JPH0716092B2 - Small-diameter hole processing method for substrate material - Google Patents

Small-diameter hole processing method for substrate material

Info

Publication number
JPH0716092B2
JPH0716092B2 JP5025311A JP2531193A JPH0716092B2 JP H0716092 B2 JPH0716092 B2 JP H0716092B2 JP 5025311 A JP5025311 A JP 5025311A JP 2531193 A JP2531193 A JP 2531193A JP H0716092 B2 JPH0716092 B2 JP H0716092B2
Authority
JP
Japan
Prior art keywords
small
diameter hole
substrate material
hole
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5025311A
Other languages
Japanese (ja)
Other versions
JPH06244536A (en
Inventor
和夫 大場
好範 嶋
章 大場
Original Assignee
栄電子工業株式会社
和夫 大場
好範 嶋
章 大場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄電子工業株式会社, 和夫 大場, 好範 嶋, 章 大場 filed Critical 栄電子工業株式会社
Priority to JP5025311A priority Critical patent/JPH0716092B2/en
Publication of JPH06244536A publication Critical patent/JPH06244536A/en
Publication of JPH0716092B2 publication Critical patent/JPH0716092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器に使用される
基板材料における小径穴内の機械的内壁荒れを平滑化す
るための高効率処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient processing method for smoothing mechanical inner wall roughness in small-diameter holes in a substrate material used for electronic equipment.

【0002】[0002]

【従来の技術】従来、電子機器に使用されている基板の
製造においては、ガラス繊維入りエポキシ樹脂あるいは
ポリイミド樹脂板にスルーホールを作るためドリルなど
で穴開け加工を行う。この際、ドリル刃の切味にもよる
が、樹脂の細かい切粉の発生、ガラス繊維のカッティン
グ不良が発生し、特に0.3mmφ以下の穴径になると
不良発生率が高い。このような切粉やカッティング不良
は、通常の超音波洗浄では除去できない。不良が発生し
たままの状態で基板にめっきすると、ガラス繊維間の隙
間にめっき液が浸み込んだまま、繊維先端のみがめっき
され、めっきによる結晶成長と同時にブリッヂを作り、
全体がめっきされることになって、製品化途中で腐食原
因となり、製品不良となることが多い。もちろん、切粉
詰まりではめっき液の浸透がなく、穴内ボイドの原因と
なる。
2. Description of the Related Art Conventionally, in the manufacture of substrates used in electronic equipment, drilling or the like is performed to make through holes in a glass fiber-containing epoxy resin or polyimide resin plate. At this time, although depending on the sharpness of the drill blade, fine resin chips and defective glass fiber cutting occur, and the defect occurrence rate is particularly high when the hole diameter is 0.3 mmφ or less. Such chips and defective cutting cannot be removed by normal ultrasonic cleaning. If the substrate is plated with defects still occurring, only the fiber tips will be plated while the plating solution is immersed in the gaps between the glass fibers, and the bridge will be formed at the same time as crystal growth by plating.
Since the whole is plated, it often causes corrosion during productization, resulting in product defects. Of course, when the chips are clogged, the plating solution does not penetrate, which causes voids in the holes.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、小
径穴内の切粉除去、内壁面の平滑化などを高速に効率良
く、確実にできる方法を提供して、不良品の発生を防止
するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a method capable of removing chips in a small diameter hole and smoothing an inner wall surface at high speed, efficiently and surely to prevent generation of defective products. It is a thing.

【0004】[0004]

【課題を解決するための手段】本発明は、小径穴を有す
る被加工基板材料を酸化発熱性の高い希土類微粉末を懸
濁した液体にて濡らし、基板表面に付着した上記液体の
みを除去した後、小径穴にレーザ光を照射することによ
って希土類微粉末を酸化発熱させ、小径穴中の切粉を処
理し、内壁荒れを平滑化する基板材料の小径穴処理方法
である。
According to the present invention, a substrate material to be processed having a small diameter hole is wetted with a liquid in which a rare earth fine powder having a high oxidative exothermic property is suspended to remove only the liquid adhering to the substrate surface. After that, by irradiating the small-diameter hole with laser light to oxidize and heat the rare-earth fine powder, the chips in the small-diameter hole are treated, and the small-diameter hole treatment method of the substrate material is performed to smooth the inner wall roughness.

