JPH07161488A - High density plasma generating device - Google Patents
High density plasma generating deviceInfo
- Publication number
- JPH07161488A JPH07161488A JP5304396A JP30439693A JPH07161488A JP H07161488 A JPH07161488 A JP H07161488A JP 5304396 A JP5304396 A JP 5304396A JP 30439693 A JP30439693 A JP 30439693A JP H07161488 A JPH07161488 A JP H07161488A
- Authority
- JP
- Japan
- Prior art keywords
- high frequency
- density plasma
- vacuum chamber
- frequency antenna
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Electron Sources, Ion Sources (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、低圧、特に0.1Pa 程度
の雰囲気圧で処理を行なう必要のあるエッチング装置、
P−CVD装置、スパッタ装置等において高速で均一性
が高く大面積の処理を可能とする高密度プラズマ生成装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an etching apparatus which requires a low pressure, particularly an atmospheric pressure of about 0.1 Pa,
The present invention relates to a high-density plasma generation device capable of processing a large area at high speed with high uniformity in a P-CVD device, a sputtering device, or the like.
【0002】[0002]
【従来の技術】従来、高密度プラズマを生成する装置と
してはコイル磁石を用いて高密度の誘導プラズマを生成
し、そして発散磁場等により誘導プラズマを拡散させる
ようにしたものが知られており、磁場拡大により大きな
面積全体にわたる蒸着やエッチングを可能としたり、プ
レクリーニング等に応用されている(特開平3− 68773
号公報及び特開平4−290428号公報参照)。添付図面の
図11にはよく知られた従来の高周波誘導プラズマ発生装
置の一例を示し、図示装置は、石英管Aの外周にRFコ
イルアンテナBを設け、このRFコイルアンテナBをマ
ッチング回路Cを介して高周波電源Dに接続して構成さ
れている。この場合にはRFコイルアンテナBによって
誘導された電場が石英管A内に形成され、この電場中に
Ar等の不活性ガスを1Pa程度の雰囲気圧となるように導
入することことによって石英管A内にプラズマPが生成
される。図12には従来のプラズマ生成装置の別の例を示
し、この場合は図11に示す構成に加えてソレノイドコイ
ルEが石英管Aの外周に設けられ、矢印Fで示すような
静磁場を印加するようにしている。ソレノイドコイルE
による静磁場の印加により図11の装置の場合より高密度
なプラズマPを生成することができる。また磁場を用い
ないプラズマソースとしては平面状ループアンテナが知
られている(特開平3− 79025号公報参照)。この例で
は図13に示すように真空チャンバGの上部に石英板Hを
設け、その外側にRFループアンテナすなわち平面状コ
イルIを設け、この平面状コイルIはマッチング回路J
を介して高周波電源Kに接続されている。2. Description of the Related Art Conventionally, as a device for generating high-density plasma, there has been known a device for generating high-density induction plasma by using a coil magnet and diffusing the induction plasma by a divergent magnetic field. It can be used for pre-cleaning, etc. by enabling vapor deposition and etching over a large area by expanding the magnetic field (Japanese Patent Laid-Open No. 3-68773).
(See Japanese Patent Laid-Open No. 4-290428). FIG. 11 of the accompanying drawings shows an example of a well-known conventional high-frequency induction plasma generator. In the illustrated apparatus, an RF coil antenna B is provided on the outer circumference of a quartz tube A, and this RF coil antenna B is provided with a matching circuit C. It is configured to be connected to a high frequency power source D via. In this case, an electric field induced by the RF coil antenna B is formed in the quartz tube A, and in this electric field,
A plasma P is generated in the quartz tube A by introducing an inert gas such as Ar so as to have an atmospheric pressure of about 1 Pa. FIG. 12 shows another example of the conventional plasma generation apparatus. In this case, in addition to the configuration shown in FIG. 11, a solenoid coil E is provided on the outer circumference of the quartz tube A, and a static magnetic field as indicated by arrow F is applied. I am trying to do it. Solenoid coil E
By applying a static magnetic field due to the above, it is possible to generate a higher density plasma P than in the device of FIG. A planar loop antenna is known as a plasma source that does not use a magnetic field (see Japanese Patent Laid-Open No. 3-79025). In this example, as shown in FIG. 13, a quartz plate H is provided above the vacuum chamber G, and an RF loop antenna, that is, a planar coil I is provided outside the quartz plate H. The planar coil I is a matching circuit J.
It is connected to the high frequency power supply K via.
【0003】[0003]
【発明が解決しようとする課題】このような従来のプラ
ズマ発生装置においては、例えば図11及び図12に示すよ
うな構造のプラズマソースは大面積処理用プラズマソー
スとしては分布がよくない。すなわち図11の構成では図
11の(b) に示すように生成されるプラズマは径方向で密
度分布が大きく変わり、しかも密度も108 〜1010cm-3程
度とそれ程高くできないという問題点がある。また図12
に示すようなソレノイドコイルを用いた例では、ソレノ
イドコイルにより発生された静磁場の印加によって高密
度なプラズマを得ることができるが、しかし得られるプ
ラズマの密度分布は、図12の(b) に示すように静磁場を
印加しない場合(図11)より悪くなり、このままでは各
種プロセスには使用できないという問題点がある。一
方、平面ループアンテナを用いた場合には、10Pa以上の
高圧力ではプラズマの均一性はよいが、低い圧力では密
度も十分ではなくしかも分布も圧力の高い時程よくない
という問題点がある。In such a conventional plasma generator, for example, the plasma source having the structure shown in FIGS. 11 and 12 has a poor distribution as a plasma source for large area processing. That is, in the configuration of FIG.
As shown in (b) of 11, there is a problem that the density distribution of the generated plasma changes greatly in the radial direction, and the density cannot be as high as about 10 8 -10 10 cm -3 . Fig. 12
In the example using a solenoid coil as shown in Fig. 12, a high density plasma can be obtained by applying a static magnetic field generated by the solenoid coil, but the density distribution of the obtained plasma is shown in Fig. 12 (b). As shown in the figure, it is worse than when no static magnetic field is applied (Fig. 11), and there is a problem that it cannot be used in various processes as it is. On the other hand, when the planar loop antenna is used, the plasma uniformity is good at a high pressure of 10 Pa or more, but there is a problem that the density is not sufficient at a low pressure and the distribution is not as good as when the pressure is high.
【0004】そこで、本発明は、上記の問題点を解決し
て広い圧力範囲において高密度でしかも高い均一性のプ
ラズマを生成できる高密度プラズマ生成装置を提供する
ことを目的としている。また本発明の別の目的は、この
高密度プラズマ生成装置を用いた各種のプロセス装置を
提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and to provide a high density plasma generator capable of generating high density and high uniformity plasma in a wide pressure range. Another object of the present invention is to provide various process devices using this high-density plasma generation device.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明による高密度プラズマ生成装置は真空チャ
ンバのプラズマ生成領域を囲んで高周波電流を流すこと
のできる少なくとも一つの高周波アンテナを設け、この
高周波アンテナに流れる高周波電流と交わる方向の磁場
を発生する少なくとも一つの永久磁石を高周波アンテナ
に沿って設けたことを特徴としている。本発明による高
密度プラズマ生成装置においては、真空チャンバのプラ
ズマ生成領域を画定する誘電体部材は筒状を成し、その
外周にコイル状の高周波アンテナが配置され得る。真空
チャンバのプラズマ生成領域を画定する誘電体部材は筒
状の代わりに板状であってもよい。いずれの場合も永久
磁石は誘電体部材と高周波アンテナとの間にまたは高周
波アンテナの外側に位置決めされ得る。真空チャンバの
プラズマ生成領域を画定する誘電体部材が板状を成して
いる場合には、好ましくはその外面上に設けられる高周
波アンテナはループ状に配置され得る。各永久磁石によ
って発生される磁場は高周波アンテナに流れる高周波電
流と直交する方向に対して±30°以内の方向をもつよう
にされ得る。また、真空チャンバ内の圧力は100Pa 〜0.
01Paであることができる。さらに本発明による高密度プ
ラズマ生成装置においては、複数の高周波アンテナが設
けられ、各高周波アンテナは独立した高周波電源に接続
され得る。好ましくは永久磁石の配列のピッチ、永久磁
石と高周波アンテナとの距離或いは永久磁石の強度は均
一なプラズマ分布が得られるように設定され得る。In order to achieve the above object, the high-density plasma generator according to the present invention is provided with at least one high-frequency antenna capable of flowing a high-frequency current around a plasma generation region of a vacuum chamber. It is characterized in that at least one permanent magnet that generates a magnetic field in a direction intersecting with a high-frequency current flowing through the high-frequency antenna is provided along the high-frequency antenna. In the high-density plasma generation device according to the present invention, the dielectric member that defines the plasma generation region of the vacuum chamber has a cylindrical shape, and the coil-shaped high frequency antenna may be arranged on the outer periphery thereof. The dielectric member defining the plasma generation region of the vacuum chamber may be plate-shaped instead of cylindrical. In either case, the permanent magnet may be positioned between the dielectric member and the high frequency antenna or outside the high frequency antenna. When the dielectric member that defines the plasma generation region of the vacuum chamber has a plate shape, the high frequency antenna preferably provided on the outer surface thereof may be arranged in a loop shape. The magnetic field generated by each permanent magnet may have a direction within ± 30 ° with respect to the direction orthogonal to the high frequency current flowing through the high frequency antenna. The pressure in the vacuum chamber is 100 Pa to 0.
Can be 01Pa. Furthermore, in the high-density plasma generator according to the present invention, a plurality of high frequency antennas are provided, and each high frequency antenna can be connected to an independent high frequency power source. Preferably, the pitch of the arrangement of the permanent magnets, the distance between the permanent magnets and the high frequency antenna, or the strength of the permanent magnets can be set so that a uniform plasma distribution can be obtained.
【0006】[0006]
【作用】このように構成された本発明による高密度プラ
ズマ生成装置においては、高周波アンテナに流れる高周
波電流と交わる方向の磁場を発生する永久磁石を設けた
ことにより、磁場向配を大きく取ることができるように
なる。それにより誘導電場(E=∂B/∂t、ここでB
は高周波アンテナによって形成された磁場)の働きで真
空チャンバのプラズマ生成領域の周辺部近くに高密度の
プラズマが生成されるようになる。そのため、真空チャ
ンバのプラズマ生成領域の中心部近くの高周波磁場は急
に減衰し、また真空チャンバのプラズマ生成領域の周辺
部近くの磁場が強いためにプラズマ生成領域の周辺部方
向への拡散速度を小さくすることができるようになる。
その結果、周囲方向の分布密度が均一な高密度プラズマ
を得ることができるようになる。In the high-density plasma generating apparatus according to the present invention having the above-described structure, the permanent magnet for generating the magnetic field in the direction intersecting with the high-frequency current flowing through the high-frequency antenna is provided, so that the magnetic field can be largely oriented. become able to. As a result, the induction electric field (E = ∂B / ∂t, where B
Due to the magnetic field generated by the high frequency antenna, high density plasma is generated near the periphery of the plasma generation region of the vacuum chamber. Therefore, the high-frequency magnetic field near the center of the plasma generation region of the vacuum chamber is rapidly attenuated, and since the magnetic field near the periphery of the plasma generation region of the vacuum chamber is strong, the diffusion rate toward the periphery of the plasma generation region is increased. It will be possible to make it smaller.
As a result, it becomes possible to obtain a high-density plasma having a uniform distribution density in the circumferential direction.
【0007】[0007]
【実施例】以下図面の図1〜図10を参照して本発明の実
施例について説明する。図1の(a) には本発明の一実施
例による高密度プラズマ生成装置を概略的に示し、真空
チャンバのプラズマ生成領域を画定する誘電体である石
英管1の外周にプラズマ生成用の高周波コイルアンテナ
2が配置されている。この高周波コイルアンテナ2の一
端はマッチング回路3を介して高周波電源4に接続さ
れ、他端は接地されている。石英管1の外面と高周波コ
イルアンテナ2との間において高周波コイルアンテナ2
に沿って筒状の永久磁石5が配置され、この永久磁石5
は、高周波電源4から高周波コイルアンテナ2に流れる
高周波電流方向と実質的に直交する磁場を形成するよう
にされている。このように構成した図示装置の動作にお
いて、永久磁石5は符号6で示すような磁束線を石英管
1の内部に形成し、磁場向配を大きく取ることができ、
それにより誘導電場の働きで図1の(b) に示すように高
密度でしかも石英管1の内壁近くから中心部に渡って均
一な分布密度をもつプラズマ7が生成され得る。尚永久
磁石5によって発生される磁場は高周波コイルアンテナ
2に流れる高周波電流と正確に直交する方向である必要
はなく直交方向に対して±30°以内の方向をもつように
すればよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 (a) schematically shows a high-density plasma generating apparatus according to an embodiment of the present invention, in which a high frequency for plasma generation is formed on the outer circumference of a quartz tube 1 which is a dielectric defining a plasma generating region of a vacuum chamber. The coil antenna 2 is arranged. One end of the high frequency coil antenna 2 is connected to the high frequency power source 4 via the matching circuit 3, and the other end is grounded. The high frequency coil antenna 2 is provided between the outer surface of the quartz tube 1 and the high frequency coil antenna 2.
A cylindrical permanent magnet 5 is arranged along the
Are configured to form a magnetic field substantially orthogonal to the direction of the high frequency current flowing from the high frequency power supply 4 to the high frequency coil antenna 2. In the operation of the illustrated apparatus thus configured, the permanent magnet 5 forms a magnetic flux line as shown by reference numeral 6 inside the quartz tube 1 and a large magnetic field distribution can be taken.
Due to the action of the induction electric field, a plasma 7 having a high density and a uniform distribution density from near the inner wall of the quartz tube 1 to the central portion thereof can be generated as shown in FIG. 1 (b). The magnetic field generated by the permanent magnet 5 does not have to be in a direction perpendicular to the high-frequency current flowing in the high-frequency coil antenna 2 exactly, and may be within ± 30 ° with respect to the orthogonal direction.
【0008】図2〜図4には本発明による高密度プラズ
マ生成装置の変形例を示し、図2に示す構成では円筒状
の永久磁石5は石英管1の外周に設けられたプラズマ生
成用の高周波コイルアンテナ2の外側に設けられてい
る。図3に示す変形例では石英管1の外周に設けられた
プラズマ生成用の高周波コイルアンテナ2の外側に、複
数の棒状の永久磁石8が設けられている。図4の変形例
においては、図3に示す棒状の永久磁石の代わりにU字
形の永久磁石9が高周波コイルアンテナ2を囲むように
配置されている。なお、図1の実施例においては一つの
筒状の永久磁石が用いられているが、代わりに図3に示
すような複数の棒状の永久磁石を用いることもできる。2 to 4 show modified examples of the high-density plasma generator according to the present invention. In the structure shown in FIG. 2, the cylindrical permanent magnet 5 is provided on the outer circumference of the quartz tube 1 for plasma generation. It is provided outside the high frequency coil antenna 2. In the modification shown in FIG. 3, a plurality of rod-shaped permanent magnets 8 are provided outside the high-frequency coil antenna 2 for plasma generation provided on the outer circumference of the quartz tube 1. In the modification of FIG. 4, a U-shaped permanent magnet 9 is arranged so as to surround the high frequency coil antenna 2 instead of the rod-shaped permanent magnet shown in FIG. Although one cylindrical permanent magnet is used in the embodiment shown in FIG. 1, a plurality of rod-shaped permanent magnets as shown in FIG. 3 may be used instead.
【0009】次に、図5及び図6を参照して本発明をメ
タル配線を行なう前のプレクリーニング処理装置に応用
した例について説明する。図5及び図6において、10は
エッチング処理室を画定している真空チャンバであり、
この真空チャンバ10の上部開口には、石英板11が密閉的
に取付けられている。この石英板11の外側には石英板11
と平行に一巻回のループを成す高周波ループアンテナ12
が配置され、この高周波ループアンテナ12はマッチング
回路3を介して高周波電源4に接続されている。高周波
ループアンテナ12の下側には図6に示すように多数の板
状の永久磁石13が高周波ループアンテナ12に流れる電流
に直交しかつ石英板11と平行にループ状に配置され、符
号14で示すような磁束線を形成する。また真空チャンバ
10内にはSiウエハSを支持する基板ホルダ15が配置さ
れ、この基板ホルダ15は基板バイアス用マッチング回路
16を介して基板バイアス用高周波電源17に接続され、そ
れにより基板ホルダ15に高周波バイアスが掛けられ、Si
ウエハSをプレクリーニングするようにしている。また
基板ホルダ15の周囲にはアースシールド18が設けられ、
また図5において符号19はアースシールドを表してい
る。このように構成したエッチング装置における生成プ
ラズマ密度を図7に従来装置と比較して示す。図7に示
すように本発明のような永久磁石を用いずに5巻回のル
ープアンテナの場合(a)及び1巻回のループアンテナ
の場合(b)と比較して図5及び図6に示す本発明よる
装置の場合(c)の場合には径方向に一様でしかも高密
度のプラズマが得られることが認められる。実際の実験
例としてウエハプロセスにおけるエッチングに応用した
場合について説明すると、真空チャンバ10内のガス圧を
0.1Pa 、(CHF3 +CO)の流量を100SCCM に保ち、
高周波ループアンテナ12に700W、基板Sに200Wを加えて
エッチングした時のSiO2 のエッチングレートは 800nm
/分が得られた。この場合8インチウエハでの分布は±
4%であった。また、ガス種を(BCl3 +Cl2 )に
変えて圧力0.08Pa、流量80SCCMに設定し、高周波ループ
アンテナ12に500W、基板Sに300Wを加えてエッチングし
た時のスパッタAl膜のエッチングレートは 500nm/分
が得られた。この場合8インチウエハでの分布は±3.2
%であった。Next, an example in which the present invention is applied to a pre-cleaning processing apparatus before metal wiring is described with reference to FIGS. 5 and 6. In FIGS. 5 and 6, 10 is a vacuum chamber defining an etching process chamber,
A quartz plate 11 is hermetically attached to the upper opening of the vacuum chamber 10. The quartz plate 11 is placed outside the quartz plate 11.
High-frequency loop antenna 12 forming a one-turn loop parallel to
The high frequency loop antenna 12 is connected to the high frequency power source 4 via the matching circuit 3. As shown in FIG. 6, a large number of plate-shaped permanent magnets 13 are arranged below the high frequency loop antenna 12 in a loop shape orthogonal to the current flowing through the high frequency loop antenna 12 and parallel to the quartz plate 11. Form the magnetic flux lines as shown. Also a vacuum chamber
A substrate holder 15 that supports the Si wafer S is arranged in the substrate 10. The substrate holder 15 is a substrate bias matching circuit.
It is connected to the high frequency power supply 17 for substrate bias via 16 so that the high frequency bias is applied to the substrate holder 15,
The wafer S is pre-cleaned. Further, a ground shield 18 is provided around the substrate holder 15,
Further, in FIG. 5, reference numeral 19 represents an earth shield. FIG. 7 shows the density of generated plasma in the etching apparatus configured as described above in comparison with the conventional apparatus. As shown in FIG. 7, in comparison with the case of a loop antenna of 5 turns without using a permanent magnet as in the present invention (a) and the case of a loop antenna of 1 turn (b), FIGS. In the case of the device according to the present invention shown in the case (c), it is recognized that plasma which is uniform in the radial direction and has a high density can be obtained. Explaining the case where it is applied to etching in a wafer process as an actual experimental example, the gas pressure in the vacuum chamber 10 is
Keep the flow rate of 0.1Pa and (CHF 3 + CO) at 100SCCM,
The etching rate of SiO 2 is 800 nm when 700 W is applied to the high frequency loop antenna 12 and 200 W is applied to the substrate S.
/ Min was obtained. In this case, the distribution on an 8-inch wafer is ±
It was 4%. The etching rate of the sputtered Al film is 500 nm when the gas species is changed to (BCl 3 + Cl 2 ) and the pressure is set to 0.08 Pa and the flow rate is set to 80 SCCM and 500 W is applied to the high frequency loop antenna 12 and 300 W to the substrate S. / Min was obtained. In this case, the distribution on an 8-inch wafer is ± 3.2
%Met.
【0010】図8には、大面積のP−CVDまたはエッ
チング装置として実施した例が示され、20は処理室を画
定している真空チャンバであり、この真空チャンバ20の
上部開口には、石英板21が密閉的に取付けられている。
この石英板21の外側には、それぞれ一つのループから成
る三つの高周波ループアンテナ22が同一平面状に同心状
に配置され、各高周波ループアンテナ22はそれぞれ別個
のマッチング回路3を介して別個の高周波電源4に接続
されている。各高周波ループアンテナ22の下側には図6
に示す構成と同様にして多数の永久磁石23が三つのルー
プを形成するように配置され、符号24で示すような磁束
線を形成する。また真空チャンバ20内には基板Sを支持
する基板ホルダ25が配置され、この基板ホルダ25は基板
バイアス用マッチング回路26を介して基板バイアス用高
周波電源27に接続されている。このように構成した装置
を用いて 500mm□の基板S上にa−Si膜をP−CVDで
成膜したところ、それぞれの高周波ループアンテナ22に
1.5kW 、500W、200Wのパワーを印加し、真空チャンバ20
内の圧力を(SiH4 +H2 +He)10Paとし、その流量を
500SCCM に設定した場合、 0.3μm/分の析出速度で±
7%の分布が得られた。FIG. 8 shows an example implemented as a large-area P-CVD or etching apparatus, 20 is a vacuum chamber defining a processing chamber, and the upper opening of this vacuum chamber 20 is made of quartz. A plate 21 is hermetically attached.
Outside the quartz plate 21, three high-frequency loop antennas 22 each consisting of one loop are arranged concentrically in the same plane, and each high-frequency loop antenna 22 passes through a separate matching circuit 3 and separate high-frequency waves. It is connected to the power supply 4. Below each high frequency loop antenna 22 is shown in FIG.
A large number of permanent magnets 23 are arranged so as to form three loops in the same manner as the structure shown in FIG. A substrate holder 25 that supports the substrate S is arranged in the vacuum chamber 20, and the substrate holder 25 is connected to a substrate bias high frequency power supply 27 via a substrate bias matching circuit 26. When the a-Si film was formed by P-CVD on the substrate S of 500 mm □ using the apparatus configured as described above,
Apply 1.5kW, 500W, 200W power, vacuum chamber 20
The internal pressure is (SiH 4 + H 2 + He) 10Pa, and the flow rate is
When set to 500SCCM, the deposition rate is 0.3μm / min ±
A distribution of 7% was obtained.
【0011】図9には本発明をスパッタ装置に応用した
実施例を示し、図面において30は真空チャンバで、開口
を備えた上壁部材30a と底壁部材30b とこれら壁部材間
に密封装着された側壁を成す石英管31とで画定されてい
る。石英管31の外周には一つのループから成る高周波ル
ープアンテナ32が配置され、この高周波ループアンテナ
32はマッチング回路3を介して高周波電源4に接続され
ている。石英管31の外面と高周波ループアンテナ32との
間には図示したように円筒状の永久磁石または多数の棒
状の永久磁石33がループ状に配置され、石英管31の近傍
に図示したように磁束線34を形成するようにされてい
る。真空チャンバ30内には基板Sを支持する基板ホルダ
35が配置され、この基板ホルダ35は基板バイアス用マッ
チング回路36を介して基板バイアス用高周波電源37に接
続されている。また基板ホルダ35に対向して上壁部材30
a の開口にはターゲットTの装着されるカソード38が絶
縁体39を介して密封的に装着されている。カソード38は
マッチング回路40a 介してターゲット用高周波電源40b
に接続されている。FIG. 9 shows an embodiment in which the present invention is applied to a sputtering apparatus. In the drawing, 30 is a vacuum chamber, which is hermetically mounted between a top wall member 30a and a bottom wall member 30b having openings and these wall members. And a quartz tube 31 forming a side wall. A high frequency loop antenna 32 consisting of one loop is arranged on the outer circumference of the quartz tube 31.
Reference numeral 32 is connected to the high frequency power source 4 via the matching circuit 3. Between the outer surface of the quartz tube 31 and the high-frequency loop antenna 32, a cylindrical permanent magnet or a large number of rod-shaped permanent magnets 33 are arranged in a loop shape as shown in the figure, and a magnetic flux as shown in the figure is provided in the vicinity of the quartz tube 31. It is adapted to form line 34. A substrate holder for supporting the substrate S in the vacuum chamber 30.
35 is arranged, and the substrate holder 35 is connected to a substrate bias high frequency power supply 37 via a substrate bias matching circuit 36. Further, the upper wall member 30 is opposed to the substrate holder 35.
A cathode 38 to which the target T is attached is hermetically attached to the opening of a through an insulator 39. Cathode 38 is high frequency power supply 40b for target via matching circuit 40a
It is connected to the.
【0012】さらに、本発明をイオン源に応用した例を
図10に示す。図10に示す装置においては、石英管41の外
周に高周波ループアンテナ42が配置され、この高周波ル
ープアンテナ42はマッチング回路3を介して高周波電源
4に接続されている。また石英管41の外面と高周波ルー
プアンテナ42との間には図示したように円筒状の永久磁
石または多数の棒状の永久磁石43がループ状に配置さ
れ、石英管41の近傍に図示したように磁束線44を形成す
るようにされている。石英管41の一端(図面では上端)
は密封されており、そして他端には第1マルチアパーチ
ャ電極45、絶縁体46、第2マルチアパーチャ電極47、絶
縁体48及びフランジ49が順に密封的に装着されている。
第1マルチアパーチャ電極45及び第2マルチアパーチャ
電極47はそれぞれ別個の直流電源50、51に接続されてい
る。このように構成されたイオン源ではイオン流は矢印
52で示すように引出される。Further, FIG. 10 shows an example in which the present invention is applied to an ion source. In the apparatus shown in FIG. 10, a high frequency loop antenna 42 is arranged around the quartz tube 41, and the high frequency loop antenna 42 is connected to the high frequency power supply 4 via the matching circuit 3. Between the outer surface of the quartz tube 41 and the high frequency loop antenna 42, a cylindrical permanent magnet or a large number of rod-shaped permanent magnets 43 are arranged in a loop shape as shown in the figure, and as shown in the figure near the quartz tube 41. The magnetic flux lines 44 are formed. One end of quartz tube 41 (upper end in the drawing)
Is hermetically sealed, and at the other end, a first multi-aperture electrode 45, an insulator 46, a second multi-aperture electrode 47, an insulator 48 and a flange 49 are hermetically mounted in that order.
The first multi-aperture electrode 45 and the second multi-aperture electrode 47 are connected to separate DC power supplies 50 and 51, respectively. In the ion source configured in this way, the ion flow
Withdrawn as shown at 52.
【0013】[0013]
【発明の効果】以上説明してきたように、本発明による
高密度プラズマ生成装置においては、高周波アンテナに
流れる高周波電流とほぼ直交する方向の磁場を発生する
永久磁石を設けているので、磁場向配を大きく取ること
ができるようになり、それにより誘導電場の働きて真空
チャンバのプラズマ生成領域の周辺部近くに高密度のプ
ラズマを生成することができ、その結果、周囲方向の分
布密度が均一な高密度プラズマを得ることができるよう
になる。従って、高速で高い均一性をもって大面積を処
理することの要求されるプロセス装置のプラズマソース
として極めて有用な装置を提供することができるように
なる。As described above, in the high-density plasma generator according to the present invention, since the permanent magnet for generating the magnetic field in the direction substantially orthogonal to the high frequency current flowing in the high frequency antenna is provided, the magnetic field distribution It is possible to generate a high density plasma near the periphery of the plasma generation region of the vacuum chamber by the action of the induction electric field, and as a result, the distribution density in the circumferential direction is uniform. High-density plasma can be obtained. Therefore, it becomes possible to provide an extremely useful apparatus as a plasma source for a process apparatus that requires processing a large area at high speed and with high uniformity.
【図1】 (a) は本発明の一実施例による高密度プラズ
マ生成装置の要部を示す概略部分線縦断面図。(b) は
(a) に示す装置で得られるプラズマ密度分布を示すグラ
フ。FIG. 1A is a schematic partial line longitudinal cross-sectional view showing a main part of a high-density plasma generator according to an embodiment of the present invention. (b) is
The graph which shows the plasma density distribution obtained by the apparatus shown in (a).
【図2】 (a) は図1に示す高密度プラズマ生成装置の
変形実施例を示す要部の概略部分線縦断面図。(b) は
(a) に示す装置の要部の概略部分端面図。FIG. 2 (a) is a schematic partial line longitudinal cross-sectional view of a main part showing a modified embodiment of the high-density plasma generation device shown in FIG. (b) is
FIG. 3 is a schematic partial end view of a main part of the device shown in FIG.
【図3】 本発明の別の変形実施例を示す要部の概略部
分端面図。FIG. 3 is a schematic partial end view of a main portion showing another modified embodiment of the present invention.
【図4】 本発明のさらに別の変形実施例を示す要部の
概略部分線縦断面図。FIG. 4 is a schematic partial line longitudinal cross-sectional view of a main part showing still another modified embodiment of the present invention.
【図5】 本発明をメタル配線を行なう前のプレクリー
ニング処理装置に応用した例を示す概略部分線縦断面
図。FIG. 5 is a schematic partial vertical cross-sectional view showing an example in which the present invention is applied to a pre-cleaning processing apparatus before performing metal wiring.
【図6】 図5に示す装置の要部の概略平面図。6 is a schematic plan view of a main part of the device shown in FIG.
【図7】 図5に示す装置で得られるプラズマ密度分布
を従来装置によるものと比較して示すグラフ。7 is a graph showing the plasma density distribution obtained by the device shown in FIG. 5 in comparison with that obtained by the conventional device.
【図8】 本発明を大面積のP−CVDまたはエッチン
グ装置に応用した例を示す概略部分線縦断面図。FIG. 8 is a schematic partial line vertical cross-sectional view showing an example in which the present invention is applied to a large-area P-CVD or etching apparatus.
【図9】 本発明をスパッタ装置に応用した例を示す概
略部分線縦断面図。FIG. 9 is a schematic partial line vertical cross-sectional view showing an example in which the present invention is applied to a sputtering apparatus.
【図10】本発明をイオン源に応用した例を示す概略部
分線縦断面図。FIG. 10 is a schematic partial line longitudinal cross-sectional view showing an example in which the present invention is applied to an ion source.
【図11】(a) は従来の高周波誘導プラズマ生成装置の
一例を示す概略部分線縦断面図。(b) は(a) に示す装置
で得られるプラズマ密度分布を示すグラフ。FIG. 11A is a schematic partial line vertical cross-sectional view showing an example of a conventional high-frequency induction plasma generation device. (b) is a graph showing the plasma density distribution obtained by the device shown in (a).
【図12】(a) は従来の高周波誘導プラズマ生成装置の
別の例を示す概略部分線縦断面図。(b) は(a) に示す装
置で得られるプラズマ密度分布を示すグラフ。FIG. 12 (a) is a schematic partial line longitudinal sectional view showing another example of a conventional high-frequency induction plasma generation device. (b) is a graph showing the plasma density distribution obtained by the device shown in (a).
【図13】(a) は平面ループアンテナを用いた従来のプ
ラズマ生成装置の一例を示す概略部分線縦断面図。(b)
は(a) に示す装置で得られるプラズマ密度分布を示すグ
ラフ。FIG. 13A is a schematic partial line vertical cross-sectional view showing an example of a conventional plasma generation device using a planar loop antenna. (b)
Is a graph showing the plasma density distribution obtained by the device shown in (a).
1:石英管 2:プラズマ生成用の高周波コイルアンテナ 3:マッチング回路 4:高周波電源 5:永久磁石 6:磁束線 7:プラズマ 1: Quartz tube 2: High frequency coil antenna for plasma generation 3: Matching circuit 4: High frequency power supply 5: Permanent magnet 6: Magnetic flux line 7: Plasma
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 27/18 37/08 37/305 A 9172−5E 37/32 9172−5E H01L 21/3065 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01J 27/18 37/08 37/305 A 9172-5E 37/32 9172-5E H01L 21/3065
Claims (11)
する誘電体部材の外側に高周波電流を流すことのできる
少なくとも一つの高周波アンテナを設け、この高周波ア
ンテナに流れる高周波電流とほぼ直交する方向の磁場を
発生する少なくとも一つの永久磁石を高周波アンテナに
沿って設けたことを特徴とする高密度プラズマ生成装
置。1. At least one high-frequency antenna capable of flowing a high-frequency current is provided outside a dielectric member that defines a plasma generation region of a vacuum chamber, and a magnetic field in a direction substantially orthogonal to the high-frequency current flowing through the high-frequency antenna is provided. A high-density plasma generator characterized in that at least one permanent magnet to be generated is provided along a high-frequency antenna.
する誘電体部材が筒状を成し、その外周にコイル状の高
周波アンテナが配置されている請求項1に記載の高密度
プラズマ生成装置。2. The high-density plasma generator according to claim 1, wherein the dielectric member that defines the plasma generation region of the vacuum chamber has a cylindrical shape, and a coil-shaped high-frequency antenna is arranged on the outer periphery thereof.
ンテナとの間に位置している請求項2に記載の高密度プ
ラズマ生成装置。3. The high density plasma generator according to claim 2, wherein the permanent magnet is located between the cylindrical dielectric member and the high frequency antenna.
けられた高周波アンテナの外側に位置している請求項2
に記載の高密度プラズマ生成装置。4. The permanent magnet is located outside the high frequency antenna provided on the outer periphery of the cylindrical dielectric member.
The high-density plasma generator described in.
する誘電体部材が板状を成し、その外面上に少なくとも
一つのループ状の高周波アンテナが配置されている請求
項1に記載の高密度プラズマ生成装置。5. The high-density plasma according to claim 1, wherein the dielectric member defining the plasma generation region of the vacuum chamber has a plate shape, and at least one loop-shaped high frequency antenna is arranged on the outer surface of the dielectric member. Generator.
ンテナとの間に位置している請求項5に記載の高密度プ
ラズマ生成装置。6. The high-density plasma generator according to claim 5, wherein the permanent magnet is located between the plate-shaped dielectric member and the high frequency antenna.
設けられた高周波アンテナの外側に位置している請求項
5に記載の高密度プラズマ生成装置。7. The high-density plasma generator according to claim 5, wherein the permanent magnet is located outside the high-frequency antenna provided on the outer surface of the plate-shaped dielectric member.
周波アンテナに流れる高周波電流と直交する方向に対し
て±30°以内の方向をもつように構成した請求項1に記
載の高密度プラズマ生成装置。8. The high-density plasma generator according to claim 1, wherein the magnetic field generated by each permanent magnet has a direction within ± 30 ° with respect to the direction orthogonal to the high-frequency current flowing in the high-frequency antenna. .
である請求項1に記載の高密度プラズマ生成装置。9. The pressure in the vacuum chamber is 100 Pa to 0.01 Pa.
The high density plasma generator according to claim 1.
て複数の高周波アンテナを設け、各高周波アンテナを独
立した高周波電源に接続した請求項1に記載の高密度プ
ラズマ生成装置。10. The high-density plasma generation apparatus according to claim 1, wherein a plurality of high-frequency antennas are provided along the plasma generation region of the vacuum chamber, and each high-frequency antenna is connected to an independent high-frequency power source.
周波アンテナとの距離或いは永久磁石の強度を均一なプ
ラズマ分布が得られるように設定した請求項1に記載の
高密度プラズマ生成装置。11. The high density plasma generator according to claim 1, wherein the pitch of the arrangement of the permanent magnets, the distance between the permanent magnets and the high frequency antenna, or the strength of the permanent magnets is set so as to obtain a uniform plasma distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30439693A JP3188353B2 (en) | 1993-12-03 | 1993-12-03 | High density plasma generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30439693A JP3188353B2 (en) | 1993-12-03 | 1993-12-03 | High density plasma generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07161488A true JPH07161488A (en) | 1995-06-23 |
JP3188353B2 JP3188353B2 (en) | 2001-07-16 |
Family
ID=17932517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30439693A Expired - Lifetime JP3188353B2 (en) | 1993-12-03 | 1993-12-03 | High density plasma generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3188353B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006351843A (en) * | 2005-06-16 | 2006-12-28 | Ulvac Japan Ltd | Vacuum treatment equipment and manufacturing method for tunnel junction element |
JP2010040777A (en) * | 2008-08-05 | 2010-02-18 | Nec Corp | Method of manufacturing semiconductor device, and plasma etching device |
JP2012204582A (en) * | 2011-03-25 | 2012-10-22 | Tokyo Electron Ltd | Plasma processing apparatus |
JPWO2020225920A1 (en) * | 2019-05-09 | 2021-05-20 | Sppテクノロジーズ株式会社 | Plasma ignition method and plasma generator |
-
1993
- 1993-12-03 JP JP30439693A patent/JP3188353B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006351843A (en) * | 2005-06-16 | 2006-12-28 | Ulvac Japan Ltd | Vacuum treatment equipment and manufacturing method for tunnel junction element |
JP2010040777A (en) * | 2008-08-05 | 2010-02-18 | Nec Corp | Method of manufacturing semiconductor device, and plasma etching device |
JP2012204582A (en) * | 2011-03-25 | 2012-10-22 | Tokyo Electron Ltd | Plasma processing apparatus |
US9236226B2 (en) | 2011-03-25 | 2016-01-12 | Tokyo Electron Limited | Plasma processing apparatus |
JPWO2020225920A1 (en) * | 2019-05-09 | 2021-05-20 | Sppテクノロジーズ株式会社 | Plasma ignition method and plasma generator |
Also Published As
Publication number | Publication date |
---|---|
JP3188353B2 (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5770098A (en) | Etching process | |
KR100659828B1 (en) | Method and apparatus for ionized physical vapor deposition | |
US5767628A (en) | Helicon plasma processing tool utilizing a ferromagnetic induction coil with an internal cooling channel | |
JP4896164B2 (en) | Plasma processing equipment | |
US20060254519A1 (en) | Locally-efficient inductive plasma coupling for plasma processing system | |
JPH02235332A (en) | Plasma processor | |
JP2000269196A (en) | Method and apparatus for plasma treatment | |
US6210539B1 (en) | Method and apparatus for producing a uniform density plasma above a substrate | |
JPH11135438A (en) | Semiconductor plasma processing apparatus | |
JPH06224154A (en) | Plasma processing apparatus | |
JPH08316210A (en) | Plasma treatment method and device | |
US5810932A (en) | Plasma generating apparatus used for fabrication of semiconductor device | |
JP3188353B2 (en) | High density plasma generator | |
JP4283360B2 (en) | Plasma processing equipment | |
US7481904B2 (en) | Plasma device | |
JP3417328B2 (en) | Plasma processing method and apparatus | |
JPH07263192A (en) | Etching device | |
JP3220528B2 (en) | Vacuum processing equipment | |
KR100603286B1 (en) | Antenna having multiple central axix and inductively coupled plasma generating apparatus applying the same | |
JP4223143B2 (en) | Plasma processing equipment | |
JP2003318165A (en) | Magnet arrangement making point-cusp magnetic field for plasma generation and plasma processing system | |
JP3455616B2 (en) | Etching equipment | |
JPH025413A (en) | Plasma processor | |
JPH06120170A (en) | Plasma etching treating method | |
JP2668915B2 (en) | Plasma processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |