JPH07161560A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH07161560A
JPH07161560A JP5307918A JP30791893A JPH07161560A JP H07161560 A JPH07161560 A JP H07161560A JP 5307918 A JP5307918 A JP 5307918A JP 30791893 A JP30791893 A JP 30791893A JP H07161560 A JPH07161560 A JP H07161560A
Authority
JP
Japan
Prior art keywords
sintering
magnet
powder
rare earth
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5307918A
Other languages
Japanese (ja)
Other versions
JP2855068B2 (en
Inventor
Tekio Kusunoki
的生 楠
Fumiaki Kaneko
史明 金子
Koji Shimizu
浩司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5307918A priority Critical patent/JP2855068B2/en
Publication of JPH07161560A publication Critical patent/JPH07161560A/en
Application granted granted Critical
Publication of JP2855068B2 publication Critical patent/JP2855068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a magnet sintered body, cost of which is lower than those of alumina and yttria boards which have been used and cracking, breaking and deformation of which due to a contact reaction with alumina or the yttria board and a magnet molded form at the time of sintering variation of size of which are inhibited and which has an excellent dimensional accuracy, by developing fine powder for sintering for a rate earth magnet. CONSTITUTION:Y2O3 powder sintered at a temperature of 1000 deg.C or higher and having a particle diameter of from 5mum to 500mum is used as fine powder for sintering, and a rate earth magnet molded form is manufactured in the manufacture of a rare earth magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類磁石の製造方法に
おける磁石焼結体の寸法精度の改善に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of dimensional accuracy of a magnet sintered body in a method for producing a rare earth magnet.

【0002】[0002]

【従来の技術】希土類磁石は高い磁気特性もつため、高
価であるにも関わらず近年需要を伸ばしている。希土類
磁石は粉末焼結工程を経て製造されるが、活性な金属で
ある希土類元素を多く含むため、焼結時に磁石成形体と
焼結用金属板が反応して溶着し、磁石成形体に割れ、欠
け、変形等が発生する原因となっていた。溶着を防ぐに
はアルミナ、イットリア等の材質製の薄い板を磁石成形
体と焼結用金属板との間に挿入すれば良いが、アルミナ
板、イットリア板は熱ショックに弱く再利用が困難であ
る。また、アルミナ板の場合には希土類元素によって還
元されるので酸素の供給源となる欠点もある。
2. Description of the Related Art Since rare earth magnets have high magnetic properties, demand for them has been increasing in recent years although they are expensive. Rare earth magnets are manufactured through a powder sintering process, but since they contain a large amount of rare earth elements, which are active metals, the magnet compact and the metal plate for sintering react during welding and weld, causing cracks in the magnet compact. It was a cause of chipping, deformation and the like. A thin plate made of a material such as alumina or yttria can be inserted between the magnet molding and the metal plate for sintering to prevent welding, but the alumina plate and yttria plate are vulnerable to heat shock and are difficult to reuse. is there. Further, in the case of an alumina plate, it is reduced by a rare earth element and therefore has a drawback that it serves as a supply source of oxygen.

【0003】[0003]

【発明が解決しようとする課題】この希土類磁石成形体
と金属製焼結板との反応を防ぐために、敷粉を用いて双
方が接触しないようにする方法もあるが、敷粉に要求さ
れる性能として、磁石成形体の滑りが良く、磁石成形体
に含まれる希土類元素に対して安定な焼結用敷粉が従来
はなく、アルミナ板、イットリア板を挿入する方法では
磁石成形体の収縮が円滑に平均して進まず、その結果、
磁石焼結体の寸法が上下で異なったり、リング状焼結体
の場合は敷粉と接触しているセット面の内径、外径の寸
法がバラつくなどの問題が生じていた。本発明は、希土
類磁石用の焼結用敷粉を開発して、従来使用してきたア
ルミナ、イットリア板よりも低コストで、かつ焼結時の
反応による割れ、欠け、変形あるいは磁石焼結体の寸法
のバラつきを抑え、寸法精度の良い磁石焼結体を提供し
ようとするものである。
In order to prevent the reaction between the rare earth magnet molded body and the sintered metal plate, there is a method of using a spread powder to prevent the two from contacting each other, but this is required for the spread powder. As for performance, the magnet compact has good sliding properties, and there has never been a powder for sintering that is stable against the rare earth elements contained in the magnet compact, and the method of inserting an alumina plate or yttria plate causes the magnet compact to shrink. As a result of not averaging smoothly,
There were problems such as the size of the magnet sintered body being different between the upper and lower sides, and in the case of the ring-shaped sintered body, the inner diameter and the outer diameter of the set surface in contact with the spread powder varied. The present invention has developed a sintering bed powder for rare earth magnets, which is lower in cost than the conventionally used alumina and yttria plates, and which can be cracked, chipped, deformed or magnetized by a reaction during sintering. The present invention aims to provide a magnet sintered body that suppresses dimensional variations and has high dimensional accuracy.

【0004】[0004]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために、希土類磁石の焼結に適した焼結用
敷粉について種々の検討を行なった結果、本発明に到達
したもので、その要旨は、希土類磁石の製造方法におい
て、1000℃以上の温度で焼成した5μm以上500μm以
下の粒子径を有するY23 粉末を焼結用敷粉として用
い、希土類磁石成形体を焼結することをることを特徴と
する希土類磁石の製造方法にある。
In order to solve the above problems, the inventors of the present invention have made various studies on a sintering powder suitable for sintering rare earth magnets, and have arrived at the present invention. The gist thereof is, in the method for producing a rare earth magnet, using a Y 2 O 3 powder having a particle diameter of 5 μm or more and 500 μm or less that is fired at a temperature of 1000 ° C. or more as a bed powder for sintering, A method for producing a rare earth magnet is characterized by sintering.

【0005】以下、本発明を詳細に説明する。本発明の
希土類磁石焼結用敷粉は、1000℃以上の温度で焼成され
た5〜500 μmの粒子径を持つイットリア(Y23
粉末より成る。当該敷粉の形状によってその性能が左右
されることは少ないが、磁石成形体との接触抵抗を減ら
し、滑りを良くする敷粉の機能から考えると球状が望ま
しい。この敷粉は通常市販品として得られる粒子径約1
μmのY23 粉末を任意の形状に成形、仮焼したもの
を粉砕し、更に1000℃以上の温度で焼成、篩分して5〜
500 μmの粒子径範囲に調整する乾式造粒法によっても
良いし、粒子径約1μmのY23 粉末にバインダーを
加えてスラリー状にしたものをスプレードライヤー等を
用いて直接球状粉末を作製し、1000℃以上の温度で焼
成、篩分して5〜500 μmの粒子径範囲に調整する湿式
造粒法によっても良い。乾式造粒法の場合は、篩分け時
に粒子の角が取れて球状に近い形状となる。また、湿式
造粒法の場合には空中で凝固乾燥するために真球に近い
形状の粒子が得られる。
The present invention will be described in detail below. The rare earth magnet sintering bed powder of the present invention is yttria (Y 2 O 3 ) having a particle size of 5 to 500 μm, which is fired at a temperature of 1000 ° C. or higher.
Composed of powder. Although the performance of the spread powder is little affected by the shape of the spread powder, a spherical shape is preferable from the viewpoint of the function of the spread powder that reduces the contact resistance with the magnet molded body and improves sliding. This bed powder is usually obtained as a commercial product with a particle size of about 1
The Y 2 O 3 powder of μm is molded into an arbitrary shape, calcinated, crushed, and further calcinated at a temperature of 1000 ° C. or higher, and sieved for 5
It is also possible to use a dry granulation method in which the particle size is adjusted to a range of 500 μm, or a powdery Y 2 O 3 powder with a particle size of about 1 μm is added to a binder to form a slurry, and a spherical powder is directly produced using a spray dryer or the like. Alternatively, a wet granulation method may be used in which the particles are calcined at a temperature of 1000 ° C. or higher, sieved and adjusted to a particle diameter range of 5 to 500 μm. In the case of the dry granulation method, the corners of the particles are removed at the time of sieving and the shape becomes close to a sphere. Further, in the case of the wet granulation method, particles having a shape close to a true sphere can be obtained because the particles are solidified and dried in the air.

【0006】[0006]

【作用】希土類磁石焼結用敷粉に要求される性能とし
て、磁石成形体の滑りが良く、磁石成形体に含まれる希
土類元素に対して安定な焼結用敷粉が従来はなく、アル
ミナ板、イットリア板を挿入する方法では磁石成形体の
収縮が円滑に平均して進まず、その結果、磁石焼結体の
寸法が上下で異なったり、リング状焼結体の場合は敷粉
と接触しているセット面の内径、外径の寸法がバラつく
などの問題が生じていた。本発明の希土類磁石の焼結用
敷粉は、従来使用してきたアルミナ、イットリア板より
も低コストで、かつ焼結時の反応による割れ、欠け、変
形あるいは磁石焼結体の寸法のバラつきを抑え、寸法精
度の良い磁石焼結体を得ることができる。
[Function] As a performance required for the rare earth magnet sintering bed powder, there is no conventional sintering bed powder which has good sliding of the magnet molded body and is stable against the rare earth element contained in the magnet molded body. In the method of inserting the yttria plate, the shrinkage of the magnet compact does not proceed smoothly and evenly, and as a result, the dimensions of the magnet sintered compact are different between the top and bottom, and in the case of a ring-shaped sintered compact, it does not come into contact with the spread powder. There was a problem that the inner diameter and outer diameter of the set surface varied. The rare earth magnet sintering bed powder of the present invention is lower in cost than the conventionally used alumina and yttria plates, and suppresses cracking, chipping, deformation or dimensional variation of the magnet sintered body due to reaction during sintering. A magnet sintered body with good dimensional accuracy can be obtained.

【0007】希土類磁石中に含まれる元素の中で活性の
強いものは希土類元素なので、希土類元素の酸化物より
も、1000℃〜1300℃の焼結温度領域で、自由エネルギー
の低いY23 を敷粉として用いた場合に、最も良い結
果が得られた。敷粉の粒子径が5μm未満では磁石成形
体と焼結用金属板の隙間が著しく小さく、磁石成形体と
焼結用金属板が反応してしまうので好ましくない。ま
た、 500μmを越えると磁石成形体と焼結用金属板の反
応は起こらないが、磁石成形体と敷粉が接触していた部
分で磁石焼結体に窪みが生じたり、塗布した敷粉の単位
面積当たりの重量が増加して敷粉の消費量も増えるので
好ましくない。希土類磁石成形体の焼結温度は1000℃〜
1300℃の範囲で行われるので、この温度範囲で不要なガ
スが敷粉から発生しないよう、焼結用敷粉の焼結温度は
希土類磁石成形体の焼結温度よりも高い温度で焼成する
必要がある。また焼結時に敷粉が崩れないよう敷粉の強
度を上げるためには、1300℃以上で焼成することが望ま
しい。敷粉の焼結用金属板に塗布する方法としては、有
機溶剤を用いてスラリーを作り、刷毛等で塗ってもよい
し、篩等を用いて焼結用金属板の表面に振りかけても良
い。
Of the elements contained in the rare earth magnet, those having a strong activity are rare earth elements, and therefore Y 2 O 3 having a lower free energy in the sintering temperature range of 1000 ° C. to 1300 ° C. than the oxide of the rare earth element. The best results were obtained when was used as bedding powder. If the particle size of the spread powder is less than 5 μm, the gap between the magnet molding and the sintering metal plate is extremely small, and the magnet molding and the sintering metal plate react, which is not preferable. If the thickness exceeds 500 μm, the reaction between the magnet compact and the metal plate for sintering does not occur, but the magnet sintered compact may have a dent in the part where the magnet compact and the spread powder are in contact with each other, or the spread powder This is not preferable because the weight per unit area increases and the amount of spread powder consumed also increases. Sintering temperature of rare earth magnet compact is 1000 ℃ ~
Since it is performed in the range of 1300 ° C, the sintering temperature of the sintering powder for sintering must be higher than the sintering temperature of the rare earth magnet compact so that unnecessary gas is not generated from the powder in this temperature range. There is. Further, in order to increase the strength of the spread powder so that the spread powder does not collapse during sintering, it is desirable to bake at 1300 ° C or higher. As a method for applying the spread powder to the metal plate for sintering, a slurry may be prepared using an organic solvent and applied with a brush, or may be sprinkled on the surface of the metal plate for sintering using a sieve or the like. .

【0008】[0008]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、2)焼結用敷粉は、乾式造粒法で製造した
23 粉末を篩分して、粒子径が50μm以下、50〜15
0 μm、150 〜430 μmに夫々分級したものを実施例1
に用いた。また、湿式造粒法で製造した平均粒子径120
μmのY23 粉末を実施例2に用いた。磁石成形体に
は外径62mmφ、内径39mmφ、高さ10mmのリング状で、そ
の磁性粉末にはSm2Co17 系のものを用いた。磁石成形
体の焼結は、敷粉を篩によって焼結用金属板上に振りか
けた上に磁石成形体のリング底面を載せ、1200℃で1時
間焼成した。評価方法として、焼結後のリング状磁石の
上部と下部の外径をマイクロメーターにて1μmの精度
で測定し、四捨五入して10μmまでのデータを得、その
分散度合いで敷粉の粒度が及ぼす影響を評価した。各例
について母集団を45とした。実施例の結果を表1に示
す。表中D1、D2は、夫々リング状磁石の上部、下部
の外径を表わす。これらの結果から実施例は比較例に較
べて寸法精度が格段に向上していることがわかる。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 and 2) The bed powder for sintering was obtained by sieving Y 2 O 3 powder produced by a dry granulation method and having a particle diameter of 50 μm or less, 50 to 15 μm.
Example 1 was classified into 0 μm and 150 to 430 μm, respectively.
Used for. Also, the average particle size produced by the wet granulation method is 120
A μm Y 2 O 3 powder was used in Example 2. The magnet molding was ring-shaped with an outer diameter of 62 mmφ, an inner diameter of 39 mmφ and a height of 10 mm, and the magnetic powder used was Sm 2 Co 17 series. Sintering of the magnet molded body was carried out by sprinkling the spread powder on a metal plate for sintering with a sieve and placing the ring bottom surface of the magnet molded body on it, followed by firing at 1200 ° C. for 1 hour. As an evaluation method, the outer diameter of the upper and lower parts of the ring-shaped magnet after sintering was measured with a micrometer with an accuracy of 1 μm, and rounded to obtain data up to 10 μm, and the particle size of the spread powder affects the degree of dispersion. The impact was evaluated. The population was 45 for each case. The results of the examples are shown in Table 1. In the table, D1 and D2 represent the outer diameters of the upper and lower portions of the ring-shaped magnet, respectively. From these results, it can be seen that the dimensional accuracy of the example is remarkably improved as compared with the comparative example.

【0009】(比較例)焼結用敷粉として平均粒子径3
μmのY23 粉末を用い、焼結用金属板にヘキサンで
スラリー状にしたものを刷毛で塗布し、乾燥した以外は
実施例1と同様の磁石成形体を同条件で焼結した。その
結果を表1に併記した。
(Comparative Example) An average particle size of 3 as bed powder for sintering.
A magnet molding similar to that of Example 1 was sintered under the same conditions, except that a slurried metal plate for sintering was coated with a brush on a sintering metal plate using Y 2 O 3 powder of μm. The results are also shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【発明の効果】本発明によれば、希土類磁石焼結用敷粉
を用いることにより、寸法精度良く希土類焼結磁石を製
造することが可能となり、歩留りが向上し、より低価格
で高性能の製品を市場に提供できることになり、産業上
その利用価値は極めて高い。
According to the present invention, it is possible to manufacture a rare earth sintered magnet with high dimensional accuracy by using a powder for sintering a rare earth magnet, the yield is improved, and the cost is low and the performance is high. Since the product can be provided to the market, its utility value is extremely high in the industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類磁石の製造方法において、1000℃以
上の温度で焼成した5μm以上500 μm以下の粒子径を
有するY23 粉末を焼結用敷粉として用い、希土類磁
石成形体を焼結することを特徴とする希土類磁石の製造
方法。
1. A method for producing a rare earth magnet, wherein a Y 2 O 3 powder having a particle size of 5 μm or more and 500 μm or less, which is fired at a temperature of 1000 ° C. or more, is used as a bed powder for sintering, and a rare earth magnet compact is baked. A method for manufacturing a rare earth magnet, which comprises bonding.
JP5307918A 1993-12-08 1993-12-08 Rare earth magnet manufacturing method Expired - Fee Related JP2855068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307918A JP2855068B2 (en) 1993-12-08 1993-12-08 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307918A JP2855068B2 (en) 1993-12-08 1993-12-08 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH07161560A true JPH07161560A (en) 1995-06-23
JP2855068B2 JP2855068B2 (en) 1999-02-10

Family

ID=17974738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307918A Expired - Fee Related JP2855068B2 (en) 1993-12-08 1993-12-08 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2855068B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917676A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
US6548014B2 (en) 2000-06-21 2003-04-15 Sumitomo Special Metals Co., Ltd. Suspension application apparatus and method for manufacturing rare earth magnet
US7014811B2 (en) 2001-07-02 2006-03-21 Neomax Co., Ltd. Method for producing rare earth sintered magnets
CN106653264A (en) * 2016-11-28 2017-05-10 宁波科星材料科技有限公司 Preparation method of samarium-cobalt-based composite magnetic material and samarium-cobalt-based composite magnetic material
JP2021054690A (en) * 2019-10-01 2021-04-08 東京窯業株式会社 Firing jig

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917676A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
US6548014B2 (en) 2000-06-21 2003-04-15 Sumitomo Special Metals Co., Ltd. Suspension application apparatus and method for manufacturing rare earth magnet
US7014811B2 (en) 2001-07-02 2006-03-21 Neomax Co., Ltd. Method for producing rare earth sintered magnets
CN106653264A (en) * 2016-11-28 2017-05-10 宁波科星材料科技有限公司 Preparation method of samarium-cobalt-based composite magnetic material and samarium-cobalt-based composite magnetic material
JP2021054690A (en) * 2019-10-01 2021-04-08 東京窯業株式会社 Firing jig

Also Published As

Publication number Publication date
JP2855068B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
EP0831074B1 (en) A ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same
JPS6020868B2 (en) Method for manufacturing porous electrodes for chemical batteries
US5668070A (en) Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same
JPH07161560A (en) Manufacture of rare earth magnet
ATE167755T1 (en) STORAGE CATHODE AND PRODUCTION PROCESS
JP3812831B2 (en) Ferrite core manufacturing method and ferrite core
JP4255256B2 (en) Magnesium oxide powder for raw material of magnesium oxide vapor deposition material
JP2005079333A (en) Valve action metal powder for dispersion, and solid electrolytic capacitor using the same
JP2708160B2 (en) Ferrite manufacturing method
CN1193816C (en) Wet spray granulating technology of zirconium oxide
JPH1143375A (en) Production of setter for sintering soft ferrite
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member
JP3665083B2 (en) Method for producing ceramic powder slurry and ceramic granule
JP3419338B2 (en) Method of firing magnetic core
JP3279701B2 (en) Molding method of ferrite raw material powder
JPS59203774A (en) Floor powder for ceramic formed body baking
JP2004091889A (en) Metal niobium powder and its manufacturing method
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JP2627637B2 (en) Oxide magnetic material
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JPH11100278A (en) Preparation of composite ceramic sintered body
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH08157255A (en) Production of high density manganese-zinc ferrite
JP3424741B2 (en) Manufacturing method of oxide magnetic material
WO1996020127A1 (en) Aluminum nitride powders having high green density, and process for making same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees