JPH07160717A - Device for recognizing relation between adjacent speeches - Google Patents
Device for recognizing relation between adjacent speechesInfo
- Publication number
- JPH07160717A JPH07160717A JP5311651A JP31165193A JPH07160717A JP H07160717 A JPH07160717 A JP H07160717A JP 5311651 A JP5311651 A JP 5311651A JP 31165193 A JP31165193 A JP 31165193A JP H07160717 A JPH07160717 A JP H07160717A
- Authority
- JP
- Japan
- Prior art keywords
- utterance
- adjacent
- relation
- recognizing
- speeches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Machine Translation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、隣接発話間関係を認識
する装置に関し、特に自然言語を用いた質問応答システ
ムなどに用いられ、自然言語で行われる対話を処理する
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for recognizing a relationship between adjacent utterances, and more particularly to a device used in a question answering system or the like using a natural language to process a dialogue in a natural language.
【0002】[0002]
【従来の技術】従来、隣接する発話間の関係を認識する
技術はなく、例えば、特開平1−233619号公報に
示されるような、対話全体を通しての話者のプラン認識
を前提として、領域情報を含めた十分な情報を用いた解
析によって、対話の内容を認識する手法があった。この
手法は、発話のタイプを「要求」「応答」「確認」など
に分類し、その発話のタイプによって動的にプランを変
更していくといったものであり、「要求」の発話とそれ
に対応した「応答」「確認」の発話との間の関係を関連
発話として認定する。プランには例えば、情報のやりと
りを表すインターラクションプランとして、あるものご
との値を尋ねるASK−VALUEプランと、あるもの
ごとの値を相手に伝えるINFORM−VALUEプラ
ンとから成るGET−VALUE−UNITプランがあ
る。2. Description of the Related Art Conventionally, there is no technique for recognizing the relationship between adjacent utterances. For example, the region information is assumed on the basis of the plan recognition of the speaker throughout the dialogue as disclosed in Japanese Patent Laid-Open No. 1-233619. There was a method of recognizing the content of dialogue by analysis using sufficient information including. This method classifies utterance types into "request", "response", "confirm", etc., and dynamically changes the plan according to the utterance type. The relationship between the "response" and "confirmation" utterances is recognized as a related utterance. The plan is, for example, an GET-VALUE-UNIT plan that includes an ASK-VALUE plan asking for the value of a certain thing and an INFORMATION-VALUE plan that conveys the value of the certain thing to the other party as an interaction plan that represents the exchange of information. There is.
【0003】[0003]
【発明が解決しようとする課題】上記の手法では、「要
求」の発話とそれに対応した「応答」「確認」の発話と
の間の関係についてのみ関連発話として認定しており、
隣接する発話間の関係を認識することは目的としていな
い。またこの手法では、一見して認識できない発話対を
見逃してしまう場合が多い。例として、次のような発話
の組を考える。 A1 広辞苑はどこにありますか? B2 今、売り切れているのです。 B2の発話では、A1の発話で値を尋ねられている広辞
苑の置き場所が伝えられていないため、前出のGET−
VALUE−UNITプランを用いてもこの関連発話を
認識することができない。In the above method, only the relation between the "request" utterance and the corresponding "response""confirmation" utterance is recognized as a related utterance,
It is not intended to recognize the relationship between adjacent utterances. In addition, this method often misses utterance pairs that cannot be recognized at first glance. As an example, consider the following set of utterances. Where is A1 Kojien? B2 It's sold out now. In the utterance of B2, since the place of Kojien, which is asked for the value in the utterance of A1, is not communicated, the above-mentioned GET-
This related utterance cannot be recognized using the VALUE-UNIT plan.
【0004】本発明の目的は、任意の隣接する発話の間
の関係を認識することである。The object of the present invention is to recognize the relationship between any adjacent utterances.
