JPH07160330A - Position self-detecting method for autonomous traveling working vehicle - Google Patents

Position self-detecting method for autonomous traveling working vehicle

Info

Publication number
JPH07160330A
JPH07160330A JP5302059A JP30205993A JPH07160330A JP H07160330 A JPH07160330 A JP H07160330A JP 5302059 A JP5302059 A JP 5302059A JP 30205993 A JP30205993 A JP 30205993A JP H07160330 A JPH07160330 A JP H07160330A
Authority
JP
Japan
Prior art keywords
vehicle
marker
sign
ccd camera
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5302059A
Other languages
Japanese (ja)
Other versions
JP3245284B2 (en
Inventor
Takeshi Torii
毅 鳥居
Takayuki Sogawa
能之 十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP30205993A priority Critical patent/JP3245284B2/en
Publication of JPH07160330A publication Critical patent/JPH07160330A/en
Application granted granted Critical
Publication of JP3245284B2 publication Critical patent/JP3245284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

PURPOSE:To recognize a marker without being affected by the slanting and vibration of the vehicle in an uneven or undulating area and perform position self-detection by finding the feature quantity of the marker from plural images picked up at specific time intervals and recognizing the marker. CONSTITUTION:When a light 8b for lighting is turned ON through a light driving circuit, a motor 11 is driven through a motor driving circuit and the light 8b and a CCD camera 8a Are rotated at a set speed through a rotating mechanism part. An image pickup time interval which generates no dead angle is found from the rotating speed of the CCD camera 9a and the lateral field angle of the CCD camera 8a, the electronic shutter of the CCD camera 8a is triggered at intervals to pick up images of the whole circumferential scenery of 360 deg., and the feature quantity corresponding to the marker is found from luminance information and color information on the picked-up images or shapes, etc., to detect the marker. After all markers are recognized, local position data generated by calculating the current vehicle position by known trigonometry from the previously stored positions of the respective markers are sent out to a travel control part 37.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定の作業領域周辺に
設置された複数の標識を認識して自己位置を検出し、草
刈、芝刈作業等における作業走行を行なう自律走行作業
車の自己位置検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention recognizes a plurality of signs installed around a specific work area to detect its own position, and performs self-positioning of an autonomous traveling work vehicle for carrying out work traveling in grass cutting, lawn mowing, etc. It relates to a detection method.

【0002】[0002]

【従来の技術】従来、無人で自律走行する自律走行車に
対しては、自律走行のための自己位置検出として、電線
を地下に埋設し、この電線が発する磁界を磁気センサで
検出する技術が提案されているが、ゴルフ場、河川敷堤
防、公園等の各種フィールドで草刈、芝刈等の作業を無
人で行なう自律走行作業車等のように、自律走行領域が
広大な場合、領域の地下全てに電線を埋設することは困
難であり、設置費用も大きなものとなる。
2. Description of the Related Art Conventionally, for an autonomous vehicle that is autonomously autonomously traveling, there is a technique in which an electric wire is buried underground and a magnetic sensor detects a magnetic field generated by the electric wire as self-position detection for autonomous traveling. Although it has been proposed, if the autonomous driving area is large, such as an autonomous vehicle that performs unmanned grass cutting, lawn cutting, etc. in various fields such as golf courses, river banks, parks, etc. It is difficult to embed the electric wire, and the installation cost becomes large.

【0003】このため、複数の標識を自律走行させる領
域の周辺に設置し、この標識を認識して自車輌位置を検
出する技術が開発されており、例えば、特開平3−13
5606号公報には、特定区域内に立設した複数の再帰
性反射ポール(光反射標識)に投光し、反射光を光セン
サで受光して隣合う反射ポールを臨む角度を検出し、検
出した角度と標識の既知の座標とから三点挟角法(三角
測量法)により自己位置を検出する技術が開示されてい
る。
For this reason, a technique has been developed in which a plurality of signs are installed in the vicinity of an autonomously traveling area and the position of the vehicle is detected by recognizing the signs.
In Japanese Patent No. 5606, a plurality of retroreflective poles (light reflective markers) standing upright in a specific area are projected, the reflected light is received by an optical sensor, and an angle facing adjacent reflective poles is detected and detected. There is disclosed a technique for detecting the self-position by the three-point angle method (triangulation method) from the angle thus obtained and the known coordinates of the sign.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、自律走
行作業車では、不整地やうねりがある作業領域を自律走
行することによる車輌の傾斜や車輌の振動があるため、
投光した光ビームが標識をはずれたり、標識からの反射
光を受光することが困難な場合があり、標識を見失って
自己位置を検出できないおそれがある。
However, in an autonomously traveling work vehicle, since the vehicle tilts or vibrates due to autonomous traveling in a work area with uneven terrain or swell,
The projected light beam may leave the sign or it may be difficult to receive the reflected light from the sign, and the sign may be lost and the self position may not be detected.

【0005】本発明は上記事情に鑑みてなされたもの
で、不整地やうねりのある領域での車輌の傾斜や車輌の
振動に影響されることなく確実に標識を認識することが
でき、正確な自己位置検出を行なうことのできる自律走
行作業車の自己位置検出方法を提供することを目的とし
ている。
The present invention has been made in view of the above circumstances, and it is possible to surely recognize a sign without being influenced by the inclination of the vehicle or the vibration of the vehicle in an area having uneven terrain or undulation, and it is possible to perform accurate measurement. It is an object of the present invention to provide a self-position detection method for an autonomous traveling work vehicle that can detect the self-position.

【0006】[0006]

【課題を解決するための手段】本発明は、特定の作業領
域周辺に設置した複数の標識を認識し、三角測量により
自己位置を検出する自律走行作業車の自己位置検出方法
において、前記自律走行作業車に、全周囲を撮像可能な
よう撮像手段を回転させる回転機構部を設け、前記回転
機構部の回転速度と前記撮像手段の撮像画角とから設定
した時間間隔毎に前記撮像手段により前記標識を含む周
囲の画像を撮像し、撮像した複数枚の画像から前記標識
の特徴量を求めて前記標識を認識することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention provides a self-position detecting method for a self-propelled work vehicle, which recognizes a plurality of markers installed around a specific work area and detects the self-position by triangulation. The work vehicle is provided with a rotation mechanism section for rotating the image pickup means so that the entire circumference can be picked up, and the image pickup means sets the time interval at a time interval set based on the rotation speed of the rotation mechanism section and the image pickup angle of view of the image pickup means. It is characterized in that an image of a surrounding area including a sign is picked up, the feature amount of the sign is obtained from a plurality of picked-up images, and the sign is recognized.

【0007】[0007]

【作用】本発明では、自律走行作業車に設けた回転機構
部を介して撮像手段を回転させ、その回転速度と撮像手
段の撮像画角とから設定した時間間隔毎に標識を含む周
囲の画像を撮像する。そして、撮像した複数枚の画像か
ら標識の特徴量を求めて標識を認識し、三角測量により
自己位置を検出する。
According to the present invention, the image pickup means is rotated through the rotation mechanism provided in the autonomous traveling work vehicle, and the surrounding image including the mark is set at every time interval set by the rotation speed and the image pickup angle of view of the image pickup means. Image. Then, the feature amount of the sign is obtained from the plurality of captured images, the sign is recognized, and the self-position is detected by triangulation.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図面は本発明の一実施例に係わり、図1は自己位
置検出ルーチンのフローチャート、図2は主制御ルーチ
ンのフローチャート、図3は芝刈作業車の外観を示す概
略説明図、図4は制御系のブロック図、図5は自車輌位
置検出部の回路構成図、図6は走行経路及び作業領域を
示す説明図、図7は三角測量による自己位置検出の説明
図である。
Embodiments of the present invention will be described below with reference to the drawings. The drawings relate to one embodiment of the present invention, FIG. 1 is a flow chart of a self-position detection routine, FIG. 2 is a flow chart of a main control routine, FIG. 3 is a schematic explanatory view showing the appearance of a lawnmower, and FIG. 4 is a control system. FIG. 5 is a block diagram, FIG. 5 is a circuit configuration diagram of a vehicle position detection unit, FIG. 6 is an explanatory diagram showing a travel route and a work area, and FIG. 7 is an explanatory diagram of self-position detection by triangulation.

【0009】図3において、符号1は無人で自律走行が
可能な自律走行作業車を示し、本実施例においてはゴル
フ場等の草・芝刈り作業を行う芝刈作業車である。この
芝刈作業車1は、エンジン駆動で走行し、前後輪の操舵
角を独立して制御することができるようになっており、
車輌本体下部に、草・芝刈作業を行うためのモーア等の
刈刃機構部2を備えるとともに、走行履歴に基づいて現
在位置を測定するための推測航法用センサ、走行障害物
を検出するための障害物検出用センサ、草・芝刈作業領
域において刈跡境界に沿った倣い走行を行うための倣い
走行用センサ等が搭載されるとともに、草・芝刈作業領
域の周辺に立設された複数の標識を撮像し、この撮像画
像から標識を認識して三角測量により自己位置を検出す
るための撮像手段を備えている。
In FIG. 3, reference numeral 1 designates an autonomous traveling work vehicle which is capable of autonomous driving by an unmanned vehicle, and in this embodiment is a lawn mowing work vehicle for performing grass and lawn mowing work on a golf course or the like. This lawnmower vehicle 1 is driven by an engine, and the steering angles of the front and rear wheels can be independently controlled.
In the lower part of the vehicle body, a cutting blade mechanism 2 such as a mower for performing grass / lawn mowing work is provided, a dead reckoning sensor for measuring the current position based on the traveling history, and a traveling obstacle for detecting an obstacle. A sensor for detecting obstacles, a sensor for profile travel for performing profile travel along the cutting boundary in the grass / lawn mowing work area, etc. are installed, and a plurality of markers standing upright around the grass / lawn mowing work area. It is provided with an image pickup means for picking up an image, recognizing the sign from the picked-up image, and detecting the self-position by triangulation.

【0010】前記推測航法用センサとしては、地磁気セ
ンサ3と車輪エンコーダ4とが前記芝刈作業車1に備え
られ、前記障害物検出用センサとしては、超音波センサ
あるいは光センサ等からなる無接触型センサ5a,5b
が前記芝刈作業車1の前後部に取り付けられるととも
に、マイクロスイッチ等を使用した接触型センサ6a,
6bが前記芝刈作業車1の前後端に取り付けられてい
る。
As the dead reckoning sensor, a geomagnetic sensor 3 and a wheel encoder 4 are provided in the lawnmower work vehicle 1, and as the obstacle detecting sensor, there is a non-contact type including an ultrasonic sensor or an optical sensor. Sensors 5a, 5b
Are attached to the front and rear parts of the lawn mowing work vehicle 1, and a contact type sensor 6a using a micro switch or the like,
6b are attached to the front and rear ends of the lawnmower working vehicle 1.

【0011】また、倣い走行用センサとしては、例え
ば、草・芝丈に応じて上下するそり状の板と、このそり
状の板を支持する部材の回動角を検出するロータリエン
コーダ等を組合わせて既刈部と未刈部との刈跡境界を検
出する刈跡境界検出センサ7が前記芝刈作業車1の車輌
本体下部に備えられている。
As the copying traveling sensor, for example, a sled plate which moves up and down according to the length of grass / turf and a rotary encoder which detects a rotation angle of a member supporting the sled plate are combined. In addition, a cut mark boundary detection sensor 7 for detecting a cut mark boundary between the already cut portion and the uncut portion is provided at the lower portion of the vehicle body of the lawnmower work vehicle 1.

【0012】また、標識を撮像するための撮像手段とし
ては、例えば固体撮像素子(CCD)を使用したCCD
カメラが使用される。このCCDカメラは、芝刈作業車
1の前方側に立設された回転機構部10に、CCDカメ
ラの視野をカバーする照明用ライトと一体になった撮像
ユニット8として取付軸と直角方向に撮像面を向けた状
態で取付けられており、取付軸に対して360°全周に
回転させられて全周撮像が可能なようになっている。
As an image pickup means for picking up an image of a sign, for example, a CCD using a solid-state image pickup device (CCD)
A camera is used. This CCD camera is an image pickup unit 8 integrated with an illumination light for covering the field of view of the CCD camera on a rotating mechanism portion 10 standing upright on the front side of the lawn mowing vehicle 1, and has an image pickup surface perpendicular to the mounting axis. It is mounted with the camera facing to, and is rotated by 360 ° with respect to the mounting shaft so that imaging can be performed on the entire circumference.

【0013】以上の芝刈作業車1における自己位置検出
・自律走行制御は、図4に示す制御装置30によって行
なわれ、この制御装置30は、複数のマイクロコンピュ
ータからなる検出部と制御部とで構成される。
The above-described self-position detection / autonomous traveling control in the lawnmower work vehicle 1 is performed by the control device 30 shown in FIG. 4, and the control device 30 is composed of a detection part and a control part which are composed of a plurality of microcomputers. To be done.

【0014】各センサ・アクチュエータ類の信号を処理
する検出部としては、自車輌位置検出部31、刈跡境界
検出部35、及び、障害物検出部36が備えられ、前記
各検出部31,35,36からの信号に基づいて制御を
行なう制御部としては、走行制御を行なうための走行制
御部37、この走行制御部37によって参照される作業
データ・マップが格納されている作業データ蓄積部3
8、前記走行制御部37からの指示によって車輌制御を
行う車輌制御部39が備えられ、さらに、この車輌制御
部39からの出力に基づいて芝刈作業車1の各機構部を
駆動するため、駆動制御部40、操舵制御部41、刈刃
制御部42が備えられている。
As a detection unit for processing the signals of the sensors and actuators, a vehicle position detection unit 31, a cut boundary detection unit 35, and an obstacle detection unit 36 are provided, and the detection units 31, 35 are used. , 36 as a control unit for performing control based on signals from the vehicle, a traveling control unit 37 for performing traveling control, and a work data storage unit 3 in which a work data map referred to by the traveling control unit 37 is stored.
8. A vehicle control unit 39 for controlling the vehicle in accordance with an instruction from the traveling control unit 37 is provided. Further, based on the output from the vehicle control unit 39, each mechanical unit of the lawnmower working vehicle 1 is driven. A control unit 40, a steering control unit 41, and a cutting blade control unit 42 are provided.

【0015】さらに、前記自車輌位置検出部31は、前
記車輪エンコーダ4によって検出される車速を積分して
走行距離を求め、この走行距離を前記地磁気センサ3に
より検出した走行方向の変化に対応させて累積すること
により、基準地点からの走行履歴を算出して自車輌の現
在位置を測定する推測航法位置検出部32と、前記撮像
ユニット8のCCDカメラ8a及びライト8b、前記回
転機構部10に内蔵されたステップモータあるいはサー
ボモータ等の回転駆動用モータ11に対し、標識撮像の
ための各駆動信号を出力する標識撮像制御部33と、前
記CCDカメラ8aからのビデオ信号を処理して複数の
標識を認識し、前記回転機構部10に取付けられた回転
角センサ12からの回転角度信号、前記推測航法位置検
出部32からの測位データ、及び、予め記憶してある各
標識の位置データを照らし合わせて個々の標識を識別し
て予め記憶してある標識の位置データから三角測量原理
により自己位置を検出する三角測量位置検出部34とか
ら構成されている。
Further, the vehicle position detecting section 31 integrates the vehicle speed detected by the wheel encoder 4 to obtain a traveling distance, and makes the traveling distance correspond to a change in traveling direction detected by the geomagnetic sensor 3. The dead reckoning position detection unit 32 that calculates the traveling history from the reference point and measures the current position of the vehicle, the CCD camera 8a and the light 8b of the image pickup unit 8, and the rotation mechanism unit 10 by accumulating the accumulated data. A sign image pickup controller 33 that outputs each drive signal for sign image pickup to a rotation driving motor 11 such as a built-in step motor or servo motor, and a plurality of video signals from the CCD camera 8a are processed to process a plurality of signals. Recognizing the sign, the rotation angle signal from the rotation angle sensor 12 attached to the rotation mechanism unit 10, and the measurement from the dead reckoning position detection unit 32. A triangulation position detection unit 34 that compares the data and the position data of each sign that has been stored in advance to identify each sign, and detects the self-position based on the triangulation principle from the position data of the sign that is stored in advance. It consists of and.

【0016】一方、前記刈跡境界検出部35は、刈跡境
界検出センサ7からの草・芝丈に応じた信号を処理して
草・芝の境界位置を検出する。前記刈跡境界検出センサ
7が、前述したように、草・芝丈に応じて上下するそり
状の板と、このそり状の板を支持する部材の回動角を検
出するロータリエンコーダ等から構成される場合、草・
芝丈に応じたそり状の板の上下の変位が回動角に変換さ
れてロータリエンコーダからの検出信号が入力される
と、前記刈跡境界検出部35では、この検出信号から草
・芝刈作業済みの領域と未作業領域とを識別して刈跡境
界を検出し、その位置データを前記走行制御部37に出
力する。
On the other hand, the cut boundary detection unit 35 processes the signal from the cut boundary detection sensor 7 according to the grass / turf height to detect the grass / turf boundary position. As described above, the cut boundary detecting sensor 7 is composed of a sled-shaped plate that moves up and down according to the length of grass / turf, and a rotary encoder that detects a rotation angle of a member that supports the sled-shaped plate. If so, grass
When the vertical displacement of the sled-shaped plate corresponding to the lawn height is converted into a rotation angle and a detection signal is input from the rotary encoder, the cut boundary detection unit 35 uses the detection signal to detect grass and lawn mowing work. The cut area boundary is detected by distinguishing the completed area and the unworked area, and the position data is output to the traveling control unit 37.

【0017】また、前記障害物検出部36は、無接触型
センサ5a,5b,接触型センサ6a,6bによって予
測できない障害物を検出し、検出信号を前記走行制御部
37に出力する。
The obstacle detecting section 36 detects obstacles which cannot be predicted by the non-contact type sensors 5a and 5b and the contact type sensors 6a and 6b, and outputs a detection signal to the traveling control section 37.

【0018】前記走行制御部37では、前記推測航法位
置検出部32、前記三角測量位置検出部34、前記刈跡
境界検出部35、前記障害物検出部36からの情報に基
づいて、作業データ蓄積部38のマップ(作業内容及び
草・芝刈り作業を行う作業領域の地形データ等の走行用
地図)を参照して自己の現在位置と目標位置との誤差量
を算出し、この誤差量分を補正すべく走行経路指示や車
輌制御指示を決定し、前記車輌制御部39に出力する。
The traveling control unit 37 accumulates work data based on the information from the dead reckoning position detecting unit 32, the triangulation position detecting unit 34, the cut mark boundary detecting unit 35, and the obstacle detecting unit 36. The amount of error between the current position of the user and the target position is calculated by referring to the map of the section 38 (the work content and the map for traveling such as the terrain data of the work area where grass and lawn mowing work are performed), and this error amount is calculated. A travel route instruction and a vehicle control instruction are determined to be corrected and output to the vehicle control unit 39.

【0019】前記車輌制御部39では、前記走行制御部
37からの指示を具体的な制御指示量に変換し、この制
御指示量を前記駆動制御部40、操舵制御部41、刈刃
制御部42に出力する。これにより、前記駆動制御部4
0で油圧モータ13を駆動して芝刈作業車1の各機構部
を駆動するための油圧を発生させ、前記操舵制御部41
で、それぞれ、前輪操舵用油圧制御弁14、後輪操舵用
油圧制御弁15を介して、図示しない前輪操舵機構、後
輪操舵機構をそれぞれサーボ制御し、また、前記刈刃制
御部42で、刈刃制御用油圧制御弁16を介して刈刃機
構部2をサーボ制御する。
The vehicle control unit 39 converts the instruction from the traveling control unit 37 into a specific control instruction amount, and the control instruction amount is driven by the drive control unit 40, the steering control unit 41, the cutting blade control unit 42. Output to. Accordingly, the drive control unit 4
At 0, the hydraulic motor 13 is driven to generate hydraulic pressure for driving each mechanism section of the lawnmower working vehicle 1, and the steering control section 41 is operated.
Then, the front wheel steering mechanism and the rear wheel steering mechanism (not shown) are servo-controlled via the front wheel steering hydraulic control valve 14 and the rear wheel steering hydraulic control valve 15, respectively, and the cutting blade control section 42 The cutting blade mechanism 2 is servo-controlled via the cutting blade control hydraulic control valve 16.

【0020】図5は、前記自車輌位置検出部31の具体
的回路構成を示し、CPU50に、ワークデータを保持
するためのRAM51、作業対象となる特定の領域の周
辺に設置された標識の位置データやその他の制御用固定
データ、及び、制御用プログラムが格納されているRO
M52、各種のデータ、制御信号の入出力のためのI/
Oインターフェース53が、データバス54及びアドレ
スバス55を介して接続されたマイクロコンピュータを
中心として構成され、CCDカメラ8aによる撮像を制
御するとともにビデオメモリ65に格納された撮像画像
を処理し、標識認識・三角測量による自車輌位置検出を
行なうようになっている。
FIG. 5 shows a concrete circuit configuration of the vehicle position detecting section 31. The CPU 50 has a RAM 51 for holding work data, and a position of a mark installed around a specific area to be worked. RO that stores data and other fixed data for control, and control program
I / O for input / output of M52, various data and control signals
The O interface 53 is mainly composed of a microcomputer connected via a data bus 54 and an address bus 55, controls the image pickup by the CCD camera 8a, processes the imaged image stored in the video memory 65, and recognizes the sign.・ The vehicle position is detected by triangulation.

【0021】すなわち、CPU50で後述する図1の自
己位置検出ルーチンのプログラムを実行し、I/Oイン
ターフェース53からモータ駆動回路56、ライト駆動
回路57へ制御信号を出力してライト8bを点灯させる
とともに回転駆動用モータ11により回転機構部10を
駆動してライト8b及びCCDカメラ8aを回転させ、
設定した時間間隔毎に電子シャッタ制御信号をCCDカ
メラ8aに出力して全周の撮像を行なう。
That is, the CPU 50 executes the program of the self-position detection routine of FIG. 1 which will be described later, and outputs a control signal from the I / O interface 53 to the motor drive circuit 56 and the light drive circuit 57 to turn on the light 8b. The rotation mechanism unit 10 is driven by the rotation driving motor 11 to rotate the light 8b and the CCD camera 8a,
An electronic shutter control signal is output to the CCD camera 8a at every set time interval to capture an image of the entire circumference.

【0022】CCDカメラ8aで撮像した画像は、NT
SC方式のビデオ信号としてアンプ58に送られ、増幅
されて同期回路59、AD変換器60にそれぞれ供給さ
れる。同期回路59では、ビデオ信号から同期信号を分
離してタイミング信号を生成し、AD変換器60及びア
ドレス制御回路61に供給する。
The image picked up by the CCD camera 8a is NT
An SC video signal is sent to the amplifier 58, amplified, and supplied to the synchronizing circuit 59 and the AD converter 60, respectively. The synchronizing circuit 59 separates the synchronizing signal from the video signal to generate a timing signal and supplies it to the AD converter 60 and the address control circuit 61.

【0023】AD変換器60ではアンプ58からのビデ
オ信号を、タイミング信号に同期してデジタル画像デー
タに変換し、データバス62を介して切換回路64に出
力する。また、アドレス制御回路61では、タイミング
信号に同期してアドレスデータを生成し、アドレスバス
63を介して切換回路64に供給する。
The AD converter 60 converts the video signal from the amplifier 58 into digital image data in synchronization with the timing signal and outputs it to the switching circuit 64 via the data bus 62. Further, the address control circuit 61 generates address data in synchronization with the timing signal and supplies it to the switching circuit 64 via the address bus 63.

【0024】切換回路64は、CPU50側のデータバ
ス54及びアドレスバス55と、AD変換器60側のデ
ータバス62及びアドレスバス63とのいずれか一方を
選択的にビデオメモリ65に接続するものであり、アド
レス制御回路61から切換回路64にアドレスデータが
供給されている間は、AD変換器60側のデータバス6
2をビデオメモリ65に接続して画像データが書込まれ
るようにし、この間、CPU50によるビデオメモリ6
5へのアクセスを禁止する。
The switching circuit 64 selectively connects either one of the data bus 54 and address bus 55 on the CPU 50 side and the data bus 62 and address bus 63 on the AD converter 60 side to the video memory 65. Yes, while the address data is being supplied from the address control circuit 61 to the switching circuit 64, the data bus 6 on the AD converter 60 side is provided.
2 is connected to the video memory 65 so that the image data can be written.
Access to 5 is prohibited.

【0025】そして、CCDカメラ8aからのビデオ信
号の供給が停止し、CPU50のビデオメモリ65への
アクセスが可能になると、ビデオメモリ65から画像デ
ータが読出され、この画像データが処理されて作業領域
周辺の複数の標識が認識された後、I/Oインターフェ
ース53を介して読込んだ地磁気センサ3、車輪エンコ
ーダ4、回転角センサ12からの各信号に基づいて個々
の標識を識別し、三角測量により自車輌の位置を算出し
てI/Oインターフェース53から前記走行制御部37
に自車輌位置情報が出力される。
When the supply of the video signal from the CCD camera 8a is stopped and the video memory 65 of the CPU 50 can be accessed, the image data is read from the video memory 65, and the image data is processed to make the work area. After a plurality of surrounding signs are recognized, each sign is identified based on each signal from the geomagnetic sensor 3, the wheel encoder 4, and the rotation angle sensor 12 read via the I / O interface 53, and triangulation is performed. The position of the vehicle is calculated by the I / O interface 53 and the traveling control unit 37 is operated.
The vehicle position information is output to.

【0026】以下、図6に示すような作業領域に対し、
無人で草・芝刈作業を行なう場合について説明する。こ
の場合、芝刈作業車1は、作業開始に当たって、予め任
意の準備位置70から作業領域72の草・芝刈作業の開
始点74に有人運転により移動させられているものと
し、作業領域72における草・芝刈作業が図1及び図2
のフローチャートに示すプログラムに従って自律的に行
われる。そして、作業終了後には、作業終了点75から
待機位置78に再び有人運転により移動させられる。
Hereinafter, for the work area as shown in FIG.
Explain the case where unmanned grass and lawn mowing work is performed. In this case, the lawn mowing vehicle 1 is assumed to have been moved in advance by manned operation from an arbitrary preparation position 70 to the grass / lawn mowing start point 74 in the work area 72 before starting work. Lawn mowing work is shown in Figs. 1 and 2.
It is performed autonomously according to the program shown in the flow chart. Then, after the work is completed, the work is moved from the work end point 75 to the standby position 78 again by manned driving.

【0027】尚、図6において符号PA,PB,PC
は、作業領域72の周辺に予め設置した標識である。
In FIG. 6, reference numerals PA, PB, PC
Is a sign installed in advance around the work area 72.

【0028】図2は走行制御部37で実行される主制御
ルーチンであり、この主制御ルーチンでは、まず、ステ
ップS101で、後述する図1の自己位置検出ルーチンを自
車輌位置検出部31で実行させ、標識PA,PB,PC
を認識して三角測量により自己位置を計測すると、草・
芝刈作業の開始点74に芝刈作業車1が到達しているこ
とを確認し、ステップS102で、刈刃制御用油圧制御弁1
6を開弁して刈刃機構部2に油圧を供給し、刈刃を作動
させて草・芝刈り作業を開始する。
FIG. 2 is a main control routine executed by the traveling control unit 37. In this main control routine, first, in step S101, the own vehicle position detection unit 31 executes the self-position detection routine of FIG. And labeled PA, PB, PC
Is recognized and the self position is measured by triangulation, the grass
It is confirmed that the lawn mowing vehicle 1 has reached the starting point 74 of the lawn mowing operation, and in step S102, the cutting blade control hydraulic control valve 1
6 is opened to supply hydraulic pressure to the cutting blade mechanism section 2 to operate the cutting blade to start grass / lawn mowing work.

【0029】次に、ステップS103へ進み、芝刈作業が1
回目であるか否かを調べ、作業一回目の第1の行程(第
1列)であればステップS104に進み、また2回目以後の
第2列以後であればステップS109へ分岐する。
Next, the process proceeds to step S103, and the lawn mowing work is 1
It is checked whether or not it is the first time, and if the work is the first stroke (first column), the process proceeds to step S104, and if it is the second or later second column, the process branches to step S109.

【0030】ここで作業一回目であり、ステップS103か
らステップS104へ進むと、再び自車輌位置検出部31で
自己位置検出ルーチンを実行させ、三角測量及び推測航
法により自車輌の車輌位置及び進行方向を検出した後、
続くステップS105で作業データ蓄積部38を参照し、作
業領域72における1回目(第1列)の終端点位置を目
標位置として現在位置との誤差量を求める。
This is the first operation, and when the process proceeds from step S103 to step S104, the vehicle position detection unit 31 again executes the vehicle position detection routine, and the vehicle position and traveling direction of the vehicle are determined by triangulation and dead reckoning. After detecting
In subsequent step S105, the work data storage unit 38 is referred to, and the amount of error from the current position is determined with the end point position of the first time (first column) in the work area 72 as the target position.

【0031】次にステップS106へ進むと、前記ステップ
S105にて求められた誤差量に応じて前後輪の各目標操舵
量を決定し、続くステップS107で、前輪操舵用油圧制御
弁14、後輪操舵用油圧制御弁15を介して前輪操舵機
構、後輪操舵機構をそれぞれ駆動し、目標舵角を得るよ
う制御する。
Next, when proceeding to step S106,
Each target steering amount of the front and rear wheels is determined according to the error amount obtained in S105, and in the subsequent step S107, the front wheel steering mechanism is operated via the front wheel steering hydraulic control valve 14 and the rear wheel steering hydraulic control valve 15. The rear wheel steering mechanism is driven to control the target steering angle.

【0032】その後、ステップS108で、芝刈作業車1が
1回目(第1列)の終端点位置に達したか否かを調べ、
終端点位置に達していないときには前述のステップS104
へ戻って草・芝刈作業を続行し、終端点に達したとき、
ステップS116へ進んで、全作業を終了したか否かを調べ
る。この場合、作業1回目であるため、前述のステップ
S103へ戻って、再び作業1回目か否かを調べ、作業2回
目以降になると、ステップS109へ分岐して刈跡境界に沿
った作業経路73の倣い走行を行なう。
Then, in step S108, it is checked whether or not the lawn mowing vehicle 1 has reached the end point position of the first time (first row),
When the end point position is not reached, the above-mentioned step S104
Return to and continue grass and lawn mowing work, and when the end point is reached,
In step S116, it is checked whether or not all the work has been completed. In this case, since it is the first work, the above steps
Returning to S103, it is checked again whether or not the work is the first time. When the work is the second time or later, the process branches to step S109, and the work route 73 along the cut boundary is followed.

【0033】すなわち、ステップS109で刈刃の幅分だけ
車体を横シフトさせて次作業位置へ移動すると、ステッ
プS110で刈跡境界検出センサ7によって前回作業による
刈跡境界を検出し、ステップS111で、この刈跡境界と車
輌位置とを比較して設定された芝刈りオーバラップ量を
実現するための誤差量を求める。
That is, in step S109, when the vehicle body is laterally shifted by the width of the cutting blade and moved to the next work position, the cut mark boundary detection sensor 7 detects the cut mark boundary of the previous work in step S110, and in step S111. , The amount of error for realizing the set lawn mowing overlap amount is calculated by comparing the cut mark boundary with the vehicle position.

【0034】続くステップS112では、前記ステップS111
で求めた誤差量に応じて前後輪の各目標操舵量を決定
し、ステップS113において、前輪操舵用油圧制御弁1
4、後輪操舵用油圧制御弁15を介して前輪操舵機構、
後輪操舵機構をそれぞれ駆動し、目標舵角を得るよう制
御する。
In the following step S112, the above step S111
Each target steering amount of the front and rear wheels is determined according to the error amount obtained in step S113, and in step S113, the front wheel steering hydraulic control valve 1
4, front wheel steering mechanism via the rear wheel steering hydraulic control valve 15,
The rear wheel steering mechanism is driven to control the target steering angle.

【0035】その後、ステップS114へ進み、自車輌位置
検出部31で自己位置検出ルーチンを実行させて三角測
量及び推測航法により自車輌の車輌位置及び進行方向を
検出すると、ステップS115で、芝刈作業車1が2回目以
後(第2列以後)の終端点位置に達したか否かを調べ
る。
Thereafter, the process proceeds to step S114, where the vehicle position detecting section 31 executes the vehicle position detecting routine to detect the vehicle position and traveling direction of the vehicle by triangulation and dead reckoning. It is checked whether 1 has reached the end point position after the second time (after the second row).

【0036】そして、終端点位置に達していないときに
は、ステップS115から前述のステップS110へ戻って刈跡
境界に沿った倣い走行を続け、2回目以後(第2列以
後)の終端点位置に達すると、ステップS115からステッ
プS116へ進んで、作業領域72の草・芝刈作業が終了し
たか否かを判断する。
When the end point position has not been reached, the flow returns from step S115 to step S110 described above to continue the contour travel along the cut boundary, and to reach the end point position after the second time (after the second row). Then, the process proceeds from step S115 to step S116, and it is determined whether or not the grass / lawn mowing work in the work area 72 is completed.

【0037】その結果、作業領域72の草・芝刈作業が
終了していなければステップS116からステップS103に戻
って作業を継続し、作業領域72の草・芝刈作業が終了
したとき、この主制御ルーチンによる草・芝刈作業を終
了して車輌を停止させる。
As a result, if the grass / lawn mowing work in the work area 72 is not completed, the process returns from step S116 to step S103 to continue the work, and when the grass / lawn mowing work in the work area 72 is completed, this main control routine Stop grass and lawn mowing work by and stop the vehicle.

【0038】次に、図1の自己位置検出ルーチンによる
標識認識・三角測量による自己位置検出について説明す
る。
Next, self-position detection by sign recognition / triangulation by the self-position detection routine of FIG. 1 will be described.

【0039】この自己位置検出ルーチンは、前述の走行
制御部37での主制御ルーチンにより起動される自車輌
位置検出部31のルーチンであり、まず、ステップS201
で、ライト駆動回路57を介して照明用のライト8bを
点灯させると、モータ駆動回路56を介してモータ11
を駆動し、回転機構部10を介して撮像ユニット8(ラ
イト8b及びCCDカメラ8a)を設定速度で回転させ
る。
This self-position detecting routine is a routine of the own-vehicle position detecting section 31 started by the main control routine of the traveling control section 37 described above.
Then, when the illumination light 8b is turned on via the light driving circuit 57, the motor 11 is driven via the motor driving circuit 56.
Is driven to rotate the imaging unit 8 (the light 8b and the CCD camera 8a) at a set speed via the rotation mechanism section 10.

【0040】次いで、ステップS202へ進み、CCDカメ
ラ8aの回転速度とCCDカメラ8aの横方向の視野角
とから死角のできない撮像時間間隔を求めると、この撮
像時間間隔毎にCCDカメラ8aの電子シャッタをトリ
ガして周囲の風景を全周に渡って撮像し、AD変換器6
0でデジタル信号に変換してビデオメモリ65に書込
む。
Next, in step S202, an imaging time interval in which a blind spot is not obtained is obtained from the rotation speed of the CCD camera 8a and the lateral viewing angle of the CCD camera 8a. The electronic shutter of the CCD camera 8a is calculated for each imaging time interval. To capture images of the surrounding landscape over the entire circumference, and AD converter 6
When it is 0, it is converted into a digital signal and written in the video memory 65.

【0041】そして、画像データのビデオメモリ65へ
の書込みが終了すると切換回路64によってCPU50
によるビデオメモリ65のアクセスが可能となるため、
ステップS203で、撮像画像データを読込み、読込んだ撮
像画像の輝度情報や色情報、あるいは形状等から標識に
対応する特徴量を求めて標識を検出する。
When the writing of the image data to the video memory 65 is completed, the switching circuit 64 causes the CPU 50 to
Since the video memory 65 can be accessed by
In step S203, the imaged image data is read, the feature amount corresponding to the imaged sign is obtained from the brightness information and color information of the read imaged image, the shape, etc., and the sign is detected.

【0042】すなわち、各標識PA,PB,PCを、例
えば再帰性反射板を所定の長さに渡って貼った光反射標
識として標識撮像部分の輝度を大きくし、画像を2値化
して標識を抽出した後、推測航法により推測される現在
位置と予め記憶してある標識との位置を比較することに
より、個々の標識を識別することができる。あるいは、
また、例えば各標識PA,PB,PCを異なる色の標識
とすることにより、撮像画像の色情報から標識の抽出及
び識別を行なうことができる。さらには、例えば各標識
PA,PB,PCの形状をそれぞれ異なるものとし、撮
像画像の輝度情報に基づいて抽出した形状が記憶してあ
る個々の標識の形状に一致するか否かを調べることによ
り、個々の標識を識別することができる。
That is, each of the markers PA, PB, and PC is used as a light-reflective marker in which a retroreflector is attached over a predetermined length, for example, to increase the brightness of the imaged portion of the marker and binarize the image to mark the marker. After the extraction, by comparing the position of the current position estimated by dead reckoning with the position of the previously stored sign, the individual signs can be identified. Alternatively,
Further, for example, by setting each of the markers PA, PB, and PC to have different colors, the markers can be extracted and identified from the color information of the captured image. Furthermore, for example, the shapes of the markers PA, PB, and PC are made different, and it is checked whether or not the shape extracted based on the brightness information of the captured image matches the shape of the stored individual markers. , Individual signs can be identified.

【0043】この場合、CCDカメラ8aから得られる
画像は水平方向及び垂直方向に画角を持っているため、
不整地やうねりのある作業領域での車輌の傾斜や車輌自
身の振動によって標識を見失うことがなく、確実に標識
を検出することができる。
In this case, since the image obtained from the CCD camera 8a has the angle of view in the horizontal and vertical directions,
The sign can be reliably detected without losing the sign due to the inclination of the vehicle or the vibration of the vehicle itself in the work area with uneven terrain or undulations.

【0044】次に、ステップS2O4へ進み、認識した標識
の画像上の重心と、回転機構部10に取り付けれた回転
角センサ12からの回転角度信号によって得られる芝刈
作業車1に対する各画像撮像時のカメラ角度とから各標
識の方角を算出し、自車輌を中心として標識PAと標識
PBとによって形成される角度α、標識PB,PC間の
角度βを算出して予め記憶してある各標識PA,PB,
PCの位置から周知の三角測量法により現在の車輌位置
を算出すると、算出した自己位置データを、ステップS2
05で走行制御部37に送出してステップS202へ戻る。
Next, in step S2O4, the center of gravity on the image of the recognized sign and the image of each image of the lawnmower vehicle 1 obtained by the rotation angle signal from the rotation angle sensor 12 attached to the rotation mechanism 10 are taken. The direction of each sign is calculated from the camera angle, and the angle α formed by the sign PA and the sign PB centering on the vehicle and the angle β between the signs PB and PC are calculated and stored in advance in the sign PA. , PB,
When the current vehicle position is calculated from the PC position by the well-known triangulation method, the calculated self-position data is calculated in step S2.
At 05, it is sent to the traveling control unit 37 and the process returns to step S202.

【0045】すなわち、図7に示すように、標識PAを
原点とするX,Y座標系において、予めROM52に記
憶してある各データに基づき、標識PA(座標原点)か
ら自車輌中心位置までの距離L、及び、標識PA(座標
原点)から自車輌中心を結ぶ線と標識PA,PB間を結
ぶ線とのなす角度θ1を以下の(1),(2)式で求め、自車
輌位置(X1、Y1)を(3),(4)式で求めることができ
る。 L =L1×sin(α+θ1)/sinα …(1) θ1=atn(−L2×sinα×sin(θB+α+β) /(L1×sinβ+L2×sinα×cos(θB+α+β)))…(2) L1;標識PA,PB間の距離 L2;標識PB,PC間の距離 θB;標識PA,PB間を結ぶ線と標識PB,PC間を
結ぶ線のなす角度 θA;標識PA,PBを結ぶ線のX軸に対する角度 X1=L×cos(θA−θ1) …(3) Y1=L×sin(θA−θ1) …(4)
That is, as shown in FIG. 7, in the X, Y coordinate system with the marker PA as the origin, the distance from the marker PA (coordinate origin) to the center position of the vehicle is based on each data stored in advance in the ROM 52. The distance L and the angle θ1 formed by the line connecting the center of the vehicle from the marker PA (coordinate origin) and the line connecting the markers PA and PB are calculated by the following equations (1) and (2), and the vehicle position ( X1, Y1) can be calculated by the equations (3) and (4). L = L1 × sin (α + θ1) / sinα (1) θ1 = atn (-L2 × sinα × sin (θB + α + β) / (L1 × sinβ + L2 × sinα × cos (θB + α + β))) (2) L1; Label PA, Distance between PBs L2; Distance between signs PB and PC θB; Angle formed by line connecting signs PA and PB and line connecting signs PB and PC θA; Angle of line connecting signs PA and PB with respect to X axis X1 = L × cos (θA−θ1) (3) Y1 = L × sin (θA−θ1) (4)

【0046】[0046]

【発明の効果】以上述べたように本発明によれば、自律
走行作業車に設けた回転機構部を介して撮像手段を回転
させ、その回転速度と撮像手段の撮像画角とから設定し
た時間間隔毎に標識を含む周囲の画像を撮像し、撮像し
た複数枚の画像から標識の特徴量を求めて標識を認識す
るため、不整地やうねりがある領域での車輌の傾斜や車
輌自体の振動による影響を排除して確実に標識を認識す
ることができ、正確に自己位置を検出できる等優れた効
果が得られる。
As described above, according to the present invention, the image pickup means is rotated through the rotation mechanism portion provided in the autonomous traveling work vehicle, and the time set from the rotation speed and the image pickup angle of view of the image pickup means. The image of the surrounding area including the sign is taken at every interval, and the sign is recognized from the multiple images taken to recognize the sign, so the vehicle tilts or the vehicle itself vibrates in areas with uneven terrain or swells. The effect of can be eliminated and the marker can be surely recognized, and an excellent effect such as accurate detection of the self-position can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】自己位置検出ルーチンのフローチャートFIG. 1 is a flowchart of a self-position detection routine.

【図2】主制御ルーチンのフローチャートFIG. 2 is a flowchart of a main control routine.

【図3】芝刈作業車の外観を示す概略説明図FIG. 3 is a schematic explanatory view showing the appearance of a lawnmower work vehicle.

【図4】制御系のブロック図FIG. 4 is a block diagram of a control system

【図5】自車輌位置検出部の回路構成図FIG. 5 is a circuit configuration diagram of a vehicle position detection unit.

【図6】走行経路及び作業領域を示す説明図FIG. 6 is an explanatory diagram showing a travel route and a work area.

【図7】三角測量による自己位置検出の説明図FIG. 7 is an explanatory diagram of self-position detection by triangulation.

【符号の説明】[Explanation of symbols]

1 芝刈作業車(自律走行作業車) 8a CCDカメラ(撮像手段) 10 回転機構部 PA,PB,PC 標識 1 Lawn mowing work vehicle (autonomous traveling work vehicle) 8a CCD camera (imaging means) 10 Rotation mechanism part PA, PB, PC Sign

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 特定の作業領域周辺に設置した複数の標
識を認識し、三角測量により自己位置を検出する自律走
行作業車の自己位置検出方法において、 前記自律走行作業車に、全周囲を撮像可能なよう撮像手
段(8a)を回転させる回転機構部(10)を設け、 前記回転機構部(10)の回転速度と前記撮像手段(8a)の撮
像画角とから設定した時間間隔毎に前記撮像手段(8a)に
より前記標識を含む周囲の画像を撮像し、 撮像した複数枚の画像から前記標識の特徴量を求めて前
記標識を認識することを特徴とする自律走行作業車の自
己位置検出方法。
1. A self-position detecting method for an autonomous traveling work vehicle, which recognizes a plurality of markers installed around a specific work area and detects the self-position by triangulation, wherein the autonomous traveling work vehicle captures an image of the entire circumference. A rotation mechanism section (10) for rotating the image pickup means (8a) is provided as much as possible, and the rotation mechanism section (10) is rotated at a set time interval from the rotation speed of the rotation mechanism section (10) and the image pickup angle of view of the image pickup section (8a). Self-position detection of an autonomous traveling vehicle characterized by taking an image of the surroundings including the sign by the imaging means (8a) and recognizing the sign by obtaining the feature amount of the sign from the plurality of taken images Method.
JP30205993A 1993-12-01 1993-12-01 Self-position detection method for autonomous mobile work vehicles Expired - Fee Related JP3245284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30205993A JP3245284B2 (en) 1993-12-01 1993-12-01 Self-position detection method for autonomous mobile work vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30205993A JP3245284B2 (en) 1993-12-01 1993-12-01 Self-position detection method for autonomous mobile work vehicles

Publications (2)

Publication Number Publication Date
JPH07160330A true JPH07160330A (en) 1995-06-23
JP3245284B2 JP3245284B2 (en) 2002-01-07

Family

ID=17904425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30205993A Expired - Fee Related JP3245284B2 (en) 1993-12-01 1993-12-01 Self-position detection method for autonomous mobile work vehicles

Country Status (1)

Country Link
JP (1) JP3245284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003706A (en) * 2010-06-21 2012-01-05 Mitsubishi Heavy Ind Ltd Unmanned running vehicle guiding device and unmanned running vehicle guiding method
JP2014149682A (en) * 2013-02-01 2014-08-21 Chikusui Canycom Inc Moving object traveling area recognition system and moving object traveling area recognition method
CN107065871A (en) * 2017-04-07 2017-08-18 东北农业大学 It is a kind of that dining car identification alignment system and method are walked based on machine vision certainly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003706A (en) * 2010-06-21 2012-01-05 Mitsubishi Heavy Ind Ltd Unmanned running vehicle guiding device and unmanned running vehicle guiding method
JP2014149682A (en) * 2013-02-01 2014-08-21 Chikusui Canycom Inc Moving object traveling area recognition system and moving object traveling area recognition method
CN107065871A (en) * 2017-04-07 2017-08-18 东北农业大学 It is a kind of that dining car identification alignment system and method are walked based on machine vision certainly

Also Published As

Publication number Publication date
JP3245284B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
CN112584697B (en) Autonomous machine navigation and training using vision system
EP3187953B1 (en) Autonomous working machine such as autonomous lawn mower
JP5157067B2 (en) Automatic travel map creation device and automatic travel device.
CN102368158B (en) Navigation positioning method of orchard machine
KR101241651B1 (en) Image recognizing apparatus and method, and position determining apparatus, vehicle controlling apparatus and navigation apparatus using the image recognizing apparatus or method
CN111856491B (en) Method and apparatus for determining geographic position and orientation of a vehicle
KR101618030B1 (en) Method for Recognizing Position and Controlling Movement of a Mobile Robot, and the Mobile Robot Using the same
KR100901311B1 (en) Autonomous mobile platform
EP3226207B1 (en) Automatic operation vehicle
JP7003224B2 (en) Autonomous traveling work machine
JP2012235712A (en) Automatic mower with mowing situation monitoring function
JP2010117230A (en) Construction machine
JP6243944B2 (en) Unmanned work vehicle
JP2010097360A (en) Autonomous mobile robot device, operation auxiliary device for moving object, method of controlling the autonomous mobile robot device and operation auxiliary method for the moving object
JPH07270518A (en) Distance measuring instrument
JP4377347B2 (en) Mobile robot
JP6235640B2 (en) Unmanned work vehicle
JP4005679B2 (en) Ambient environment recognition device for autonomous vehicles
JP4116116B2 (en) Ranging origin recognition device for moving objects
JP3245284B2 (en) Self-position detection method for autonomous mobile work vehicles
JPH07152434A (en) Own position detecting method for autonomously traveling work wagon
JP3314109B2 (en) Self-position detection method for autonomous mobile work vehicles
US20210397197A1 (en) Method for navigating a movable device along an inclined surface
JPH07222509A (en) Self-traveling working vehicle
US20220137631A1 (en) Autonomous work machine, control device, autonomous work machine control method, control device operation method, and storage medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees