JPH07161338A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPH07161338A
JPH07161338A JP30567993A JP30567993A JPH07161338A JP H07161338 A JPH07161338 A JP H07161338A JP 30567993 A JP30567993 A JP 30567993A JP 30567993 A JP30567993 A JP 30567993A JP H07161338 A JPH07161338 A JP H07161338A
Authority
JP
Japan
Prior art keywords
phosphor
layer
fluorescent lamp
particle size
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30567993A
Other languages
Japanese (ja)
Inventor
Yoshizo Urata
好造 浦田
Junichi Uchida
潤一 内田
Koji Nomura
幸二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP30567993A priority Critical patent/JPH07161338A/en
Publication of JPH07161338A publication Critical patent/JPH07161338A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To reduce the usage of expensive rare earth phosphor. CONSTITUTION:In a fluorescent lamp, in which a light-transmitting ultraviolet ray reflecting layer is formed between a glass bulb 1 and a phosphor layer 2, the ultraviolet ray reflecting layer is formed of magnesium oxide having average particle size of 0.5-5mum, and the phosphor layer is formed of rare earth phosphor having average particle diameter of 1.5-4mum. The ultraviolet ray reflecting layer is coated by 0.7-5mg/cm<2> in thickness and the phosphor layer by 0.5-3mg/cm<2> in thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は希土類蛍光体を用いた
蛍光ランプ、特にガラスバルブ内面と蛍光体層との間に
紫外線反射層を介在させ、高価な希土類蛍光体の使用量
を大幅に削減した高効率、高演色性の蛍光ランプに関す
る。
BACKGROUND OF THE INVENTION This invention relates to a fluorescent lamp using a rare earth fluorescent material, and in particular, an ultraviolet reflecting layer is interposed between the inner surface of the glass bulb and the fluorescent material layer to greatly reduce the amount of expensive rare earth fluorescent material used. The present invention relates to a highly efficient and high color rendering fluorescent lamp.

【0002】[0002]

【従来の技術】近時、生活環境の快適さ、目に優しい光
源が追求され、高価ではあるが、高効率、高演色性が得
られる希土類蛍光体を用いた三波長形蛍光ランプが実用
化されている。
2. Description of the Related Art Recently, in pursuit of a comfortable living environment and a light source that is easy on the eyes, a three-wavelength fluorescent lamp using a rare-earth fluorescent material, which is expensive but high in efficiency and color rendering, has been put into practical use. Has been done.

【0003】図1はこの三波長形蛍光ランプの概略構成
を示すものであり、1はガラスバルブであって、その内
面に蛍光体層2が形成されており、ガラスバルブ1内に
は図示しないが、水銀や希ガスが封入され、両端部に電
極3が封着された通常の直管形蛍光ランプである。
FIG. 1 shows a schematic structure of this three-wavelength type fluorescent lamp. Reference numeral 1 denotes a glass bulb having a phosphor layer 2 formed on the inner surface thereof and not shown in the glass bulb 1. Is a normal straight tube fluorescent lamp in which mercury or a rare gas is sealed and the electrodes 3 are sealed at both ends.

【0004】上記蛍光体層2には、例えば480nm付
近に発光ピークを有するユーロピウム付活クロロリン酸
カルシウムバリウムマグネシウム蛍光体、540nm付
近に発光ピークを有するセリウム、テルビウム付活リン
酸ランタン蛍光体、610nm付近に発光ピークを有す
るユーロピウム付活酸化イットリウム蛍光体が使用され
ている。
In the phosphor layer 2, for example, europium-activated calcium barium magnesium chlorophosphate phosphor having an emission peak near 480 nm, cerium having an emission peak near 540 nm, terbium-activated lanthanum phosphate phosphor, and around 610 nm. A europium-activated yttrium oxide phosphor having an emission peak has been used.

【0005】このように三波長形蛍光ランプは希土類蛍
光体が狭帯域発光であり、使用する三色の蛍光体の配合
比を変えることで、所望の色度点のもが容易に得られる
上、従来一般に使用されているハロリン酸カルシウム蛍
光体を用いた蛍光ランプ(以下通常の蛍光ランプと称
す)に比べて、高効率、高演色性でかつ光束減衰や変色
の少ない特性が得られるため、近時一般家庭用や工場照
明など各分野で使用されてきている。
As described above, in the three-wavelength fluorescent lamp, the rare earth phosphor emits a narrow band light, and the desired chromaticity point can be easily obtained by changing the compounding ratio of the phosphors of the three colors used. Compared with fluorescent lamps that use calcium halophosphate phosphors that have been commonly used in the past (hereinafter referred to as ordinary fluorescent lamps), high efficiency, high color rendering, and characteristics with less luminous flux attenuation and discoloration can be obtained. It has been used in various fields such as general household use and factory lighting.

【0006】ところで、このように優れた特徴を有する
三波長形蛍光ランプは、希土類蛍光体がハロリン酸カル
シウム蛍光体に比べて極めて高価である為、製品単価が
高くつき、上記三波長形蛍光ランプの普及を妨げる一大
要因となっていた。
By the way, in the three-wavelength fluorescent lamp having such excellent characteristics, since the rare earth phosphor is extremely expensive as compared with the calcium halophosphate phosphor, the unit price of the product is high and the three-wavelength fluorescent lamp of the above It was a major factor that hindered its spread.

【0007】このため、高価な蛍光体とそれより廉価な
蛍光体とを混合して混合蛍光体層を形成したり、高価な
蛍光体層と廉価な蛍光体層を積層して、高価な蛍光体の
使用量を削減し、ランプコストを低減する工夫がなされ
ている。
Therefore, an expensive fluorescent substance and an inexpensive fluorescent substance are mixed to form a mixed fluorescent substance layer, or an expensive fluorescent substance layer and an inexpensive fluorescent substance layer are stacked to form an expensive fluorescent substance. Measures have been taken to reduce the amount of body use and lamp costs.

【0008】例えば、特公昭53−867号公報にはガ
ラスバルブの内面に高価な蛍光体層と廉価な蛍光体層を
積層したものが開示されている。しかしながら、この方
法は混合蛍光体層を単一層で形成するものに比べると、
明るく、高価な蛍光体の使用量が少なくてすみ、かなり
よい経済性が得られるものの、個別の各層が協同して所
望の色度点や光出力を発生するものである為、その色度
点や全光束、演色性の管理が難しいといった問題点があ
った。
For example, Japanese Patent Publication No. 53-867 discloses a glass bulb in which an expensive phosphor layer and an inexpensive phosphor layer are laminated on the inner surface of the glass bulb. However, compared with the method in which the mixed phosphor layer is formed by a single layer,
It is bright and uses a small amount of expensive phosphor, and although it is quite economical, the individual chromaticity points work together to produce the desired chromaticity point and light output, so that chromaticity point There is a problem that it is difficult to control the total luminous flux and color rendering.

【0009】そこで、本出願人は特開昭63−2944
1号公報において、ガラスバルブの内面に透光性を有す
る紫外線反射層と蛍光体層を順次に形成した紫外線反射
形の蛍光ランプにおいて、蛍光体層に粒径が1.5〜
4.0μmの小粒径の希土類蛍光体を適用し、希土類蛍
光体の使用量を大幅に削減するようにした紫外線反射形
の三波長形蛍光ランプを出願した。
Therefore, the present applicant has filed Japanese Patent Application Laid-Open No. 63-2944.
According to Japanese Patent Laid-Open No. 1-58, in a UV-reflecting fluorescent lamp in which a light-transmitting UV-reflecting layer and a phosphor layer are sequentially formed on the inner surface of a glass bulb, the phosphor layer has a particle size of 1.5
An application was made for an ultraviolet-reflecting three-wavelength fluorescent lamp in which a rare-earth phosphor having a small particle size of 4.0 μm was applied to significantly reduce the amount of rare-earth phosphor used.

【0010】紫外線反射形蛍光ランプは蛍光体層を透過
し蛍光体の励起に利用されなかった紫外線を紫外線反射
層で反射させ、再度蛍光体層を励起するため、紫外線の
利用効率が向上し、ランプの発光効率が改善される。
In the ultraviolet reflective fluorescent lamp, ultraviolet rays that have passed through the phosphor layer and have not been used to excite the phosphor are reflected by the ultraviolet reflective layer and excite the phosphor layer again, so that the utilization efficiency of ultraviolet rays is improved. The luminous efficiency of the lamp is improved.

【0011】上記紫外線反射形の三波長形蛍光ランプは
希土類蛍光体の粒径を従来使用されているものより小粒
径の1.5〜4μmに設定することにより同一塗布重量
でも、発光層が緻密に形成されるので、光透過性が低下
する。従って、蛍光体層の塗布重量を低下させても、蛍
光ランプの点灯時、バルブ端部の電極やステムが透視さ
れる、外観上の欠点(膜薄外観)が改善できる。そこ
で、希土類蛍光体の使用量を光束の改善に見合う範囲内
において減少させ、高価な希土類蛍光体の使用量を紫外
線反射層を形成しない場合に対して大略40%も低減す
るようにしたものである。
In the ultraviolet reflecting type three-wavelength type fluorescent lamp, the particle size of the rare earth phosphor is set to 1.5 to 4 .mu.m, which is smaller than the particle size used conventionally, so that the light emitting layer has a uniform coating weight. Since it is formed densely, the light transmittance is reduced. Therefore, even if the coating weight of the phosphor layer is reduced, it is possible to improve the defect in appearance (thin film appearance) in which the electrode or stem at the bulb end is seen through when the fluorescent lamp is turned on. Therefore, the usage amount of the rare earth phosphor is reduced within a range commensurate with the improvement of the luminous flux, and the usage amount of the expensive rare earth phosphor is reduced by about 40% as compared with the case where the ultraviolet reflection layer is not formed. is there.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うに蛍光体使用量を40%も削減可能に構成した上記三
波長形蛍光ランプは、希土類蛍光体の価格が一般的なハ
ロリン酸カルシウム蛍光体に比べて約20倍と極めて高
価であり、三波長形蛍光ランプを普及するには更なるコ
スト低減が要請されており、若干の照度低下を許容して
でも、高価な希土類蛍光体の使用量のさらなる削減が至
上命題となっていた。
However, the above-mentioned three-wavelength fluorescent lamp constructed so that the amount of phosphor used can be reduced by 40% in this way is less expensive than the calcium halophosphate phosphor in which the price of rare earth phosphor is general. It is extremely expensive, about 20 times, and further cost reduction is required to spread the three-wavelength fluorescent lamp. Even if a slight reduction in illuminance is allowed, the amount of expensive rare earth phosphor used will be further increased. Reduction was a top priority.

【0013】そこで、本発明者らは紫外線反射層を厚膜
に形成することにより、上記三波長形蛍光ランプの希土
類蛍光体の使用量が削減できないかと考えた。即ち、蛍
光体層の塗布重量を削減することにより生じる電極が透
視される薄膜外観不良を紫外線反射層を厚膜に形成する
ことにより解消すると共に、蛍光体層の塗布重量の削減
により生じると予想される光量低下を紫外線反射層の膜
厚形成による反射特性の向上により対処させようとする
ものである。
Therefore, the present inventors wondered if the amount of rare earth phosphor used in the above-mentioned three-wavelength fluorescent lamp could be reduced by forming the ultraviolet reflection layer in a thick film. That is, it is expected that the thin film appearance defect caused by the reduction of the coating weight of the phosphor layer, through which the electrode is seen, will be eliminated by forming the ultraviolet reflective layer in a thick film, and that it will be caused by the reduction of the coating weight of the phosphor layer. It is intended to cope with the decrease in the amount of light caused by improving the reflection characteristics by forming the film thickness of the ultraviolet reflection layer.

【0014】しかしながら、従来の三波長形蛍光ランプ
においては紫外線反射層で蛍光ランプのバルブ端の電極
やステムの透視を防止させるといった考え方は全くな
く、紫外線を反射させ、可視光は専らこれを通過させる
といった考え方であり、従って、紫外線反射層は極めて
薄い透光性皮膜に形成され、紫外線反射材は粒径が30
〜50mμmといった超微粒子のアルミナや酸化マグネ
シウムが用いられていた。
However, in the conventional three-wavelength fluorescent lamp, there is no idea that the UV reflection layer prevents the see-through of the electrode or the stem at the bulb end of the fluorescent lamp, and the UV is reflected, and the visible light passes through it exclusively. Therefore, the ultraviolet reflection layer is formed as an extremely thin translucent film, and the ultraviolet reflection material has a particle size of 30.
Ultrafine particles of alumina or magnesium oxide having a particle size of ˜50 mμm have been used.

【0015】このため、紫外線反射層を厚膜に塗膜する
為には、超微粒子の反射材を高濃度の分散液に調製する
か、2回以上塗布する必要があるが、前者は分散液が凝
集し易く、塗布作業が極めて困難であった。また、後者
は塗布工程が煩雑になる問題があった。
Therefore, in order to coat the ultraviolet reflective layer in a thick film, it is necessary to prepare an ultrafine particle reflective material in a high-concentration dispersion or to apply it twice or more. Easily aggregated, and the coating operation was extremely difficult. Further, the latter has a problem that the coating process is complicated.

【0016】従って、本発明は上記三波長形蛍光ランプ
の紫外線反射層を厚膜に形成し、点灯時にバルブ端の電
極やステムが透視される膜薄外観不良の問題を解決し、
且つランプ照度を実用範囲内に維持して、高価な希土類
蛍光体の使用量が可及的に削減できる三波長形蛍光ラン
プを提供することを目的としている。
Therefore, the present invention solves the problem of poor appearance of the thin film in which the electrode or stem at the bulb end is seen through when the ultraviolet reflective layer of the above-mentioned three-wavelength fluorescent lamp is formed as a thick film.
Moreover, it is an object of the present invention to provide a three-wavelength type fluorescent lamp in which the illuminance of the lamp is maintained within a practical range and the amount of expensive rare earth phosphor used can be reduced as much as possible.

【0017】[0017]

【問題を解決するための手段】このため、本発明の蛍光
ランプはガラスバルブの内面に透光性を有する紫外線反
射層、蛍光体層を順次に形成した蛍光ランプにおいて、
前記紫外線反射層は平均粒径が0.5〜5μmの酸化マ
グネシウム、蛍光体層が平均粒径が1.5〜4μmの希
土類蛍光体からなり、上記紫外線反射層が0.7〜5m
g/cm2、蛍光体層が0.5〜3mg/cm2であるこ
とを特徴としている。
Therefore, the fluorescent lamp of the present invention is a fluorescent lamp in which a transparent ultraviolet reflecting layer and a phosphor layer are sequentially formed on the inner surface of a glass bulb.
The ultraviolet reflection layer is made of magnesium oxide having an average particle size of 0.5 to 5 μm, the phosphor layer is made of a rare earth phosphor having an average particle size of 1.5 to 4 μm, and the ultraviolet reflection layer is made to be 0.7 to 5 m.
g / cm 2 , and the phosphor layer is 0.5 to 3 mg / cm 2 .

【0018】[0018]

【作用】紫外線反射層は従来よりも粒径を大きくした平
均粒径0.5〜5μmの酸化マグネシウムを塗布重量が
0.7〜5mg/cm2の厚膜に塗膜して形成するか
ら、紫外線反射層の光透過性が低下し、この光透過性が
低下した紫外線反射層と、平均粒径が1.5〜4μmの
小粒径の蛍光体で光透過性を抑制して形成された蛍光体
層とにより、点灯時の電極やステムの透視が防止され、
蛍光体の塗布重量を削減することができる。また、紫外
線反射層を厚膜に形成するから、よりよい紫外線の反射
特性が得られ、蛍光体塗布重量の削減による光束の減少
がかなり防止され、明るさ低下を実用範囲内に留め、蛍
光体の使用量を可及的に削減することができる。また、
酸化マグネシウムの粒径を0.5μm以上と従来の反射
材より大きいものに設定したから、分散液が凝集するな
どの問題がなく、塗布作業が極めて簡単にできる。ま
た、酸化マグネシウムの粒径を5μm以下に設定したか
ら、膜強度の高いものが得られ、ランプ製造工程で蛍光
膜剥がれのない外観の良好な蛍光ランプが得られる。
The ultraviolet reflecting layer is formed by coating magnesium oxide having an average particle size of 0.5 to 5 μm, which has a larger particle size than before, on a thick film having a coating weight of 0.7 to 5 mg / cm 2 . The light-transmitting property of the UV-reflecting layer is lowered, and the UV-reflecting layer having the lowered light-transmitting property and a phosphor having a small particle size with an average particle size of 1.5 to 4 μm are used to suppress the light-transmitting property. The phosphor layer prevents the see-through of electrodes and stems during lighting,
The coating weight of the phosphor can be reduced. In addition, since the UV reflective layer is formed in a thick film, better UV reflective properties are obtained, the reduction of the luminous flux due to the reduction of the coating weight of the phosphor is considerably prevented, and the decrease in brightness is kept within the practical range. It is possible to reduce the usage amount of. Also,
Since the particle size of magnesium oxide is set to 0.5 μm or more, which is larger than that of the conventional reflecting material, there is no problem such as aggregation of the dispersion liquid, and the coating operation can be extremely simple. Further, since the particle size of magnesium oxide is set to 5 μm or less, a fluorescent lamp having a high film strength can be obtained, and a fluorescent lamp having a good appearance without peeling of the fluorescent film in the lamp manufacturing process can be obtained.

【0019】[0019]

【実施例】まず、紫外線反射層を形成する紫外線反射材
を公知の反射材の内から特に三波長形蛍光ランプに好適
するものを次のような紫外線反射材の選定実験により選
出した。
EXAMPLES First, an ultraviolet reflecting material for forming an ultraviolet reflecting layer was selected from known reflecting materials, particularly one suitable for a three-wavelength fluorescent lamp by the following experiment for selecting an ultraviolet reflecting material.

【0020】即ち、紫外線反射材料として、酸化アルミ
ニウム、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸
化マグネシウムを取上げ、電極やステムが透視されない
外観が得られるようにそれぞれ塗布液を調合して2〜3
mg/cm2紫外線反射層を形成した。そして、これら
の紫外線反射層上に蛍光体層を塗布して20Wの直管形
蛍光ランプを製造し、点灯時にバルブ端の電極やステム
が透視されない厚膜外観を確認すると共に、三波長形蛍
光ランプの特性規格に要求されている100H点灯後の
全光束、演色性評価指数を測定し、JIS規格との整合
性について評価した。更に、点灯中の色ずれについても
評価した。尚、比較サンプルとして、紫外線反射材料に
上記特開昭63−29441で開示された50mμmの
超微粒子アルミナを用いたものを同時に作成し、これと
の比較テストを行い、表1の結果を得た。
That is, aluminum oxide, titanium oxide, zirconium oxide, zinc oxide, and magnesium oxide are taken as the ultraviolet reflecting material, and coating liquids are respectively mixed so as to obtain an appearance in which the electrodes and the stem are not seen through.
A mg / cm 2 ultraviolet reflective layer was formed. Then, a phosphor layer is coated on these ultraviolet reflective layers to manufacture a 20 W straight tube fluorescent lamp, and the thick film appearance in which the electrodes and the stem at the bulb end are not seen through when the lamp is lit is confirmed, and the three-wavelength fluorescent lamp is also observed. The total luminous flux after 100 H lighting and the color rendering index, which are required for the characteristic standards of the lamp, were measured, and the compatibility with the JIS standard was evaluated. Furthermore, the color shift during lighting was also evaluated. In addition, as a comparative sample, a sample using the ultrafine alumina of 50 mμm disclosed in the above-mentioned JP-A-63-29441 was simultaneously prepared as a comparative sample, and a comparison test with this was performed, and the results of Table 1 were obtained. .

【0021】この実験において、紫外線反射層に用いる
各反射材の粒径は過去の紫外線反射材の分散液の調合や
塗布作業の難易性などの経験から、表記したように、概
ね1μmm程度の平均粒径のものに設定し、それぞれ試
行錯誤により、2〜3mg/cm2の塗布重量が得られ
るように分散液の比重や粘度を調製して塗膜した。ま
た、蛍光体層は平均粒径が3〜4μm程度で、特開昭6
3−29441号公報で開示された蛍光体と同様に、比
較的小粒径の三色の希土類蛍光体を用い、蛍光体塗布重
量は1.5mg/cm2で塗膜した。
In this experiment, the particle size of each reflecting material used in the ultraviolet reflecting layer is about 1 μm on average, as noted from the experience of past preparation of dispersion liquid of the ultraviolet reflecting material and difficulty of coating work. The particle size was set, and the specific gravity and viscosity of the dispersion were adjusted by trial and error to obtain a coating weight of 2 to 3 mg / cm 2 , and the coating was applied. Further, the phosphor layer has an average particle size of about 3 to 4 μm,
Similar to the phosphor disclosed in JP-A-3-29441, a tri-color rare earth phosphor having a relatively small particle size was used, and the phosphor coating weight was 1.5 mg / cm 2 .

【0022】[0022]

【表1】 [Table 1]

【0023】表1から、比較サンプルを除き、No1〜
No5の各サンプルは反射材料に大きい粒径を用いたた
め、バルブ端の電極やステムが透視されない良好な厚膜
外観が容易に得られた。しかしながら、No5の酸化マ
グネシウム以外のサンプルは2000Hの点灯試験での
色ずれが大きく、実用上採用できないものであった。
又、酸化チタンは全光束比、平均演色評価数の採用でき
ないレベルであった。
From Table 1, No.
Since each sample of No. 5 used a large particle size for the reflective material, it was possible to easily obtain a good thick film appearance in which the electrode or stem at the valve end was not seen through. However, the samples other than No. 5 magnesium oxide had a large color shift in the 2000H lighting test, and could not be practically adopted.
Further, the total luminous flux ratio and the average color rendering index of titanium oxide were at levels that cannot be adopted.

【0024】これに対して、No5の酸化マグネシウム
のサンプルは、100H後全光束比において、比較サン
プルの97%と若干劣るものの規格内であり、色ずれも
良好である。特に演色性評価指数Raが比較サンプルよ
り3も改善されるという思いがけない好効果が得られ
た。
On the other hand, the No. 5 magnesium oxide sample is within the standard in the total luminous flux ratio after 100H, which is slightly inferior to 97% of the comparative sample, and the color shift is good. In particular, the unexpectedly favorable effect that the color rendering index Ra was improved by 3 compared to the comparative sample was obtained.

【0025】次に、上記反射材料の選定実験の結果か
ら、本発明においては酸化マグネシウムを三波長形蛍光
ランプの紫外線反射層の反射材料に選定し、更にその適
用可能な酸化マグネシウムの粒子径を設定するため、主
として反射材の塗布液の分散性及び蛍光体層を塗布した
後の膜強度について、次のとうり酸化マグネシウムの粒
子径の選定実験を行った。
Next, from the result of the above selection experiment of the reflective material, in the present invention, magnesium oxide was selected as the reflective material of the ultraviolet reflective layer of the three-wavelength fluorescent lamp, and the applicable magnesium oxide particle diameter was selected. In order to set, the following selection experiment of the particle size of magnesium sulphate was conducted mainly on the dispersibility of the coating liquid of the reflecting material and the film strength after coating the phosphor layer.

【0026】即ち、酸化マグネシウムの粒子径を0.1〜6
μmの範囲に選定し、これらの酸化マグネシウムの塗布
液を上記実験と同様の要領で塗布して、これらの反射層
上に、上記実験と同様の塗膜条件で蛍光体層を形成し、
それぞれ20Wの直管形蛍光ランプを製造し、全光束を
測定した。図2にその全光束比と成膜時の塗布液の分散
性及び蛍光体層の膜強度の結果を示す。
That is, the particle size of magnesium oxide is 0.1 to 6
In the range of μm, the coating liquid of these magnesium oxides is applied in the same manner as in the above experiment to form a phosphor layer on these reflective layers under the same coating conditions as in the above experiment,
20 W straight tube fluorescent lamps were manufactured and the total luminous flux was measured. FIG. 2 shows the results of the total luminous flux ratio, the dispersibility of the coating liquid during film formation, and the film strength of the phosphor layer.

【0027】この実験から、粒径が0.3 μmの酸化マグ
ネシウムの塗布液は塗布液製造後、間もなく凝集し、ガ
ラスバルブに均一な塗り肌の紫外線反射層を安定に形成
することができなかった。また、逆に粒子径の大きい6.
0 μmの酸化マグネシウムの塗布液はガラスバルブに対
する付着強度が弱くなり、ランプ製造工程中にショック
により膜落ち不良が発生した。粒径が0.5 〜5.0 μmの
範囲では塗布液の分散性及び膜強度共に問題はなく、全
光束も粒子径の小さい方が僅かに大きいものが得られる
も、何れも良好な結果がえられている。
From this experiment, it was found that the magnesium oxide coating solution having a particle size of 0.3 μm was agglomerated shortly after the production of the coating solution, and it was not possible to stably form the ultraviolet reflecting layer having a uniform coating on the glass bulb. On the contrary, the particle size is large 6.
The 0 μm magnesium oxide coating solution had a weak adhesion strength to the glass bulb, and a film drop failure occurred due to shock during the lamp manufacturing process. When the particle size is in the range of 0.5 to 5.0 μm, there is no problem in the dispersibility of the coating solution and the film strength, and the total luminous flux is slightly larger when the particle size is smaller, but good results are obtained. There is.

【0028】次に、このように粒子径の大きさを選定し
た酸化マグネシウムは紫外線反射層の塗布厚さと膜薄外
観不良及び全光束との関係を調べるめに、次のような酸
化マグネシウム塗布重量の実験を行った。
Next, in order to examine the relationship between the coating thickness of the ultraviolet reflecting layer, the poor appearance of the thin film, and the total luminous flux of magnesium oxide whose particle size is selected as described above, the following magnesium oxide coating weight is used. The experiment was done.

【0029】即ち、酸化マグネシウムの粒子径を2.0 μ
mmに固定し、塗布重量を0.1 〜6.0 mg/cm2の範
囲に可変させて酸化マグネシウムの紫外線反射層の被膜
を形成し、この被膜上に前記実験と同様の塗膜条件で蛍
光体層を形成し、それぞれ20Wの直管形蛍光ランプを
製造し、膜厚外観及び全光束を測定した。図3にその全
光束比と厚薄外観の結果を示す。
That is, the particle size of magnesium oxide is 2.0 μm.
The coating weight was fixed to 0.1 mm, the coating weight was varied in the range of 0.1 to 6.0 mg / cm 2 to form a magnesium oxide UV reflection layer coating, and a phosphor layer was formed on this coating under the same coating conditions as in the above experiment. 20 W straight tube fluorescent lamps were manufactured and the film thickness appearance and total luminous flux were measured. FIG. 3 shows the results of the total luminous flux ratio and the thick and thin appearance.

【0030】この実験から、膜薄外観は塗布重量が0.7
mg/cm2以上ではバルブ端の電極やステムが透視さ
れない良好な厚膜外観が得らた。しかし、塗布重量が0.
1 mg/cm2ではバルブ端の電極やステムが透視され
商品性のある外観が得られなかった。また、全光束は酸
化マグネシウムの塗布重量が0.7 から3.0 mg/cm 2
までは略同じ程度であるが、塗布重量が0.4 mg/cm
2以下および5.0 mg/cm2以上のものは明らかに低下
していく。また、塗布重量が6.0 mg/cm2以上では
全光束の低下と共に、蛍光体層の焼成工程において、塗
布液の有機物質の除去が困難となり、ランプの始動特性
など品質を害なうという問題が発生した。従って、酸化
マグネシウムの塗布重量は膜厚外観及び全光束に大きく
影響する為、0.7 〜5.0 mg/cm2程度がその大略の
適用範囲であることが確認された。
From this experiment, the thin film appearance has a coating weight of 0.7.
mg / cm2Above, the electrodes and stem at the valve end are not visible.
A good thick film appearance was obtained. However, the applied weight is 0.
1 mg / cm2In that case, the electrodes and stem at the valve end are seen through.
The commercial appearance was not obtained. Also, the total luminous flux is acid
Magnesium chloride coating weight is 0.7 to 3.0 mg / cm 2
Is about the same, but the coating weight is 0.4 mg / cm
2Below and 5.0 mg / cm2The above are obviously reduced
I will do it. The applied weight is 6.0 mg / cm.2Above
As the total luminous flux decreases, the coating process is performed during the phosphor layer firing process.
It becomes difficult to remove organic substances from the cloth liquid, and the starting characteristics of the lamp
There was a problem that the quality was damaged. Therefore, oxidation
Magnesium coating weight is large for film thickness appearance and total luminous flux
0.7 to 5.0 mg / cm to influence2The degree is
It was confirmed to be within the applicable range.

【0031】一方、蛍光体層の塗布厚さも全光束および
膜薄外観と密接に関係するため、蛍光体層の塗布重量と
上記酸化マグネシウムの塗布重量の両者を組合せた蛍光
体層の塗布重量の実験を行なった。
On the other hand, since the coating thickness of the phosphor layer is also closely related to the total luminous flux and the thin film appearance, the coating weight of the phosphor layer which is a combination of both the coating weight of the phosphor layer and the coating weight of magnesium oxide is An experiment was conducted.

【0032】即ち、紫外線反射層は塗布重量を0.1 、0.7
、5.0 mg/cm2の3段階とし、比較のため紫外線反
射層を形成しないものを加え4種類とした。また、蛍光
体層は塗布重量を1、 2、 3、 4、 5 mg/cm2の5段階
とし、それぞれ外観の目視チェックおよび全光束を測定
し、図4の結果を得た。この実験において、酸化マグネ
シウムの粒子径は塗布液の分散性の良好な範囲から2.0
μmに、また蛍光体の粒子径は5 μmより充分小粒径の
平均粒径が2.7 μmに設定し、それぞれ固定して行なっ
た。
That is, the ultraviolet reflection layer has a coating weight of 0.1, 0.7.
, 5.0 mg / cm 2 in 3 stages, and for comparison purposes, 4 types were added in addition to those without forming an ultraviolet reflection layer. Further, the phosphor layer was applied in five stages of 1, 2, 3, 4, and 5 mg / cm 2 , and the appearance was visually checked and the total luminous flux was measured. The results shown in FIG. 4 were obtained. In this experiment, the particle size of magnesium oxide was 2.0 in the range of good dispersibility of the coating solution.
The average particle size of the phosphors was set to 2.7 μm and the particle size of the phosphor was sufficiently smaller than 5 μm.

【0033】この実験から、紫外線反射層の塗布重量が
0.1 mg/cm2のものは紫外線反射層を形成しないも
のに比べて、例えば、全光束を2%低下することで、蛍
光体塗布重量を、実線矢示するように、40%削減する
ことができる。しかしながら、蛍光体塗布重量を3 mg
/cm2以下に低下すると外観不良が発生した。一方、
紫外線反射層の塗布重量が0.7 及び5.0mg/cm2のも
のは、蛍光体塗布重量を1 mg/cm2に低下しても外
観不良は発生せず、従って、全光束の5%低下を許容す
ることで、蛍光体塗布重量を、点線矢示するように、そ
れぞれ70%及び80%と大幅に削減することができ
る。
From this experiment, the coating weight of the ultraviolet reflecting layer was
With 0.1 mg / cm 2 , the total luminous flux can be reduced by 2%, for example, and the phosphor coating weight can be reduced by 40% as shown by the solid line arrow, as compared with the case where the ultraviolet reflection layer is not formed. it can. However, the phosphor coating weight is 3 mg
When the value was lower than / cm 2 , the appearance was poor. on the other hand,
Of what coating weight of 0.7 and 5.0 mg / cm 2 of UV-reflecting layer, without the appearance defect occurs also decreases the phosphor coating weight in 1 mg / cm 2, thus, allow 5% decrease in total flux By doing so, the phosphor coating weight can be greatly reduced to 70% and 80%, respectively, as indicated by the dotted arrow.

【0034】尚、これらの作成した蛍光ランプの特性を
確認するため、上記実験の内酸化マグネシウムの塗布重
量を0.7 mg/cm2に設定したものと紫外線反射層を
形成しないものについて 、演色評価指数Ra及び三波
長放射束比RT を測定した。その結果を図5に示す。
In order to confirm the characteristics of these prepared fluorescent lamps, the color rendering index was evaluated for the one in which the coating weight of magnesium oxide in the above experiment was set to 0.7 mg / cm 2 and the one in which the ultraviolet reflecting layer was not formed. Ra and triple wavelength radiant flux ratio RT were measured. The result is shown in FIG.

【0035】同図から、演色評価指数Ra及び三波長放
射束比RT は蛍光体塗布重量の低下に従い両者とも低下
している。特に、演色評価指数Raは蛍光体塗布重量を
3 mg/cm2以上低減 すると急激に低下し、紫外線反
射層を形成しないものは許容範囲を逸脱するが、酸化マ
グネシウムの反射層を形成したものはかかる逸脱はな
く、良好な演色性を示している。
From the figure, the color rendering index Ra and the three-wavelength radiant flux ratio RT both decrease as the coating weight of the phosphor decreases. In particular, the color rendering index Ra is the phosphor coating weight.
When the amount is reduced by 3 mg / cm 2 or more, the value drops sharply, and those without the UV reflection layer deviate from the permissible range, but those with the magnesium oxide reflection layer do not show such deviation and show good color rendering properties. There is.

【0036】[0036]

【発明の効果】以上詳述したように、本発明によれば、
蛍光体層を構成する希土類蛍光体に光透過性を抑えた小
粒径のものを用いると共に紫外線反射層に平均粒径が
0.5〜5μmの酸化マグネシウムを0.7〜5mg/
cm2に形成することにより、蛍光体層の塗布重量を小
さくしても、電極やステムの透視が防止できる。また反
射層を厚膜に形成することで紫外線の反射特性が高めら
れて全光束の低下が緩和され、全光束を実用範囲内に留
めつつ、高価な希土類蛍光体の使用量を可及的に削減す
ることができる。従って、ランプコストを大幅に低減す
ることができ、三波長形蛍光ランプを普及することがで
きる。また、希土類蛍光体の特徴である平均演色評価指
数Ra及び三波長放射束比RT の高いものが得られ、優
れた三波長形蛍光ランプ を提供することができる。
As described in detail above, according to the present invention,
The rare earth phosphor constituting the phosphor layer has a small particle size with suppressed light transmission, and the ultraviolet ray reflective layer contains 0.7 to 5 mg / magnesium oxide having an average particle size of 0.5 to 5 μm.
By forming it to have a size of cm 2 , even if the coating weight of the phosphor layer is reduced, it is possible to prevent see-through of the electrode and the stem. Also, by forming the reflective layer in a thick film, the reflection characteristics of ultraviolet rays are enhanced and the decrease in total luminous flux is mitigated, while keeping the total luminous flux within the practical range, the amount of expensive rare earth phosphor used can be minimized. Can be reduced. Therefore, the lamp cost can be significantly reduced, and the three-wavelength fluorescent lamp can be popularized. Further, a high average color rendering index Ra and triple wavelength radiant flux ratio RT, which are characteristics of the rare earth fluorescent substance, can be obtained, and an excellent triple wavelength fluorescent lamp can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用される三波長形蛍光ランプの一部
破断断面図
FIG. 1 is a partially cutaway sectional view of a three-wavelength fluorescent lamp to which the present invention is applied.

【図2】紫外線反射層の酸化マグネシウム粒子径を可変
した実験データ図
[Fig. 2] Experimental data diagram in which the particle size of magnesium oxide in the ultraviolet reflective layer is varied.

【図3】紫外線反射層の酸化マグネシウム塗布重量を可
変した実験データ図
FIG. 3 is an experimental data diagram in which the coating weight of magnesium oxide on the ultraviolet reflective layer is changed.

【図4】蛍光体層の蛍光体塗布重量を可変した実験デー
タ図
FIG. 4 is an experimental data diagram in which the phosphor coating weight of the phosphor layer is changed.

【図5】図4の一部蛍光ランプの演色評価指数Ra及び
三波長放射束比RT特性図
5 is a color rendering evaluation index Ra and a three-wavelength radiant flux ratio RT characteristic diagram of the partial fluorescent lamp of FIG.

フロントページの続き (72)発明者 野村 幸二 大阪府大阪市中央区城見1丁目4番24号 日本電気ホームエレクトロニクス株式会社 内Front Page Continuation (72) Inventor Koji Nomura 1-42 Jomi, Chuo-ku, Osaka-shi, Osaka NEC Home Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラスバルブの内面に透光性を有する紫外
線反射層、蛍光体層を順次に形成した蛍光ランプにおい
て、前記紫外線反射層は平均粒径が0.5〜5μmの酸
化マグネシウム、蛍光体層は平均粒径が1.5〜4μm
の希土類蛍光体からなり、上記紫外線反射層が0.7〜
5mg/cm2、蛍光体層が0.5〜3mg/cm2であ
ることを特徴とする蛍光ランプ。
1. A fluorescent lamp in which a light-transmitting UV-reflecting layer and a phosphor layer are sequentially formed on the inner surface of a glass bulb, wherein the UV-reflecting layer has an average particle size of 0.5 to 5 μm and is composed of magnesium oxide and fluorescent light. Body layer has an average particle size of 1.5 to 4 μm
Of the rare earth phosphor, and the ultraviolet reflection layer is 0.7 to
Fluorescent lamp 5 mg / cm 2, the phosphor layer is characterized by a 0.5-3 mg / cm 2.
JP30567993A 1993-12-07 1993-12-07 Fluorescent lamp Withdrawn JPH07161338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30567993A JPH07161338A (en) 1993-12-07 1993-12-07 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30567993A JPH07161338A (en) 1993-12-07 1993-12-07 Fluorescent lamp

Publications (1)

Publication Number Publication Date
JPH07161338A true JPH07161338A (en) 1995-06-23

Family

ID=17948054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30567993A Withdrawn JPH07161338A (en) 1993-12-07 1993-12-07 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH07161338A (en)

Similar Documents

Publication Publication Date Title
US5612590A (en) Electric lamp having fluorescent lamp colors containing a wide bandwidth emission red phosphor
JPH0636349B2 (en) Fluorescent lamp with ultraviolet reflective layer
JPH0576982B2 (en)
JP4494466B2 (en) Fluorescent lamp, manufacturing method thereof, and lighting device
JP2003051284A (en) Fluorescence lamp and illumination instrument
JPH07161338A (en) Fluorescent lamp
JPS6127055A (en) Bending tube type fluorescent lamp
JPH0636348B2 (en) High color rendering fluorescent lamp
JP4044946B2 (en) Fluorescent lamp, backlight device, and method of manufacturing fluorescent lamp
JPS6168854A (en) Fluorescent high pressure mercury arc lamp
JP2912734B2 (en) Fluorescent lamp
JP3653552B2 (en) Cold cathode fluorescent lamp and lighting device
JP4496464B2 (en) Fluorescent lamp and lighting device
JPH0513047A (en) Fluorescent lamp
JPS6049553A (en) Fluorescent lamp
JP3575886B2 (en) Fluorescent lamp
JP4539137B2 (en) Fluorescent lamp and backlight unit
JPS62265385A (en) Fluorescent using multilayered phosphor film
JPS58218745A (en) Fluorescent lamp
JPS58220352A (en) Fluorescent lamp
JPH0613045A (en) Fluorescent lamp
JPS5861554A (en) Fluorescent lamp
JP3371937B2 (en) Light-emitting composition and fluorescent lamp using the same
JP2004207073A (en) Cold-cathode fluorescent lamp and its manufacturing method
JPH09231943A (en) Light emitting composition and fluorescent lamp using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306