【0005】[0005]
【課題を解決するための手段】本発明は上記目的を達成
するために、入力された発話から言明対象、文型、発話
の働きなどから成る発話の意味内容を抽出する発話意味
内容抽出手段と、発話の意味内容から発話の前提を抽出
する発話前提抽出手段と、語彙知識記憶手段と、隣接発
話間関係構造記憶手段と、発話の意味内容と、発話の前
提と、語彙知識と、隣接発話間関係構造とを参照して、
隣接発話間関係を認識する隣接発話間関係認識手段とを
備えて構成される。In order to achieve the above-mentioned object, the present invention comprises utterance meaning content extraction means for extracting the meaning content of an utterance consisting of a statement object, sentence pattern, utterance function, etc. from an input utterance, Utterance premise extraction means for extracting the utterance premise from the utterance meaning content, vocabulary knowledge storage means, adjacent utterance relation structure storage means, utterance meaning content, utterance premise, vocabulary knowledge, and adjacent utterance knowledge With reference to the relationship structure,
And an adjacent utterance relation recognition means for recognizing the relation between adjacent utterances.
【0006】[0006]
【作用】上記構成により、入力される発話の組から発話
の意味内容および前提を抽出し、それらの情報と語彙知
識および隣接発話間関係構造とを参照して、隣接発話間
関係を認識することができる。With the above structure, the meaning and premise of the utterance are extracted from the input utterance set, and the adjacent utterance relation is recognized by referring to the information, the vocabulary knowledge, and the adjacent utterance relation structure. You can
【0007】[0007]
【実施例】本発明の一実施例の構成を表すブロック図を
図1に示す。1 is a block diagram showing the configuration of an embodiment of the present invention.
【0008】まず図1を用いて、本発明の一実施例の構
成について説明する。発話意味内容抽出手段1は、入力
された発話から言明対象、文型、発話の働きなどから成
る発話の意味内容を抽出する。言明対象は、発話の中心
となる語句の持つ格構造に関する情報を基に、述語名
と、引数の役割及びその値の組のリストによる記述形式
に変換する。例えば、前出の質問発話A1については、 exist((S 広辞苑)(P ?)) が言明対象である。ここでS,Pは引数の役割がそれぞ
れ主体、場所であることを表す。文型は、平叙文、疑問
文、命令文、依頼文のいずれかで示される。発話の働き
は、情報伝達、情報要求、行為要求などで示される。First, the configuration of an embodiment of the present invention will be described with reference to FIG. The utterance meaning content extraction unit 1 extracts the meaning content of an utterance including an assertion target, a sentence pattern, a utterance function, and the like from the input utterance. Based on the information about the case structure of the word or phrase that is the center of the utterance, the assertion target is converted into a description format based on a list of predicate names, argument roles, and their value pairs. For example, as for the question utterance A1 described above, exist ((S Kojien) (P?)) Is a statement target. Here, S and P represent that the roles of the arguments are the subject and the place, respectively. The sentence pattern is indicated by any one of a plain text, an interrogative sentence, an imperative sentence, and a request sentence. The function of utterance is indicated by information transmission, information request, action request, and the like.
【0009】以下の述語contents,type,
forseは、それぞれ発話Uttの、発話の言明対象
がUcontents、文型がUtype、発話の働き
がUforseであることを表す。 contents(Utt,Ucontents) type(Utt,Utype) forse(Utt,Uforse) 発話前提抽出手段2は、発話意味内容抽出手段1で得ら
れた発話の意味内容から発話の前提を抽出する。図2に
発話の前提の分類を示す。以下に、それぞれの前提につ
いて説明する。 ・存在前提。発話の中で確定記述された個体的対象が実
際に存在すること。 ・叙述前提。発話の中で、その発話の背景となっている
事象。質問文においては、質問の焦点以外に記述されて
いる事象であり、それ以外の例えば伝聞を表す文では、
その伝聞内容が叙述前提にあたる。 ・応答者の知識に関する適切性。応答者が質問に対する
直接的答を知っていること。 ・文脈との関係に対する適切性。発話の意味内容におけ
る対象が先行対話中あるいは発話状況の対象に一意に対
応可能であること。 ・「も」、「さえ」、「でも」、「すら」、「だっ
て」、「まで」によって導入される前提。助詞によって
取り立てられたものと同類の他のもので質問文の内容を
満たすものがあること。 ・「は」によって導入される前提。助詞によって取り立
てられたものと同類の他のもので質問文の内容を満たさ
ないものがあること。 ・「だけ」、「しか」、「ばかり」、「のみ」によって
導入される前提。助詞によって取り立てられたものと同
類の他のものは、質問文の内容を満たさないこと。 ・「さえ」、「まで」、「も」によって導入される前
提。発話の意味内容が表す事象が成立する可能性が低い
こと。The following predicates content, type,
For each of the utterances Utto, utterance Utt represents that the utterance assertion target is Ucontents, the sentence pattern is Utype, and the utterance action is Uforce. contents (Utt, Ucontents) type (Utt, Utype) force (Utt, Uforce) The utterance premise extraction unit 2 extracts the utterance premise from the meaning content of the utterance obtained by the utterance meaning content extraction unit 1. FIG. 2 shows classification of utterance premise. Below, each premise is demonstrated.・ Presence of existence. The actual existence of the individual object definitely described in the utterance. -Narrative premise. In the utterance, the event that is the background of the utterance. In a question sentence, it is an event described other than the focus of the question.
The contents of the hearing correspond to the narrative premise. · Relevance of respondent knowledge. The responder knows the direct answer to the question. • Suitability for relationship with context. The target in the semantic content of the utterance can uniquely correspond to the target in the preceding conversation or the target of the utterance situation.・ Premises introduced by "mo", "even", "but", "suru", "dare", and "to". Something else that is similar to the one collected by the particle, and that satisfies the content of the question sentence.・ Premise introduced by “ha”. Something else that is similar to the one collected by the particle and does not satisfy the content of the question sentence.・ The premise to be introduced by “only”, “shika”, “just” and “only”. Others, similar to those picked up by particles, do not satisfy the content of the question text.・ Premise introduced by “even”, “up”, and “mo”. It is unlikely that the event represented by the meaning of the utterance will occur.
【0010】以下の述語prepr_log,prep
r_pra,prepr_intは、それぞれ発話Ut
tの、意味的前提がUprepr_log、語用論的前
提がUprepr_pra、質問者の意図を導く前提が
Uprepr_intであることを表す。 prepr_log(Utt,Uprepr_log) prepr_pra(Utt,Uprepr_pra) prepr_int(Utt,Uprepr_int) 語彙知識記憶手段3は、事象を表す語句に付随する事象
の概念構造を記憶する。事象間の因果関係及び時系列上
の関係を記述した事象の概念構造を図3に示す。The following predicates prepr_log, prep
r_pra and prepr_int are utterances Ut, respectively.
In t, the semantic premise is Upprepr_log, the pragmatic premise is Upprepr_pra, and the premise leading the questioner's intention is Upprer_int. prepr_log (Utt, Upprer_log) prepr_pra (Utt, Upprer_pra) prepr_int (Utt, Upprer_int) The vocabulary knowledge storage unit 3 stores a conceptual structure of an event associated with a phrase representing an event. FIG. 3 shows a conceptual structure of events that describes causal relationships between events and relationships in time series.
【0011】例えば、事象を表す語句「返す」の持つ格
構造情報は return((S 人1)(O 物)(OT 人2)
(T 時)) である。ここでO,OT,Tは引数の役割がそれぞれ対
象、目標、時間であることを表す。これに付随する事象
として、対象にオブジェクト「本」を適用した事象「本
を返す」の概念構造を図4に示す。have,move
−1,readを述語とする事象は基本事象である。
(α X−β)は、基本事象における格要素αが、事象
「本を返す」の格要素βであることを表す。T(np)
におけるnはその事象が事象「本を返す」のn個目の先
行事象であることを表し、T(ns)におけるnはその
事象が事象「本を返す」のn個目の後続事象であること
を表す。また、T(n)におけるnは、その事象が事象
「本を返す」を構成する基本事象のうちn個目の基本事
象であることを表す。For example, the case structure information of the word "return" representing an event is return ((S person 1) (O thing) (OT person 2)
(At T)). Here, O, OT, and T represent that the roles of the arguments are target, goal, and time, respectively. As an incidental event to this, FIG. 4 shows a conceptual structure of an event “return book” in which an object “book” is applied to a target. have, move
An event whose predicate is -1, read is a basic event.
(ΑX−β) represents that the case element α in the basic event is the case element β of the event “return book”. T (np)
N in represents that the event is the nth preceding event of the event "return book", and n in T (ns) is the nth subsequent event of the event "return book". It means that. Further, n in T (n) represents that the event is the nth basic event among the basic events constituting the event "return book".