【0005】上記希土類微粉末としては、La,Ce,
Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luの如きランタノイド類、Ac,T
h,U,Puの如きアクチノイド類の単体、合金もしく
はそれらの混合物が用いられる。
As the above-mentioned fine powder of rare earth, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
Lanthanides such as r, Tm, Yb, Lu, Ac, T
A simple substance, an alloy or a mixture of actinoids such as h, U and Pu is used.

【0006】希土類微粉末を懸濁する液体としては、エ
チレングリコールその他、多価アルコール、エーテルや
ハロゲン化炭化水素、ベンジン、ヘキサン等の炭化水素
を主成分とする液体がよい。
As the liquid for suspending the rare earth fine powder, a liquid containing ethylene glycol, a polyhydric alcohol, an ether, a halogenated hydrocarbon, a hydrocarbon such as benzine or hexane as a main component is preferable.

【0007】希土類微粉末の使用量は基板材料の種類や
スルーホールの大きさ等の条件によって適当な量を選定
する。
The amount of the rare earth fine powder used is appropriately selected depending on the type of substrate material and the size of the through hole.

【0008】希土類微粉末の懸濁液をもって被加工基板
材料を濡らすと、該懸濁液は小径穴内に浸入するので、
基板上下面に付着した懸濁液を刷毛などを用いて除去す
ると、小径内にのみ懸濁液が残留する。そこで、小径穴
にレーザ光を照射すると希土類微粉末が酸化して発熱
し、切粉は燃焼処理し、小穴内壁のガラスの荒れは溶融
平滑化する。レーザ光の条件も基板材質や小穴の大きさ
等によって決定する。通常は5〜8Wの範囲で行われ
る。
When the substrate material to be processed is wetted with a suspension of rare earth fine powder, the suspension penetrates into the small-diameter holes.
When the suspension attached to the upper and lower surfaces of the substrate is removed using a brush or the like, the suspension remains only within the small diameter. Therefore, when the small-diameter hole is irradiated with laser light, the rare earth fine powder oxidizes and generates heat, the cutting dust is burned, and the roughness of the glass on the inner wall of the small hole is melted and smoothed. The conditions for laser light are also determined by the substrate material, the size of the small holes, and the like. Usually, it is performed in the range of 5 to 8W.

【0009】[0009]

【実施例】縦200mm、横300mm、厚さ0.7m
mのエポキシ樹脂基板に、それぞれ一枚毎に直径0.2
5mm、0.2mm、0.15mmの穴を、NCボール
盤で全面に5mm間隔で穴明け加工した。穴数は230
0穴であった。切粉詰りや穴内壁荒れ、バリ発生が従来
通りで、穴詰りが生じた。
Example: Length 200 mm, width 300 mm, thickness 0.7 m
m epoxy resin substrate, each with a diameter of 0.2
Holes of 5 mm, 0.2 mm, and 0.15 mm were punched on the entire surface with an NC drilling machine at 5 mm intervals. 230 holes
It was 0 hole. The chips were clogged, the inner wall of the hole was roughened, and burrs were generated as usual.

【0010】かかる基板をCe微粉末10gを1000
c・cのエチレングリコール中に懸濁させた液中に漬
け、取り出してから基板上下面を刷毛にて清拭し、レー
ザ処理装置(商品名エキシマレーザ)にセットする。穴
位置をNCにより一定位置とし、一定時間レーザ処理す
る。
Such a substrate is prepared by adding 10 g of Ce fine powder to 1000 g.
It is dipped in a solution suspended in cc of ethylene glycol, taken out, and the upper and lower surfaces of the substrate are wiped with a brush and set in a laser processing device (trade name: excimer laser). The hole position is fixed by NC, and laser processing is performed for a fixed time.

【0011】使用したレーザ装置の放電部の構成は図1
に示す。励起回路としては容量移行型を用いて、主容量
1に直流充電された電荷がギャップスイッチを閉じる
ことにより、容量C2に移行し、C1とC2の回路中に2
mm間隔を設けて、電荷の移動時にアーク放電を生じさ
せ、そのアーク放電からのUV光で主電極間のレーザガ
スを予備電離する。容量C2に移行した電荷により、主
電極間の電圧が放電破壊電圧に達すると放電を起し、レ
ーザガスを励起してレーザ発振する。ガス組成はHCl
が0.15%、Xe1.5%、He98.35%で、圧
力は3atm、充電電圧30kVとした。この時の出力
は170mJであった。
The structure of the discharge part of the laser device used is shown in FIG.
Shown in. The excitation circuit using a capacitive transitional, by closing the main capacitor C gap switch DC electric charge charged in 1, moves to the capacitor C 2, in the circuit of C 1 and C 2 2
An arc discharge is generated at a distance of mm between the electric charges, and the laser light between the main electrodes is preionized by UV light from the arc discharge. When the voltage between the main electrodes reaches the discharge breakdown voltage due to the charges transferred to the capacitance C 2 , discharge is caused to excite the laser gas and cause laser oscillation. Gas composition is HCl
Was 0.15%, Xe 1.5%, He 98.35%, the pressure was 3 atm, and the charging voltage was 30 kV. The output at this time was 170 mJ.

【0012】なお、線幅は発振光学系の入射回析格子や
波長選択用反射鏡の角度を変化させることにより発振波
長が変えられ幅も変えられる。その範囲は10mmより
0.02nmと変えられる。本実施例では、前記各穴径
に合うように制御した。レーザ光の照射時間に全て0.
1secで行った。
The line width can be changed by changing the angle of the incident diffraction grating of the oscillation optical system or the reflection mirror for wavelength selection, and the width of the oscillation wavelength. The range can be changed from 10 mm to 0.02 nm. In the present embodiment, control was performed so as to match each hole diameter. All the laser light irradiation time is 0.
It went in 1 sec.

【0013】図2はCd光検出器を使用し、基板穴の光
の透過率による出力電圧をとり、穴内の切粉除去具合を
調べた図である。縦軸は光起電力の出力電圧を示し、2
300個の平均光透過量に比例した光起電力の電圧であ
る。
FIG. 2 is a diagram in which a Cd photodetector is used, an output voltage depending on the light transmittance of a hole in a substrate is taken, and the degree of chip removal in the hole is examined. The vertical axis represents the output voltage of the photovoltaic power, 2
It is the voltage of the photovoltaic power proportional to the average light transmission amount of 300 pieces.

【0014】例えば穴径0.25mmの場合、穴明けが
完全で100%良好ならば、出力電圧は5mVとなる
が、全く切粉処理のない場合は、1.4mVで28%で
あったが、本発明によれば4.97mVで光透過率9
9.4%であり、極めて高効率である。穴径が0.15
mmになると、光透過率では92%であるのに対して、
従来法では11.4%に過ぎなかった。
For example, in the case of a hole diameter of 0.25 mm, the output voltage is 5 mV if the hole is completely drilled and 100% good, but it is 28% at 1.4 mV when there is no cutting treatment. According to the present invention, the light transmittance is 9 at 4.97 mV.
It is 9.4%, which is extremely high efficiency. Hole diameter is 0.15
In mm, the light transmittance is 92%, while
In the conventional method, it was only 11.4%.

【0015】[0015]

【発明の効果】本発明によれば、レーザ光の径は、穴径
より大きくとも小さくともよく、バリ先端、ガラス先端
に付着した希土類微粉末の着火や、刷毛拭き時に穴の口
縁に付着した希土類微粉末の着火が誘因となって、穴内
壁のガラス繊維間やえぐり穴間にある希土類微粉末の発
熱溶融により、小径穴加工における切粉詰りの除去、穴
内壁面の平滑化などを高速で確実に行うことができる。
According to the present invention, the diameter of the laser beam may be larger or smaller than the hole diameter, and the rare earth fine powder adhering to the tip of the burr or the glass may be ignited or adhered to the edge of the hole when wiping the brush. Due to the ignition of the rare earth fine powder generated, the heat generation of the rare earth fine powder between the glass fibers on the inner wall of the hole or between the hollow holes causes high speed removal of chip clogging and smoothing of the inner wall surface of small holes. Can be done reliably.

【図面の簡単な説明】[Brief description of drawings]

【図1】高輝度レーザ発振器使用による基板の小径穴加
工の説明図である。
FIG. 1 is an explanatory diagram of processing a small-diameter hole in a substrate by using a high-brightness laser oscillator.

【図2】本発明の効果をみるため加工後の平均光透過量
を穴径と光起電力の電圧との関係で従来例と対比してテ
ストした結果を示すグラフである。
FIG. 2 is a graph showing the results of testing the average light transmission amount after processing in order to see the effect of the present invention in comparison with the conventional example in the relationship between the hole diameter and the voltage of the photovoltaic power.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋 好範 神奈川県川崎市麻生区王禅寺768番地15 (72)発明者 大場 章 埼玉県朝霞市宮戸3丁目12番89号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshinori Shima 768, Ozenji, Aso-ku, Kawasaki-shi, Kanagawa 15 (72) Inventor Akira Ohba 3-1289 Miyato, Asaka-shi, Saitama

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 小径穴を有する被加工基板材料を酸化発
熱性の高い希土類微粉末を懸濁した液体にて濡らし、基
板表面に付着した上記液体のみを除去した後、小径穴に
レーザ光を照射することによって希土類微粉末を酸化発
熱させ、小径穴中の切粉を処理し、内壁荒れを平滑化す
ることを特徴とする基板材料の小径穴処理方法。
1. A substrate material having a small diameter hole is wetted with a liquid in which a rare earth fine powder having a high oxidative exothermicity is suspended to remove only the liquid adhering to the substrate surface, and then a laser beam is applied to the small diameter hole. A method for treating a small-diameter hole in a substrate material, which comprises irradiating and heating the rare-earth fine powder to oxidize heat to treat the chips in the small-diameter hole to smooth the inner wall roughness.
【請求項2】 希土類微粉末は、La,Ce,Pr,N
d,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Tb,Luの如きランタノイド類、Ac,Th,
U,Puの如きアクチノイド類の単体、合金もしくはそ
れらの混合物である請求項1記載の基板材料の小径穴の
処理方法。
2. The rare earth fine powder is La, Ce, Pr, N.
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
Lanthanoids such as m, Tb and Lu, Ac, Th,
The method for treating a small hole in a substrate material according to claim 1, which is a simple substance, an alloy or a mixture of actinides such as U and Pu.
JP5025311A 1993-02-15 1993-02-15 Small-diameter hole processing method for substrate material Expired - Lifetime JPH0716092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025311A JPH0716092B2 (en) 1993-02-15 1993-02-15 Small-diameter hole processing method for substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025311A JPH0716092B2 (en) 1993-02-15 1993-02-15 Small-diameter hole processing method for substrate material

Publications (2)

Publication Number Publication Date
JPH06244536A JPH06244536A (en) 1994-09-02
JPH0716092B2 true JPH0716092B2 (en) 1995-02-22

Family

ID=12162462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025311A Expired - Lifetime JPH0716092B2 (en) 1993-02-15 1993-02-15 Small-diameter hole processing method for substrate material

Country Status (1)

Country Link
JP (1) JPH0716092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091063B (en) * 2022-08-24 2022-11-04 绵阳新能智造科技有限公司 Femtosecond laser inner hole wall machining device

Also Published As

Publication number Publication date
JPH06244536A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
US4539050A (en) Process for the manufacture of semiconductor wafers with a rear side having a gettering action
JP2528760B2 (en) Ceramic dynamic pressure bearing and its groove processing method
US20040020905A1 (en) Method and apparatus for cleaning surfaces
ES8703050A1 (en) Laser decontamination method.
KR20100065314A (en) Cleaning method for duv optical elements to extend their lifetime
US5539205A (en) Corona generating device and method of fabricating
JPH0716092B2 (en) Small-diameter hole processing method for substrate material
EP2177487B1 (en) Method of removing contaminant from surface of glass substrate
Campbell Damage resistant optical glasses for high power lasers: A continuing glass science and technology challenge
JP4400224B2 (en) Method for removing foreign matter from glass substrate surface
Stowers et al. Cleaning optical surfaces
JP2007118070A (en) Laser beam machining method and apparatus
CN1107364C (en) Gas laser processing machine
Rebhan et al. Excimer lasers: current status and future developments
Kozlowski et al. Properties of modified silica detected within laser-induced damage sites
JP3020360B2 (en) Method and apparatus for cleaning electronic parts or precision parts
JP3761788B2 (en) Laser processing method of silicon substrate
SU1734884A1 (en) Method of cleaning metal substrates of optical pieces
JPH05293450A (en) Ultrasonic washing device
JP4074989B2 (en) Electropolishing equipment
Zhou Bonding of Glass-to-Glass for the Development of Ultrafast Microchip Lasers
JPS63178884A (en) Method of removing extraneous matter
JP2543317B2 (en) Ultra-fine hole processing method
JP2005007440A (en) Laser beam machining method and laser beam machining machine
JPH06125163A (en) Method for machining small diameter hole on board material