A / D conversion circuit 1 which is supplied with power is
A detection signal from a temperature sensor TC such as a thermocouple or a resistance temperature detector is converted into a digital signal. The digital signal converted by the A / D conversion circuit 1 is given to the sub CPU 2. The sub CPU 2 receives from the input digital signal,
Generate send data. This transmission data is the main CP
It is sent to the main CPU 4 in response to the return request from U4.
【0004】この際、メインCPU4からの返送要求お
よびサブCPU2からの送信データは、アイソレーショ
ン回路3においてアイソレーションされたうえ、サブC
PU2およびメインCPU4へ送られる。この例では、
アイソレーション回路4として、フォトカプラが用いら
れている。サブCPU2からの送信データを受信する
と、メインCPU4は、ドライバ回路5を駆動し、その
受信した送信データを2線の伝送路L2に流れる電流I
の変化として上位装置へ送る。この場合、測定レンジの
0〜100%に対し、電流Iは4〜20mAの変化とし
て現れる。At this time, the return request from the main CPU 4 and the transmission data from the sub CPU 2 are isolated by the isolation circuit 3 and the sub C
It is sent to the PU 2 and the main CPU 4. In this example,
A photo coupler is used as the isolation circuit 4. When the transmission data from the sub CPU 2 is received, the main CPU 4 drives the driver circuit 5 to send the received transmission data to the current I flowing through the transmission line L2 of two lines.
Is sent to the higher-level device. In this case, the current I appears as a change of 4 to 20 mA with respect to 0 to 100% of the measurement range.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の2線式伝送器100によると、一点の温度し
か測定できない。すなわち、一点の測定データを上位装
置へ伝送することしかできない。このため、多点の温度
を測定し、その測定データを上位装置へ伝送したい場合
には、2線式伝送器100を多数設け、これら2線式伝
送器100と上位装置との間に伝送路L1,L2を各個
に敷設しなければならず、ケーブルの敷設数の増大およ
び敷設工数の増大によりコストがかかり、不経済である
という問題があった。また、このようにすると、各2線
式伝送器100においてその動作電力として最低でも4
mAの電力が消費されるため、すなわち4mA×2線式
伝送器100の数だけの電力が最低でも必要となるた
め、上位装置において大容量の電源を必要とするという
問題が生ずるものであった。However, according to such a conventional two-wire type transmitter 100, only one temperature can be measured. That is, the measurement data at one point can only be transmitted to the host device. Therefore, when it is desired to measure temperatures at multiple points and transmit the measured data to the host device, a large number of 2-wire type transmitters 100 are provided, and a transmission path is provided between the 2-wire type transmitter 100 and the host device. L1 and L2 must be laid on each piece, and there is a problem that the cost is increased and the economy is uneconomical due to an increase in the number of cables to be laid and an increase in the number of laying steps. Further, in this way, the operating power of each 2-wire transmitter 100 is at least 4 at least.
Since the electric power of mA is consumed, that is, the electric power corresponding to the number of 4 mA × 2-wire type transmitter 100 is required at the minimum, the problem arises that the host device needs a large capacity power source. .
【0006】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、上位装置に
おいて大容量の電源を必要とせず、また上位装置との間
に2線の伝送路を一つ敷設するのみで多点の測定データ
を上位装置へ伝送することのできる多点入力2線式伝送
器を提供することにある。The present invention has been made in order to solve such a problem, and an object of the present invention is not to require a large-capacity power source in a host device, and to transmit two wires between the host device and the host device. An object of the present invention is to provide a multi-point input two-wire type transmitter that can transmit multi-point measurement data to a host device by laying only one path.
【0007】[0007]
【課題を解決するための手段】このような目的を達成す
るために、本発明は、第1〜第Nのセンサからの検出信
号をディジタル信号に変換する第1〜第NのA/D変換
手段と、この第1〜第NのA/D変換手段の変換したデ
ィジタル信号を入力とし送信データを生成する第1〜第
Nのサブ演算処理手段と、この第1〜第Nのサブ演算処
理手段の生成する送信データに対しての返送要求および
この返送要求に応えて返送される送信データをアイソレ
ーションして伝送する第1〜第Nのアイソレーション手
段と、2線の伝送路からの電流の供給を受けてメイン電
源を生成するメイン電源生成手段およびローカル電源を
生成する第1〜第Nのローカル電源生成手段と、メイン
電源生成手段の生成するメイン電源の供給を受けて、第
1〜第Nのローカル電源生成手段を順次に切り替えて作
動させ、この第1〜第Nのローカル電源生成手段の生成
するローカル電源を第1〜第NのA/D変換手段,サブ
演算処理手段およびアイソレーション手段へ供給すると
共に、ローカル電源の供給されるサブ演算処理手段へそ
のサブ演算処理手段の生成する送信データに対しての返
送要求を送り、この返送要求に応えて返送されてくる送
信データを受信し、この受信した送信データを伝送路に
流れる電流の変化として上位装置へ送るメイン演算処理
手段とを備えたものである。In order to achieve such an object, the present invention provides first to Nth A / D conversions for converting detection signals from the first to Nth sensors into digital signals. Means, first to Nth sub-arithmetic processing means for inputting the digital signal converted by the first to Nth A / D conversion means, and generating transmission data, and the first to Nth sub-arithmetic processing. A return request for the transmission data generated by the means and first to Nth isolation means for isolating and transmitting the transmission data returned in response to the return request, and a current from the two-wire transmission path Of the main power generation means for generating the main power and the first to Nth local power generation means for generating the local power, and the main power generation generated by the main power generation means for supplying the main power. Nth local The power supply generation means is sequentially switched to operate and the local power supply generated by the first to Nth local power supply generation means is supplied to the first to Nth A / D conversion means, the sub arithmetic processing means and the isolation means. At the same time, a return request for the transmission data generated by the sub-arithmetic processing means is sent to the sub-arithmetic processing means to which local power is supplied, and the transmission data returned in response to the return request is received. The main processing unit sends the received transmission data to the host device as a change in the current flowing through the transmission path.
【0008】[0008]
【作用】したがってこの発明によれば、2線の伝送路か
らの電流の供給を受けて、メイン電源生成手段がメイン
電源を生成する。このメイン電源の供給を受けて、メイ
ン演算処理手段は、第1〜第Nのローカル電源生成手段
を順次に切り替えて作動させる。第1〜第Nのローカル
電源生成手段の生成するローカル電源(伝送路からの電
流の供給を受けて生成されるローカル電源)は、第1〜
第NのA/D変換手段,サブ演算処理手段およびアイソ
レーション手段へ供給される。例えば、第1のローカル
電源生成手段が作動した場合には、この第1のローカル
電源生成手段の生成するローカル電源が、第1のA/D
変換手段,第1のサブ演算処理手段および第1のアイソ
レーション手段へ供給される。また、メイン演算処理手
段は、ローカル電源の供給されるサブ演算処理手段へ、
そのサブ演算処理手段の生成する送信データに対しての
返送要求を送り、この返送要求に応えて返送されてくる
送信データを受信し、この受信した送信データを伝送路
に流れる電流の変化として上位装置へ送る。例えば、ロ
ーカル電源の供給されるサブ演算処理手段が第1のサブ
演算処理手段であれば、第1のサブ演算処理手段へ第1
のアイソレーション手段を介して返送要求を送り、この
返送要求に応えて第1のアイソレーション手段を介して
返送されてくる第1のサブ演算処理手段からの送信デー
タを受信し、この受信した送信データを伝送路に流れる
電流の変化として上位装置へ送る。Therefore, according to the present invention, the main power supply generating means receives the supply of the current from the two-wire transmission line to generate the main power supply. Upon receiving the supply of the main power source, the main arithmetic processing means sequentially switches the first to Nth local power source generating means to operate. The local power sources generated by the first to N-th local power source generating means (local power sources generated by receiving current from the transmission path) are
It is supplied to the N-th A / D conversion means, sub-arithmetic processing means and isolation means. For example, when the first local power generation means operates, the local power generated by the first local power generation means is the first A / D.
It is supplied to the conversion means, the first sub arithmetic processing means, and the first isolation means. Further, the main arithmetic processing means, to the sub arithmetic processing means to which the local power is supplied,
A return request for the transmission data generated by the sub-arithmetic processing unit is sent, the transmission data returned in response to the return request is received, and the received transmission data is sent as a change in the current flowing through the transmission path. Send to the device. For example, if the sub-arithmetic processing means to which the local power is supplied is the first sub-arithmetic processing means, the first sub-arithmetic processing means is connected to the first sub-arithmetic processing means.
A return request is sent via the isolation means, and in response to the return request, the transmission data from the first sub-arithmetic processing means sent back via the first isolation means is received, and the received transmission is received. Data is sent to the host device as a change in the current flowing through the transmission path.
【0009】[0009]
【実施例】以下、本発明を実施例に基づき詳細に説明す
る。図1はこの発明の一実施例を示す多点入力2線式伝
送器のブロック回路構成図である。同図において、1−
1〜1−4は第1〜第4のA/D変換回路、2−1〜2
−4は第1〜第4のサブCPU、3−1〜3−4は第1
〜第4のアイソレーション回路、4’はメインCPU、
5はドライバ回路、7はメイン電源生成回路(REGメ
イン)、8−1〜8−4はローカル電源生成回路(RE
G1〜REG4)、9はデータセレクタである。EXAMPLES The present invention will now be described in detail based on examples. FIG. 1 is a block circuit diagram of a multi-point input two-wire transmitter showing an embodiment of the present invention. In the figure, 1-
1 to 1-4 are first to fourth A / D conversion circuits, 2-1 to 2
-4 is first to fourth sub CPU, 3-1 to 3-4 are first
~ Fourth isolation circuit, 4'is the main CPU,
Reference numeral 5 is a driver circuit, 7 is a main power supply generation circuit (REG main), and 8-1 to 8-4 are local power supply generation circuits (RE).
G1 to REG4) and 9 are data selectors.
【0010】この多点入力2線式伝送器100’におい
て、メイン電源生成回路7は、伝送路L1からの電流の
供給を受けてメイン電源PWRM を生成し、メインCP
U4’へ与える。メインCPU4’は、このメイン電源
PWRM の供給を受けて、予め定められているプログラ
ムに従って動作する。先ず、メインCPU4’は、発振
選択信号S1をローカル電源生成回路8−1へ送る。こ
れにより、ローカル電源生成回路8−1が作動し、伝送
路L1からの電流の供給を受けてローカル電源PWR1
を生成し、A/D変換回路1−1,サブCPU2−1,
アイソレーション回路3−1へ供給する。ローカル電源
PWR1の供給を受けて、A/D変換回路1−1は、温
度センサTC1からの検出信号をディジタル信号に変換
し、サブCPU2−1へ送る。サブCPU2−1は、入
力されるディジタル信号より、送信データを生成する。In this multi-point input two-wire type transmitter 100 ', the main power supply generation circuit 7 receives the current from the transmission line L1 to generate the main power supply PWR M , and the main CP
Give to U4 '. The main CPU 4 ′ receives the main power PWR M and operates according to a predetermined program. First, the main CPU 4 ′ sends the oscillation selection signal S1 to the local power supply generation circuit 8-1. As a result, the local power supply generation circuit 8-1 operates, receives the current from the transmission line L1, and receives the local power supply PWR1.
To generate the A / D conversion circuit 1-1, the sub CPU 2-1,
It is supplied to the isolation circuit 3-1. Upon receiving the supply of the local power supply PWR1, the A / D conversion circuit 1-1 converts the detection signal from the temperature sensor TC1 into a digital signal and sends it to the sub CPU 2-1. The sub CPU 2-1 generates transmission data from the input digital signal.
【0011】一方、メインCPU4’は、発振選択信号
S1をデータセレクタ9へも送る。この発振選択信号S
1を受けて、データセレクタ9は、メインCPU4’か
らのラインL3を介する返送要求(シリアルデータ)を
アイソレーション回路3−1を介してサブCPU2−1
へ送る。サブCPU2−1は、メインCPU4’からの
返送要求に応えて、送信データ(シリアルデータ)をア
イソレーション回路3−1およびデータセレクタ9を介
しラインL4を通してメインCPU4’へ送る。メイン
CPU4’は、ドライバ回路5を駆動し、その受信した
サブCPU2−1からの送信データを伝送路L2に流れ
る電流Iの変化として上位装置へ送る。On the other hand, the main CPU 4'also sends the oscillation selection signal S1 to the data selector 9. This oscillation selection signal S
In response to 1, the data selector 9 sends a return request (serial data) from the main CPU 4 ′ via the line L3 to the sub CPU 2-1 via the isolation circuit 3-1.