【0012】この事象の概念構造から導かれる語彙知識
の例として、以下の述語cause,pre_cond
はそれぞれ、事象Qが事象Pの後続状態である、すなわ
ち事象Pが事象Qを引き起こすことと、事象Pが事象Q
の前提条件であることとを表す。 cause(P,Q) pre_cond(P,Q) 隣接発話間関係構造記憶手段4は、先行発話Preと後
続発話Sucの関係を記述した構造を記憶する。まず、
二発話間の関係pairは、先行発話から発話間関係I
nf_knを介して原応答Orgを導く推論ref_w
hatと、原応答から発話間関係Inf_rhを介して
後続発話を導く推論ref_howとの二段階の推論に
より記述される。以下では各種の関係構造を、プログラ
ム言語Prologのホーン節の形式を用いて記述す
る。 pair(Pre,Suc):− ref_what(Pre,Org,Inf_kn),
ref_how(Org,Suc,Inf_rh). 先行発話Preと原応答Orgとの関係構造の記述例を
以下に示す。 (w1)正常応答。質問に対する直接的答をそのまま伝
える。 ref_what(Pre,Org,正常応答):− forse(Org,情報伝達),contents
(Pre,P),contents(Org,Q),o
r(match(P,Q),match(P,not
(Q))). ここで、match(P,Q)は事象Pと事象Qとがほ
ぼ等しいということを表し、具体的には、互いの事象に
おいてその述語と引数とが類似を許して照合できること
を示す。プログラム言語Prologを用いた計算機に
おいては、Prologの操作の一つであるユニフィケ
ーションにより実現できる。(w2)誤解指摘。先行発
話の意味的前提が成立しないことを伝える。 ref_what(Pre,Org,誤解指摘):− forse(Org,情報伝達),prepr_log
(Pre,P),contents(Org,Q),m
atch(not(P),Q). 原応答Orgと後続発話Sucとの関係構造の記述例を
以下に示す。 (h1)直接的表現。原応答から後続発話を導く推論r
ef_howは、原応答を如何に対話相手に伝えるかと
いう修辞的展開にあたる推論であり、何も推論しない場
合は以下のような直接的表現となる。 ref_how(Org,Suc,直接的表現):− forse(Org,Oforse),forse(S
uc,Sforse),Oforse=Sforse,
contents(Org,Q),contents
(Suc,R),match(Q,R). また、修辞的展開は任意回繰り返されるように以下の構
造をも取り得る。Midは推論の中間段階における応答
情報である。実際には、現実的な許容範囲として修辞的
展開は2回までとし、従って以下の構造の適用は1度限
りとする。 ref_how(Org,Suc,[Inf_rh1,
Inf_rh2]):− ref_how(Org,Mid,Inf_rh1),
ref_how(Mid,Suc,Inf_rh2). (h2)理由。原応答の成立する理由を伝える。 ref_how(Org,Suc,理由):− forse(Suc,情報伝達),contents
(Org,Q),contents(Suc,R),o
r(cause(R,Q),pre_cond(not
(R),not(Q))). 隣接発話間関係認識手段5は、発話の意味内容と、発話
の前提と、語彙知識と、隣接発話間関係構造とを参照し
て、隣接発話間関係を認識する。As an example of vocabulary knowledge derived from the conceptual structure of this event, the following predicates cause, pre_cond
Respectively, the event Q is the successor state of the event P, that is, the event P causes the event Q, and the event P is the event Q.
It is a precondition of. cause (P, Q) pre_cond (P, Q) The adjacent utterance relation structure storage unit 4 stores a structure describing the relationship between the preceding utterance Pre and the subsequent utterance Suc. First,
The relation pair between two utterances is the relation I between the preceding utterance and the utterance I.
Inference ref_w leading the original response Org via nf_kn
It is described by a two-stage inference including hat and inference ref_how that guides a subsequent utterance from the original response via the inter-utterance relation Inf_rh. In the following, various relational structures will be described using the Horn clause format of the programming language Prolog. pair (Pre, Suc):-ref_what (Pre, Org, Inf_kn),
ref_how (Org, Suc, Inf_rh). A description example of the relational structure between the preceding utterance Pre and the original response Org is shown below. (W1) Normal response. Give direct answers to questions as they are. ref_what (Pre, Org, normal response):-force (Org, information transmission), contents
(Pre, P), contents (Org, Q), o
r (match (P, Q), match (P, not
(Q))). Here, match (P, Q) indicates that the event P and the event Q are substantially equal to each other, and specifically, indicates that the predicate and the argument in each event can be compared with each other while allowing similarities. A computer using the programming language Prolog can be realized by unification, which is one of the operations of Prolog. (W2) Misunderstanding pointed out. Tell them that the semantic premise of the preceding utterance is not met. ref_what (Pre, Org, misunderstanding):-force (Org, information transmission), prepr_log
(Pre, P), contents (Org, Q), m
match (not (P), Q). A description example of the relationship structure between the original response Org and the subsequent utterance Suc is shown below. (H1) Direct expression. Inference r that guides subsequent utterances from the original response
ef_how is an inference that is a rhetorical development of how to convey the original response to the dialogue partner, and when nothing is inferred, it becomes the following direct expression. ref_how (Org, Suc, direct expression):-force (Org, Forse), force (S
uc, Sforce), and Force = Sforce,
contents (Org, Q), contents
(Suc, R), match (Q, R). Also, the rhetorical expansion can take the following structure so that it is repeated any number of times. Mid is response information in the intermediate stage of inference. In practice, the rhetorical expansion is limited to two times as a practical allowable range, and therefore the following structure is applied only once. ref_how (Org, Suc, [Inf_rh1,
Inf_rh2]):-ref_how (Org, Mid, Inf_rh1),
ref_how (Mid, Suc, Inf_rh2). (H2) Reason. Communicate the reason for the original response. ref_how (Org, Suc, reason):-force (Suc, information transmission), contents
(Org, Q), contents (Suc, R), o
r (cause (R, Q), pre_cond (not
(R), not (Q))). The adjacent utterance relation recognition means 5 recognizes the adjacent utterance relation by referring to the meaning content of the utterance, the utterance premise, the vocabulary knowledge, and the adjacent utterance relation structure.
【0013】本発明の一実施例の具体的な動作を、前出
の発話A1と発話B2とを用いて説明する。A specific operation of one embodiment of the present invention will be described using the utterances A1 and B2 described above.
【0014】発話意味内容抽出手段1は、入力された二
発話の意味内容として以下に示すような情報を抽出す
る。 contents(A1,exist((S 広辞苑)
(P ?))) contents(B2,sold_out((S 広
辞苑)(P 書店))) forse(B2,情報伝達) 発話前提抽出手段2は、先行発話A1の意味内容から、
存在前提として以下に示す情報を抽出する。 prepr_log(A1,exist((S 広辞
苑)(P 書店))) 隣接発話間関係認識手段5は、上記発話の意味内容およ
び前提と、語彙知識記憶手段3に記憶されている事象
「売り切れる」の概念構造から導かれる語彙知識 cause(sold_out((S 物)(P
店)),not(exist((S 物)(P
店)))) と、隣接発話間関係構造記憶手段4に記憶されている誤
解指摘と理由の二つの隣接発話間関係構造とを参照し
て、以下のように隣接発話間関係を認識する。 ref_what(A1,Org,誤解指摘):− forse(Org,情報伝達),prepr_log
(A1,P),contents(Org,Q),ma
tch(not(P),Q). ref_how(Org,B2,理由):− forse(B2,情報伝達),contents(O
rg,Q),contents(B2,R),caus
e(R,Q). ただし、上記の関係構造において、 P:=exist((S 広辞苑)(P 店)) Q:=not(exist((S 広辞苑)(P
店))) R:=sold_out((S 広辞苑)(P 店)) である。従って、 pair(A1,B2):− ref_what(A1,Org,誤解指摘),ref
_how(Org,B2,理由). となり、先行発話A1と後続発話B2との隣接発話間関
係を誤解指摘および理由であるとして認識できる。The utterance semantic content extraction means 1 extracts the following information as the semantic content of the input two utterances. contents (A1, exist ((S Kojien)
(P?))) Contents (B2, sold_out ((S Kojien) (P bookstore))) force (B2, information transmission) The utterance premise extraction unit 2 extracts the meaning content of the preceding utterance A1.
The following information is extracted as a premise of existence. prepr_log (A1, exist ((S Kojien) (P bookstore))) The adjacent utterance-to-speech relationship recognition means 5 has the meaning and premise of the utterance, and the concept of the event "sold out" stored in the vocabulary knowledge storage means 3. Lexical knowledge derived from structure cause (sold_out ((S object) (P
Store)), not (exist ((S thing) (P
The adjacent utterance relation is recognized as follows by referring to the store)))) and the two adjacent utterance relation structures stored in the adjacent utterance relation structure storage means 4 as to the misunderstanding indication and the reason. ref_what (A1, Org, misunderstanding):-force (Org, information transmission), prepr_log
(A1, P), contents (Org, Q), ma
tch (not (P), Q). ref_how (Org, B2, reason):-force (B2, information transmission), contents (O
rg, Q), contents (B2, R), caus
e (R, Q). However, in the above relational structure, P: = exist ((S Kojien) (P store)) Q: = not (exist ((S Kojien) (P
Store))) R: = sold_out ((S Kojien) (P store)). Therefore, pair (A1, B2):-ref_what (A1, Org, misunderstanding), ref
_How (Org, B2, reason). Therefore, the relationship between adjacent utterances of the preceding utterance A1 and the subsequent utterance B2 can be recognized as a misunderstanding and a reason.
【0015】なお、本発明の第2の実施例として、語句
が表す対象間の概念関係を記憶する概念関係記憶手段6
およびプランゴール構造を含めた領域に依存した知識を
記憶する領域知識記憶手段7を有し、隣接発話間関係認
識手段5において、概念関係および領域知識をも参照し
て、隣接発話間関係を認識する実施例の構成を表すブロ
ック図を図5に示す。以下、第2の実施例について説明
する。As a second embodiment of the present invention, the concept relation storage means 6 for storing the concept relation between the objects represented by the words and phrases.
And the area knowledge storage means 7 for storing knowledge depending on the area including the plan goal structure, and the adjacent utterance relation recognition means 5 recognizes the adjacent utterance relation by also referring to the conceptual relationship and the area knowledge. FIG. 5 is a block diagram showing the configuration of the embodiment. The second embodiment will be described below.
【0016】概念関係記憶手段6は、語句が表す対象間
の概念関係を記憶する。この対象間の概念関係から導か
れる知識として、以下の述語same_categor
y,is_aはそれぞれ、対象Aと対象Bが同一の対象
の直接の下位概念であること、対象Aが対象Bの下位概
念であることを表す。 same_category(A,B) is_a(A,B) このような述語is_aを導入したことにより、隣接発
話間関係構造記憶手段4において、次に示すような原応
答と後続発話との関係構造の記述が可能となる。 (h3)判断の根拠。原応答の内容を判断した根拠を伝
える。 ref_how(Org,Suc,判断の根拠):− forse(Suc,情報伝達),contents
(Org,Q),contents(Suc,R),o
r(is_a(Q,R),cause(R,Q),pr
e_cond(Q,R)). 領域知識記憶手段7は、プランゴール構造を含めた領域
に依存した知識を記憶する。プランゴール構造から導か
れる知識として、以下の述語subplanは、事象P
が事象Qを構成するサブプランであることを表す。 subplan(P,Q) このような述語subplanを導入したことにより、
隣接発話間関係構造記憶手段4において、次に示すよう
な先行発話と原応答との関係構造の記述が可能となる。 (w3)途中経過報告。質問に対する答を得ることをゴ
ールとしてプランニングを実行し、その途中経過を伝え
る。 ref_what(Pre,Org,途中経過報告):
− forse(Org,情報伝達),contents
(Pre,P),contents(Org,Q),s
ubplan(Q,P).The conceptual relationship storage means 6 stores the conceptual relationship between the objects represented by the phrases. As knowledge derived from the conceptual relationship between the objects, the following predicate same_categor
y and is_a represent that the target A and the target B are direct subordinate concepts of the same target, and the target A is a subordinate concept of the target B, respectively. same_category (A, B) is_a (A, B) By introducing such a predicate is_a, the relation structure between the adjacent utterances and the following utterance can be described in the adjacent utterance relation structure storage means 4. It will be possible. (H3) Grounds for judgment. Communicate the basis for determining the content of the original response. ref_how (Org, Suc, basis of judgment):-force (Suc, information transmission), contents
(Org, Q), contents (Suc, R), o
r (is_a (Q, R), cause (R, Q), pr
e_cond (Q, R)). The area knowledge storage means 7 stores knowledge depending on the area including the plan goal structure. As the knowledge derived from the plan goal structure, the following predicate subplan is the event P
Represents that it is a subplan that constitutes the event Q. subplan (P, Q) By introducing such a predicate subplan,
The relationship structure between the adjacent utterances can be described in the relationship structure storage means 4 between the following utterances and the original response. (W3) Progress report. Planning is carried out with the goal of obtaining answers to questions, and the progress is reported. ref_what (Pre, Org, progress report):
-Force (Org, information transmission), contents
(Pre, P), contents (Org, Q), s
ubplan (Q, P).
【0017】[0017]
【発明の効果】上述のように本発明の隣接発話間関係認
識装置によれば、入力発話の意味内容および前提を抽出
し、それらの情報と隣接発話間関係構造および語彙知識
などの一般的な知識とを参照することにより、任意の隣
接発話間関係を認識することができる。As described above, according to the apparatus for recognizing the relationship between adjacent utterances of the present invention, the semantic content and premise of the input utterance are extracted, and the information, the structure of the relationship between adjacent utterances, and the vocabulary knowledge are generally recognized. By referring to the knowledge, it is possible to recognize an arbitrary relationship between adjacent utterances.
【図1】本発明の一実施例の構成を表すブロック図FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
【図2】質問文の前提の分類を示す図FIG. 2 is a diagram showing the classification of the premise of a question sentence.
【図3】事象の概念構造を示す図FIG. 3 is a diagram showing a conceptual structure of an event.
【図4】事象「本を返す」の概念構造を示す図FIG. 4 is a diagram showing a conceptual structure of an event “return book”.
【図5】本発明の第2の実施例の構成を表すブロック図FIG. 5 is a block diagram showing a configuration of a second exemplary embodiment of the present invention.
1 発話意味内容抽出手段 2 発話前提抽出手段 3 語彙知識記憶手段 4 隣接発話間関係構造記憶手段 5 隣接発話間関係認識手段 6 概念関係記憶手段 7 領域知識記憶手段 1 utterance meaning content extraction means 2 utterance premise extraction means 3 vocabulary knowledge storage means 4 adjacent utterance relation structure storage means 5 adjacent utterance relation recognition means 6 conceptual relation storage means 7 domain knowledge storage means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 北橋 忠宏 大阪府豊中市上野西3丁目1−45 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tadahiro Kitahashi 3- 1-43 Uenonishi, Toyonaka, Osaka
Claims (4)
話の働きなどから成る発話の意味内容を抽出する発話意
味内容抽出手段と、前記発話の意味内容から発話の前提
を抽出する発話前提抽出手段と、事象を表す語句に付随
する事象の概念構造を記憶する語彙知識記憶手段と、隣
接する発話間の関係を記述した構造を記憶する隣接発話
間関係構造記憶手段と、前記発話の意味内容と、前記発
話の前提と、前記語彙知識と、前記隣接発話間関係構造
とを参照して、隣接発話間関係を認識する隣接発話間関
係認識手段とを有することを特徴とする隣接発話間関係
認識装置。1. An utterance meaning content extraction means for extracting the meaning content of an utterance consisting of a statement object, a sentence pattern, a utterance function, etc. from two input utterances, and an utterance premise for extracting an utterance premise from the meaning content of the utterance. Extraction means, vocabulary knowledge storage means for storing a conceptual structure of an event associated with a phrase representing an event, adjacent utterance relation structure storage means for storing a structure describing a relationship between adjacent utterances, and meaning of the utterance Between adjacent utterances, the content, the premise of the utterance, the vocabulary knowledge, and the adjacent utterance relation recognizing means for recognizing the adjacent utterance relation by referring to the adjacent utterance relation structure. Relationship recognizer.
念関係記憶手段を有し、隣接発話間関係認識手段におい
て、前記概念関係をも参照して、隣接発話間関係を認識
することを特徴とする請求項1記載の隣接発話間関係認
識装置。2. A concept relation storing means for storing a concept relation between objects represented by phrases, wherein the adjacent utterance relation recognizing means also recognizes the adjacent utterance relation by also referring to the conceptual relation. The apparatus for recognizing the relationship between adjacent utterances according to claim 1.
知識を記憶する領域知識記憶手段を有し、隣接発話間関
係認識手段において、前記領域知識をも参照して、隣接
発話間関係を認識することを特徴とする請求項1または
2記載の隣接発話間関係認識装置。3. A region knowledge storage unit for storing knowledge dependent on a region including a plan goal structure, wherein the adjacent utterance relation recognizing unit also refers to the region knowledge to recognize an adjacent utterance relation. The adjacent utterance relation recognition device according to claim 1 or 2.
表現された対話構造を動的に管理する対話構造管理手段
と、前記対話構造を参照して、質問発話と、前記質問発
話に対応するいくつかの応答発話とから成る発話対を認
識する発話対認識手段とを有することを特徴とする請求
項1〜3のいずれかに記載の隣接発話間関係認識装置。4. A dialogue structure management means for dynamically managing a dialogue structure represented by a tree structure based on a plan goal structure, a question utterance, and a number corresponding to the question utterance with reference to the dialogue structure. 4. The apparatus for recognizing the relationship between adjacent utterances according to claim 1, further comprising utterance pair recognition means for recognizing an utterance pair consisting of the response utterance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5311651A JPH07160717A (en) | 1993-12-13 | 1993-12-13 | Device for recognizing relation between adjacent speeches |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5311651A JPH07160717A (en) | 1993-12-13 | 1993-12-13 | Device for recognizing relation between adjacent speeches |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07160717A true JPH07160717A (en) | 1995-06-23 |
Family
ID=18019853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5311651A Pending JPH07160717A (en) | 1993-12-13 | 1993-12-13 | Device for recognizing relation between adjacent speeches |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07160717A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537223A (en) * | 2017-09-28 | 2020-12-17 | オラクル・インターナショナル・コーポレイション | Allowing autonomous agents to distinguish between questions and requests |
CN113255371A (en) * | 2021-07-14 | 2021-08-13 | 华东交通大学 | Semi-supervised Chinese-English implicit discourse relation recognition method and system |
-
1993
- 1993-12-13 JP JP5311651A patent/JPH07160717A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537223A (en) * | 2017-09-28 | 2020-12-17 | オラクル・インターナショナル・コーポレイション | Allowing autonomous agents to distinguish between questions and requests |
CN113255371A (en) * | 2021-07-14 | 2021-08-13 | 华东交通大学 | Semi-supervised Chinese-English implicit discourse relation recognition method and system |
CN113255371B (en) * | 2021-07-14 | 2021-09-24 | 华东交通大学 | Semi-supervised Chinese-English implicit discourse relation recognition method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9548051B2 (en) | System and method of spoken language understanding in human computer dialogs | |
Matheson et al. | Modelling grounding and discourse obligations using update rules | |
KR101169113B1 (en) | Machine learning | |
WO2019168253A1 (en) | Interactive counseling chatbot device and method for hierarchically understanding user's expression and generating answer | |
Skantze | Exploring human error handling strategies: Implications for spoken dialogue systems | |
JPH08106298A (en) | Device and method for conversation processing | |
AU2019219717B2 (en) | System and method for analyzing partial utterances | |
KR102703212B1 (en) | Method and apparatus for artificial intelligence psychological counseling based on chat bot | |
Bavin | Language acquisition in crosslinguistic perspective | |
Trivedi | Fundamentals of Natural Language Processing | |
JPH07160717A (en) | Device for recognizing relation between adjacent speeches | |
Allen | ARGOT: A system overview | |
JPH0793351A (en) | Natural language question and answer generating device | |
Grosz et al. | Discourse and dialogue | |
JPH07160718A (en) | Speech pair recognizing device | |
Core | Analyzing and predicting patterns of DAMSL utterance tags | |
Förster et al. | Working with roubles and failures in conversation between humans and robots: workshop report | |
Misu et al. | Annotating communicative function and semantic content in dialogue act for construction of consulting dialogue systems | |
JPH03225389A (en) | Device for practicing language | |
JPS63106042A (en) | Method for recognizing intention of conversation text | |
KR102696311B1 (en) | Voice to text conversion recording system | |
Origlia et al. | Designing Interactive Experiences to Explore Artwork Collections: a Multimedia Dialogue System Supporting Visits in Museum Exhibits. | |
Steele et al. | Speech detection of stakeholders' non-functional requirements | |
TW202427457A (en) | Systems and methods for question answering software deployment | |
Koslow et al. | Enhancing Knowledge Externalization with Speech-Based Protocol Systems: A Design Science Approach. |