Send to. In response to the return request from the main CPU 4 ′, the sub CPU 2-1 sends the transmission data (serial data) to the main CPU 4 ′ via the isolation circuit 3-1 and the data selector 9 through the line L4. The main CPU 4'drives the driver circuit 5 and sends the received transmission data from the sub CPU 2-1 to the host device as a change in the current I flowing through the transmission line L2.
【0012】次に、メインCPU4’は、発振選択信号
S2をローカル電源生成回路8−2へ送る。これによ
り、ローカル電源生成回路8−1に替わってローカル電
源生成回路8−2が作動する。ローカル電源生成回路8
−2は、伝送路L1からの電流の供給を受けてローカル
電源PWR2を生成し、A/D変換回路1−2,サブC
PU2−2,アイソレーション回路3−2へ供給する。
ローカル電源PWR2の供給を受けて、A/D変換回路
1−2は、温度センサTC2からの検出信号をディジタ
ル信号に変換し、サブCPU2−2へ送る。サブCPU
2−2は、入力されるディジタル信号より、送信データ
を生成する。Next, the main CPU 4'sends an oscillation selection signal S2 to the local power supply generation circuit 8-2. As a result, the local power supply generation circuit 8-2 operates in place of the local power supply generation circuit 8-1. Local power generation circuit 8
-2 receives the current supplied from the transmission line L1 to generate the local power supply PWR2, and the A-D conversion circuit 1-2 and the sub-C
It is supplied to the PU 2-2 and the isolation circuit 3-2.
Upon receiving the supply of the local power supply PWR2, the A / D conversion circuit 1-2 converts the detection signal from the temperature sensor TC2 into a digital signal and sends it to the sub CPU 2-2. Sub CPU
2-2 generates transmission data from the input digital signal.
【0013】一方、メインCPU4’は、発振選択信号
S2をデータセレクタ9へも送る。この発振選択信号S
2を受けて、データセレクタ9は、メインCPU4’か
らのラインL3を介する返送要求をアイソレーション回
路3−2を介してサブCPU2−2へ送る。サブCPU
2−2は、メインCPU4’からの返送要求に応えて、
送信データをアイソレーション回路3−2およびデータ
セレクタ9を介しラインL4を通してメインCPU4’
へ送る。メインCPU4’は、ドライバ回路5を駆動
し、その受信したサブCPU2−2からの送信データを
伝送路L2に流れる電流Iの変化として上位装置へ送
る。On the other hand, the main CPU 4'also sends the oscillation selection signal S2 to the data selector 9. This oscillation selection signal S
Upon receiving 2, the data selector 9 sends a return request from the main CPU 4 ′ via the line L3 to the sub CPU 2-2 via the isolation circuit 3-2. Sub CPU
2-2 responds to the return request from the main CPU 4 ',
The main CPU 4'transmits the transmission data through the isolation circuit 3-2 and the data selector 9 and the line L4.
Send to. The main CPU 4 ′ drives the driver circuit 5 and sends the received transmission data from the sub CPU 2-2 to the host device as a change in the current I flowing through the transmission line L2.
【0014】以下、同様にして、メインCPU4’は、
発振選択信号S3,S4をローカル電源生成回路8−
3,8−4へ順次に送り、ローカル電源生成回路8−
3,8−4を順次に切り替えて作動させ、これにより順
次に生成されるローカル電源PWR3,PWR4をA/
D変換回路1−3,1−4、サブCPU2−3,2−
4、アイソレーション回路3−3,3−4へ供給し、サ
ブCPU2−3,2−4からの送信データを伝送路L2
に流れる電流Iの変化として順次に上位装置へ送る。そ
して、サブCPU2−4からの送信データを上位装置へ
送った後は、発振選択信号S1をローカル電源生成回路
8−1へ送り、上述した動作を繰り返す。Thereafter, similarly, the main CPU 4'is
Oscillation selection signals S3 and S4 are supplied to the local power supply generation circuit 8-
3, 8-4 to the local power generation circuit 8-
3, 8-4 are sequentially switched to operate, and local power sources PWR3, PWR4 sequentially generated by this are A /
D conversion circuits 1-3, 1-4, sub CPUs 2-3, 2-
4, the data is supplied to the isolation circuits 3-3 and 3-4, and the transmission data from the sub CPUs 2-3 and 2-4 is transmitted to the transmission line L2.
Is sent to the host device in sequence as a change in the current I flowing through the device. Then, after transmitting the transmission data from the sub CPU 2-4 to the host device, the oscillation selection signal S1 is transmitted to the local power supply generation circuit 8-1 and the above-described operation is repeated.
【0015】以上の説明から分かるように、本実施例に
よる多点入力2線式伝送器100’によれば、常時生成
されるメイン電源PWRM と順次切り替わって生成され
るローカル電源PWR1〜PWR4とが使用されるの
で、その作動電力としては1点入力の場合と同じ4mA
の電流で間に合い、上位装置において大容量の電源を必
要としないものとなる。また、本実施例によれば、上位
装置との間に2線の伝送路L1,L2を一つ敷設するの
みで4点の測定データを上位装置へ送ることができ、ケ
ーブルの敷設数の増大および敷設工数の増大によりコス
トがかかるという問題が生じず、非常に経済的となる。As can be seen from the above description, according to the multi-point input two-wire transmitter 100 'according to the present embodiment, the main power supply PWR M which is constantly generated and the local power supplies PWR1 to PWR4 which are sequentially switched and generated. Since it is used, its operating power is 4mA, which is the same as in the case of 1-point input.
Therefore, a high-capacity power supply is not required in the host device. Further, according to this embodiment, the measurement data at four points can be sent to the host device only by laying one two-wire transmission path L1, L2 between the host device and the host device, and the number of cables to be installed is increased. Also, there is no problem that the cost is increased due to an increase in the number of laying steps, which is very economical.
【0016】なお、本実施例においては、TC1〜TC
4を温度センサとしたが、湿度センサ等を接続するもの
としてもよい。また、本実施例において、温度センサT
C1〜TC4を測温抵抗体とした場合には、測温抵抗体
に電流を流さなければならないので測定に際しての立ち
上がり時間をある程度必要とするが、これに対しては発
振選択信号S1〜S4の切替周期を長くすることによっ
て対応することができる。温度センサTC1〜TC4を
熱電対とした場合には、検出信号が起電力として即座に
得られるので、発振選択信号S1〜S4の切替周期は短
くてもよい。In the present embodiment, TC1 to TC
Although 4 is a temperature sensor, a humidity sensor or the like may be connected. Further, in this embodiment, the temperature sensor T
When C1 to TC4 are used as the resistance temperature detector, a current needs to be passed through the resistance temperature detector, so a certain rise time is required for the measurement. For this, the oscillation selection signals S1 to S4 This can be dealt with by lengthening the switching cycle. When the temperature sensors TC1 to TC4 are thermocouples, the detection signal is immediately obtained as an electromotive force, so the switching cycle of the oscillation selection signals S1 to S4 may be short.
【0017】[0017]
【発明の効果】以上説明したことから明らかなように本
発明によれば、常時生成されるメイン電源と順次切り替
わって生成されるローカル電源とが使用されるので、そ
の作動電力としては1点入力の場合と同じ電力で間に合
い、上位装置において大容量の電源を必要としないもの
となる。また、上位装置との間に2線の伝送路を一つ敷
設するのみで多点の測定データを上位装置へ送ることが
でき、ケーブルの敷設数の増大および敷設工数の増大に
よりコストがかかるという問題が生じず、非常に経済的
となる。As is apparent from the above description, according to the present invention, the main power source which is constantly generated and the local power source which is sequentially switched are used. The same electric power as in the above case can be used, and a high-capacity power source is not required in the host device. In addition, it is possible to send multipoint measurement data to the host device only by laying one transmission line of two lines between the host device and the cable, and it is costly due to an increase in the number of cable installations and man-hours. It is very economical without any problems.
【図1】本発明の一実施例を示す多点入力2線式伝送器
のブロック回路構成図である。FIG. 1 is a block circuit configuration diagram of a multipoint input two-wire transmitter showing an embodiment of the present invention.
【図2】従来の2線式伝送器のブロック回路構成図であ
る。FIG. 2 is a block circuit configuration diagram of a conventional 2-wire type transmitter.
1−1〜1−4 A/D変換回路 2−1〜2−4 サブCPU 3−1〜3−4 アイソレーション回路 4’メインCPU 5 ドライバ回路 7 メイン電源生成回路 8−1〜8−4 ローカル電源生成回路 9 データセレクタ TC1〜TC4 温度センサ L1,L2 伝送路 100’多点入力2線式伝送器 1-1 to 1-4 A / D conversion circuit 2-1 to 2-4 Sub CPU 3-1 to 3-4 Isolation circuit 4'Main CPU 5 Driver circuit 7 Main power supply generation circuit 8-1 to 8-4 Local power generation circuit 9 Data selector TC1 to TC4 Temperature sensor L1, L2 Transmission path 100 'Multi-point input 2-wire type transmitter
Claims (1)
ィジタル信号に変換する第1〜第NのA/D変換手段
と、 この第1〜第NのA/D変換手段の変換したディジタル
信号を入力とし送信データを生成する第1〜第Nのサブ
演算処理手段と、 この第1〜第Nのサブ演算処理手段の生成する送信デー
タに対しての返送要求およびこの返送要求に応えて返送
される送信データをアイソレーションして伝送する第1
〜第Nのアイソレーション手段と、 2線の伝送路からの電流の供給を受けてメイン電源を生
成するメイン電源生成手段およびローカル電源を生成す
る第1〜第Nのローカル電源生成手段と、 前記メイン電源生成手段の生成するメイン電源の供給を
受けて、前記第1〜第Nのローカル電源生成手段を順次
に切り替えて作動させ、この第1〜第Nのローカル電源
生成手段の生成するローカル電源を前記第1〜第NのA
/D変換手段,サブ演算処理手段およびアイソレーショ
ン手段へ供給すると共に、ローカル電源の供給されるサ
ブ演算処理手段へそのサブ演算処理手段の生成する送信
データに対しての返送要求を送り、この返送要求に応え
て返送されてくる送信データを受信し、この受信した送
信データを前記伝送路に流れる電流の変化として上位装
置へ送るメイン演算処理手段とを備えたことを特徴とす
る多点入力2線式伝送器。1. A first to Nth A / D conversion means for converting a detection signal from the first to Nth sensors into a digital signal, and a conversion of the first to Nth A / D conversion means. First to Nth sub arithmetic processing means for inputting a digital signal to generate transmission data, a return request for the transmission data generated by the first to Nth sub arithmetic processing means, and a response to this return request First to isolate and transmit the transmission data returned by
To Nth isolation means, main power generation means for generating main power by receiving current from the two-wire transmission line, and first to Nth local power generation means for generating local power; Receiving supply of main power generated by the main power generation means, the first to Nth local power generation means are sequentially switched to operate, and the local power generation generated by the first to Nth local power generation means The first to Nth A
The A / D conversion means, the sub-arithmetic processing means and the isolation means are supplied to the sub-arithmetic processing means, which is supplied with local power, and a return request for the transmission data generated by the sub-arithmetic processing means is sent. A multi-point input device 2 comprising: a main arithmetic processing means for receiving transmission data returned in response to a request and transmitting the received transmission data to a higher-level device as a change in current flowing in the transmission path. Wire transmitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05340379A JP3077076B2 (en) | 1993-12-09 | 1993-12-09 | Multi-point input 2-wire transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05340379A JP3077076B2 (en) | 1993-12-09 | 1993-12-09 | Multi-point input 2-wire transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07162345A true JPH07162345A (en) | 1995-06-23 |
JP3077076B2 JP3077076B2 (en) | 2000-08-14 |
Family
ID=18336390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05340379A Expired - Lifetime JP3077076B2 (en) | 1993-12-09 | 1993-12-09 | Multi-point input 2-wire transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3077076B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1290513A2 (en) | 2000-05-12 | 2003-03-12 | Rosemount Inc. | Two-wire field-mounted process device |
US7016741B2 (en) | 2003-10-14 | 2006-03-21 | Rosemount Inc. | Process control loop signal converter |
JP2006170731A (en) * | 2004-12-15 | 2006-06-29 | Yamari Sangyo Kk | Temperature control system for temperature transmitter |
US7228186B2 (en) | 2000-05-12 | 2007-06-05 | Rosemount Inc. | Field-mounted process device with programmable digital/analog interface |
JP2007292588A (en) * | 2006-04-25 | 2007-11-08 | Yokogawa Electric Corp | Measuring system |
JP2008312327A (en) * | 2007-06-13 | 2008-12-25 | Meidensha Corp | Analog input circuit of digital protection relay |
WO2009096225A1 (en) * | 2008-01-31 | 2009-08-06 | Yamatake Corporation | Measurement instrument |
US7844365B2 (en) | 2000-05-12 | 2010-11-30 | Rosemount Inc. | Field-mounted process device |
US8311778B2 (en) | 2009-09-22 | 2012-11-13 | Rosemount Inc. | Industrial process control transmitter with multiple sensors |
US9634858B2 (en) | 2005-07-20 | 2017-04-25 | Rosemount Inc. | Field device with power over Ethernet |
US11159203B2 (en) | 2019-09-13 | 2021-10-26 | Micro Motion, Inc. | Process control loop bridge |
-
1993
- 1993-12-09 JP JP05340379A patent/JP3077076B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7844365B2 (en) | 2000-05-12 | 2010-11-30 | Rosemount Inc. | Field-mounted process device |
US6961624B2 (en) | 2000-05-12 | 2005-11-01 | Rosemount Inc. | Two-wire field-mounted process device |
US7228186B2 (en) | 2000-05-12 | 2007-06-05 | Rosemount Inc. | Field-mounted process device with programmable digital/analog interface |
EP1290513A2 (en) | 2000-05-12 | 2003-03-12 | Rosemount Inc. | Two-wire field-mounted process device |
EP1290513B1 (en) * | 2000-05-12 | 2010-10-20 | Rosemount Inc. | Two-wire field-mounted process device |
EP2251754A1 (en) * | 2000-05-12 | 2010-11-17 | Rosemount, Inc. | Two-wire field-mounted process device |
US7016741B2 (en) | 2003-10-14 | 2006-03-21 | Rosemount Inc. | Process control loop signal converter |
JP2006170731A (en) * | 2004-12-15 | 2006-06-29 | Yamari Sangyo Kk | Temperature control system for temperature transmitter |
US9634858B2 (en) | 2005-07-20 | 2017-04-25 | Rosemount Inc. | Field device with power over Ethernet |
JP2007292588A (en) * | 2006-04-25 | 2007-11-08 | Yokogawa Electric Corp | Measuring system |
JP2008312327A (en) * | 2007-06-13 | 2008-12-25 | Meidensha Corp | Analog input circuit of digital protection relay |
JP2009180644A (en) * | 2008-01-31 | 2009-08-13 | Yamatake Corp | Measurement instrument |
US8412471B2 (en) | 2008-01-31 | 2013-04-02 | Azbil Corporation | Measurement instrument |
WO2009096225A1 (en) * | 2008-01-31 | 2009-08-06 | Yamatake Corporation | Measurement instrument |
US8311778B2 (en) | 2009-09-22 | 2012-11-13 | Rosemount Inc. | Industrial process control transmitter with multiple sensors |
US11159203B2 (en) | 2019-09-13 | 2021-10-26 | Micro Motion, Inc. | Process control loop bridge |
Also Published As
Publication number | Publication date |
---|---|
JP3077076B2 (en) | 2000-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5237322A (en) | Master-slave data transmission system employing a flexible single-wire bus | |
US6381293B1 (en) | Apparatus and method for serial data communication between plurality of chips in a chip set | |
US5963609A (en) | Apparatus and method for serial data communication between plurality of chips in a chip set | |
JP3077076B2 (en) | Multi-point input 2-wire transmitter | |
US9537692B2 (en) | Automation device operable to convert between data byte streams and frequency modulated line signals | |
US4429362A (en) | Data buffer operating in response to computer halt signal | |
CN217179803U (en) | Temperature sensor detection circuit and detection device with same | |
JP2898387B2 (en) | Synchronous signal generator | |
JP2811911B2 (en) | Serial data transmission device | |
PL181300B1 (en) | System for transmitting signals through a field line | |
US7173543B2 (en) | Measuring transducer | |
JP2009300248A (en) | Parallel testing device | |
JP2893867B2 (en) | Digital servo drive system | |
JPH11175874A (en) | Instrumentation interface and network system for using the same | |
JP2956385B2 (en) | Bus line monitoring method | |
JPH0685514B2 (en) | Multiplex transmission controller | |
JP2928970B2 (en) | Two-wire communication device | |
JPH0635739A (en) | Switching control system | |
JP4280140B2 (en) | Communication system, electronic equipment | |
JP3881088B2 (en) | Computer equipment | |
JP4378799B2 (en) | Digital data input / output device | |
JPH0425627Y2 (en) | ||
JPS63215237A (en) | Polling communication circuit | |
JPS60147553A (en) | Control apparatus having self-diagnosing function | |
JPS60106358A (en) | Power converter |