JPH07160181A - Volume multiplex holography element and volume multiplex holography recording method - Google Patents

Volume multiplex holography element and volume multiplex holography recording method

Info

Publication number
JPH07160181A
JPH07160181A JP30657693A JP30657693A JPH07160181A JP H07160181 A JPH07160181 A JP H07160181A JP 30657693 A JP30657693 A JP 30657693A JP 30657693 A JP30657693 A JP 30657693A JP H07160181 A JPH07160181 A JP H07160181A
Authority
JP
Japan
Prior art keywords
light
reference light
photorefractive crystal
crystal
volume multiplex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30657693A
Other languages
Japanese (ja)
Inventor
Ikutake Yagi
生剛 八木
Yasuyuki Sugiyama
泰之 杉山
Masami Miyagi
雅美 宮城
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30657693A priority Critical patent/JPH07160181A/en
Publication of JPH07160181A publication Critical patent/JPH07160181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

PURPOSE:To provide a real time holography system, i.e., element or device and method improved in the degree of multiplicity and diffraction efficiency. CONSTITUTION:Light (object light) 20 including image information is made incident from the one optically polished surface of at least two sets of photorefractive crystals 22 having optically polished parallel surfaces and is condensed to nearly the central part of the photorefractive crystals 22. Reference light 21 which is parallel rays is made incident on the surface on which the object light 20 is made incident. This reference light 21 reflects once within the photorefractive crystals and passes nearly the central part; thereafter, the reference light 21 is further made incident on the photorefractive crystals 22 in such a manner that the light reflects once within the photorefractive crystals. The object light 20 and the reference light 21 intensify each other in interaction regions 23, 25 and offset each other in an interaction region 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光の干渉縞と相似な屈
折率分布を形成するフォトリフラクティブ結晶を用いた
実時間ホログラフィー技術に関するもので、同一素子中
に複数のホログラムを記録・再生する体積多重ホログラ
ム装置に応用可能な体積多重ホログラフィー素子と体積
多重ホログラフィー記録方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real-time holographic technique using a photorefractive crystal that forms a refractive index distribution similar to interference fringes of light, and records and reproduces a plurality of holograms in the same element. A volume multiplex holographic element and a volume multiplex holographic recording method applicable to a volume multiplex hologram device.

【0002】[0002]

【従来の技術】レーザー等の光源を用い、物体による散
乱光(物体光、あるいは信号光)と同じ光源からの非散
乱光(参照光、あるいはポンプ光)とを干渉させ、その
干渉縞を光記録可能な写真乾板等の記録媒体に記録し、
また、再生時には、記録された干渉縞に参照光のみを照
射し、物体による散乱光を再現する技術をホログラフィ
ーと呼ぶ。ここで、記録媒体の奥行きが記録光の波長に
比べて十分長い時、同一媒体内に複数のホログラムを記
録することが可能である。この技術を体積多重ホログラ
フィーと呼ぶ。同一媒体内の異なるホログラムを別々に
記録・再生する方法として、物体光および参照光の入射
方向を変える(角度多重)、記録波長を変える(波長多
重)、記録媒体に加える電場を変える(電場多重)、お
よび、参照光の位相を変える(フェースコード多重)等
が提案されている。
2. Description of the Related Art A light source such as a laser is used to cause light scattered by an object (object light or signal light) and non-scattered light (reference light or pump light) from the same light source to interfere with each other to produce an interference fringe. Record on a recordable recording medium such as a photo plate,
Also, during reproduction, a technique of irradiating the recorded interference fringes with only the reference light and reproducing scattered light by an object is called holography. Here, when the depth of the recording medium is sufficiently longer than the wavelength of the recording light, it is possible to record a plurality of holograms in the same medium. This technique is called volume multiplex holography. Different holograms in the same medium can be recorded and reproduced separately by changing the incident directions of the object light and reference light (angle multiplexing), changing the recording wavelength (wavelength multiplexing), and changing the electric field applied to the recording medium (electric field multiplexing). ), And changing the phase of the reference light (face code multiplexing), and the like.

【0003】さて、体積多重ホログラフィーに関して言
えば、一つの再生像で、2次元、または3次元の情報を
含んでいるので、高密度、高転送速度の情報記録媒体へ
の応用が期待され、検討されてきた。図1に、従来のホ
ログラフィー記録装置の例を示す。図1において、10
はレーザービーム、11はレーザー、12はハーフミラ
ー、13はミラー、14は音響光学素子、15は焦点距
離fのレンズ、16は光空間変調器、17は記録媒体で
あるフォトリフラクティブ結晶、18はカメラ、19は
シャッター、100は物体光、101は参照光を示す。
光空間変調器の光透過パターンを変え、かつ、音響光学
素子によって参照光の入射角を変化させることによっ
て、複数の異なるホログラフを記録することができる。
この方法で、2cm×1.5cm×1cmのnニオブ酸
リチウム(LiNbO3 )結晶中に5000枚のホログ
ラム記録が実現されている。
Regarding volume multiplex holography, since one reproduced image contains two-dimensional or three-dimensional information, it is expected to be applied to an information recording medium having a high density and a high transfer rate. It has been. FIG. 1 shows an example of a conventional holographic recording device. In FIG. 1, 10
Is a laser beam, 11 is a laser, 12 is a half mirror, 13 is a mirror, 14 is an acousto-optic device, 15 is a lens having a focal length f, 16 is an optical spatial modulator, 17 is a photorefractive crystal as a recording medium, and 18 is A camera, 19 is a shutter, 100 is object light, and 101 is reference light.
By changing the light transmission pattern of the spatial light modulator and changing the incident angle of the reference light by the acoustooptic device, it is possible to record a plurality of different holography.
With this method, 5000 hologram recordings have been realized in a 2 cm × 1.5 cm × 1 cm n lithium niobate (LiNbO 3 ) crystal.

【0004】ここで、ホログラムの回折効率(回折光強
度/入射参照光強度)は、参照光と物体光の相互作用長
の二乗に比例し、角度分解能は参照光と物体光の相互作
用長に比例する。このように、相互作用長の延伸は、非
常に好ましい結果をもたらす。ところが、多重度や回折
効率を改良すべく相互作用長を伸ばそうと結晶の奥行き
を長くしても、参照光と物体光は有限の角度をもって交
差するので、相互作用長は光の交差角度で制限されてし
まう。従って、物体光と参照光を一回だけ交差させるの
ではなく、参照光を結晶側面で反射させて物体光と再度
干渉させるという方式が考えられる。
Here, the diffraction efficiency (diffracted light intensity / incident reference light intensity) of the hologram is proportional to the square of the interaction length of the reference light and the object light, and the angular resolution is the interaction length of the reference light and the object light. Proportional. Thus, stretching the interaction length gives very favorable results. However, even if the depth of the crystal is increased to increase the interaction length in order to improve the multiplicity and diffraction efficiency, the reference light and the object light intersect at a finite angle, so the interaction length is limited by the light intersection angle. Will be done. Therefore, instead of intersecting the object light and the reference light only once, it is possible to reflect the reference light on the side surface of the crystal and again interfere with the object light.

【0005】ところが、一般のフォトリフラクティブ結
晶では、光の干渉縞と形成される屈折率分布の位相が異
なることから、記録時の物体光と再生時の回折光の位相
は異なる。ここで、位相ずれの方向は結晶の方位によっ
て決定されており、位相ずれの方向と参照光が反射する
面の法線が同じ方向を向き、かつ、位相ずれの大きさが
π/2に近いという条件の時、側面での反射前の参照光
からの回折光と、反射後の回折光では位相がπだけ異な
り、お互いに打ち消し合ってしまう。従って、この場
合、側面での折り返しは、回折効率を減少させ、かつ、
角度分解能を落としてしまうという欠点があった。
However, in a general photorefractive crystal, since the phase of the interference pattern of light and the phase of the refractive index distribution formed are different, the phase of the object light at the time of recording and the phase of the diffracted light at the time of reproducing are different. Here, the direction of the phase shift is determined by the crystal orientation, the direction of the phase shift and the normal line of the surface on which the reference light is reflected face the same direction, and the magnitude of the phase shift is close to π / 2. Under the condition, the diffracted light from the reference light before reflection on the side surface and the diffracted light after reflection differ in phase by π and cancel each other out. Thus, in this case, the side folds reduce the diffraction efficiency and
There is a drawback that the angular resolution is reduced.

【0006】ここで、良く知られたフォトリフラクティ
ブ結晶であるニオブ酸ストロンチウム・バリウム(Sr
x Ba1-x Nb26 ),チタン酸バリウム(BaTi
3),ニオブ酸リチウム(LiNbO3 )で、大きな
回折効率を得ようとする際の結晶方位、および、光の入
射方向は上記の条件を満たしており、参照光の折り返し
による回折効率・角度分解能の向上は実現されていな
い。
Here, strontium barium niobate (Sr), which is a well-known photorefractive crystal, is used.
x Ba 1-x Nb 2 O 6 ), barium titanate (BaTi
O 3 ), lithium niobate (LiNbO 3 ), the crystal orientation when trying to obtain a large diffraction efficiency, and the incident direction of the light satisfy the above conditions, and the diffraction efficiency and the angle due to the folding of the reference light No improvement in resolution has been realized.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述の回折
光の位相の反転からくる側面反射型ホログラム多重記録
方式の欠点に鑑みなされたもので、その目的は、参照光
の側面反射による回折光の反転の悪影響を最小限に抑
え、反射による相互作用長延伸の効果を最大限に活かす
実時間ホログラフィー方式すなわち素子または装置と方
法を提供することにある。実際には、多重度と回折効率
の改良を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the drawbacks of the side reflection type hologram multiplex recording system resulting from the phase inversion of the diffracted light described above. It is an object of the present invention to provide a real-time holographic system, that is, an element or a device and a method, in which the adverse effects of light reversal are minimized and the effect of interaction length stretching due to reflection is maximized. In practice, the aim is to improve multiplicity and diffraction efficiency.

【0008】[0008]

【課題を解決するための手段】本発明の体積多重ホログ
ラフィー素子は可干渉な複数個の光束が干渉することで
生じる干渉縞をフォトリフラクティブ結晶中に複数個記
録されてなる体積多重ホログラフィー素子において、前
記フォトリフラクティブ結晶は、少なくとも2組の光学
研磨された平行な面を有してなることを特徴とする。
A volume multiplex holographic element of the present invention is a volume multiplex holographic element in which a plurality of interference fringes produced by interference of a plurality of coherent light beams are recorded in a photorefractive crystal. The photorefractive crystal is characterized by having at least two sets of optically polished parallel surfaces.

【0009】一方、本発明の体積多重ホログラフィー記
録方法は画像情報を含む光を、少なくとも2組の光学研
磨された平行な面を有してなるフォトリフラクティブ結
晶の1つの光学研磨された面から入射した後、該フォト
リフラクティブ結晶のほぼ中央部に集光すること、およ
び該画像情報を含む光を入射した面に、平行光線である
参照光を入射し、該参照光は該フォトリフラクティブ結
晶内で1回反射し、該ほぼ中央部を通過した後、さらに
該フォトリフラクティブ結晶内で1回反射するように、
該参照光を該フォトリフラクティブ結晶に入射すること
を特徴とする。
On the other hand, in the volume multiplex holographic recording method of the present invention, light containing image information is incident from one optically polished surface of a photorefractive crystal having at least two pairs of optically polished parallel surfaces. After that, the light is condensed in substantially the central portion of the photorefractive crystal, and the reference light that is a parallel light ray is incident on the surface on which the light including the image information is incident, and the reference light is generated in the photorefractive crystal. After being reflected once and passing through the substantially central portion, it is further reflected once in the photorefractive crystal,
It is characterized in that the reference light is incident on the photorefractive crystal.

【0010】図2を参照して本発明の基本的構成を説明
する。図2において、20は物体光、21は参照光、2
2は記録媒体であるフォトリフラクティブ結晶を示す。
物体光は結晶のほぼ中央に焦点がくるように集光され
る。一方、参照光は平行光線であり、結晶内の側面で2
回反射する。フォトリフラクティブ結晶22において、
物体光・参照光の入射面と出射面は平行で、かつ、光学
研磨されている。また、参照光が反射する、入射面に垂
直な一対の面も、平行で、かつ、光学研磨されている。
The basic configuration of the present invention will be described with reference to FIG. In FIG. 2, 20 is the object light, 21 is the reference light, and 2
Reference numeral 2 denotes a photorefractive crystal which is a recording medium.
The object light is focused so that it is focused on the center of the crystal. On the other hand, the reference light is a parallel light beam, which is
Reflects twice. In the photorefractive crystal 22,
The incident surface and the emission surface of the object light / reference light are parallel to each other and are optically polished. Further, a pair of surfaces, which are perpendicular to the incident surface, on which the reference light is reflected are also parallel and optically polished.

【0011】[0011]

【作用】図2に示したように、物体光と参照光の相互作
用領域は23,24,25の三箇所である。領域23で
回折される光と領域25で回折される光は、同じ位相を
持っており、お互いに強め合う。一方、領域24で回折
された光は、他の二つの領域から回折された光と位相が
180度異なり、お互いに相殺しあう。
As shown in FIG. 2, the interaction areas of the object light and the reference light are three areas 23, 24 and 25. The light diffracted by the area 23 and the light diffracted by the area 25 have the same phase, and reinforce each other. On the other hand, the light diffracted by the area 24 has a phase difference of 180 degrees from the light diffracted by the other two areas, and cancels each other.

【0012】さて、参照光21の光強度をIR 、物体光
20の光強度をIO とすると、形成される屈折率分布の
振幅は、モジュレーション深さmに比例する。ここで、
mは、
Now, when the light intensity of the reference light 21 is I R and the light intensity of the object light 20 is I O , the amplitude of the formed refractive index distribution is proportional to the modulation depth m. here,
m is

【0013】[0013]

【数1】m=2√(IRO )/(IR +IO ) で表され、物体光と参照光の光強度が等しいときに最大
値1をとり、両者の光強度が著しく異なるとき0に近付
く。
[Expression 1] m = 2√ (I R I O ) / (I R + I O ), which takes a maximum value of 1 when the light intensities of the object light and the reference light are equal, and the light intensities of both are significantly different. When it approaches zero.

【0014】ここで、領域23での物体光20の光強度
と参照光21の光強度がほぼ等しくなるように物体光・
参照光の入射光強度を設定したとき、領域24では物体
光の光強度が集光されて強くなっているために、屈折率
分布の振幅は領域23および25に比べて著しく小さく
なる。一方、回折効率は、(効率の小さいとき)屈折率
分布の振幅の2乗に比例する。従って、領域24からの
回折光は、領域23と25からの回折光に比べて著しく
弱いので、領域24があることの悪影響は、ごく僅かと
なる。従って、参照光が媒体側面で2度折り返されるこ
とで、回折光強度は反射の無い場合に比べて、ほぼ4倍
に増大する。また、領域23と24が空間的に離れてい
ることから、多重記録時の角度選択性・波長選択性が改
良される。
Here, in order to make the light intensity of the object light 20 and the light intensity of the reference light 21 in the region 23 substantially equal,
When the incident light intensity of the reference light is set, the light intensity of the object light is condensed and becomes strong in the region 24, so that the amplitude of the refractive index distribution is significantly smaller than that in the regions 23 and 25. On the other hand, the diffraction efficiency is proportional to the square of the amplitude of the refractive index distribution (when the efficiency is low). Therefore, since the diffracted light from the region 24 is significantly weaker than the diffracted light from the regions 23 and 25, the adverse effect of the presence of the region 24 is negligible. Therefore, when the reference light is folded back twice on the side surface of the medium, the intensity of the diffracted light is increased by about four times as compared with the case where there is no reflection. Further, since the regions 23 and 24 are spatially separated, the angle selectivity / wavelength selectivity at the time of multiple recording is improved.

【0015】[0015]

【実施例】以下実施例により本発明をさらに詳細に説明
するが、本発明はそれに限定されないことは勿論であ
る。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited thereto.

【0016】(実施例)記録媒体として、レーザー溶融
ペデスタル成長法で、a軸に沿って引き上げたセリウム
ドープニオブ酸ストロンチウム・バリウム60(Ce:
Sr0.6 Ba0.4 Nb26 )単結晶ファイバを用いる
場合を示す。引き上げたファイバの端面(a面)、およ
び、側面をc面が平面となるように4面を光学研磨を施
す。この際、研磨された両c面の間隔が元のファイバ直
径の3/4になるように両側から1/8ずつ削りとる。
図3(A)に4面を研磨されたCe:SNB60単結晶
の結晶の方位を示す。図3(B)にこの単結晶32への
参照光31および物体光30の入射方向を示す。物体光
30は、レンズ(図示しない)で集光し、焦点が結晶の
ほぼ中央に来るように調整する。参照光31は、ビーム
の中心が結晶の入射面、中央部、出射面でそれぞれ中央
を通るように調整する。参照光・物体光はともに偏波面
が図3(B)の紙面内にある。また、参照光の方向も、
同じく図3(B)の紙面内にある。この結晶の屈折率は
2.4であるから、結晶内で参照光は±24.6°の範
囲でスキャンできる。従って、結晶の長さと直径(研磨
された両c面の間隔)をパラメータとして、多重度を求
めると、図4のようになる。すなわち、ファイバ側面で
参照光が2度反射するときの多重度を示す等高線は1ラ
イン当り1300多重である。
(Example) As a recording medium, a cerium-doped strontium barium niobate 60 (Ce:
The case where Sr 0.6 Ba 0.4 Nb 2 O 6 ) single crystal fiber is used is shown. The end face (a face) of the pulled-up fiber and the four side faces are optically polished so that the c face becomes a flat face. At this time, ⅛ is scraped from both sides so that the distance between the polished c-planes becomes ¾ of the original fiber diameter.
FIG. 3 (A) shows the crystal orientation of the Ce: SNB60 single crystal whose four faces were polished. FIG. 3B shows incident directions of the reference light 31 and the object light 30 on the single crystal 32. The object light 30 is condensed by a lens (not shown) and adjusted so that the focal point is almost at the center of the crystal. The reference light 31 is adjusted so that the center of the beam passes through the center at the incident surface, the center portion, and the exit surface of the crystal. The polarization planes of both the reference light and the object light are within the plane of FIG. 3 (B). Also, the direction of the reference light is
Similarly, it is in the plane of FIG. 3 (B). Since the crystal has a refractive index of 2.4, the reference light can be scanned within ± 24.6 ° within the crystal. Therefore, when the multiplicity is obtained using the crystal length and diameter (distance between the two polished c-planes) as parameters, the result is as shown in FIG. That is, the contour line showing the multiplicity when the reference light is reflected twice on the side surface of the fiber is 1300 multiplexes per line.

【0017】(比較例)比較のために、図5に参照光が
側面で反射しない構成での多重度を示す。この場合は1
ライン当り188多重である。
(Comparative Example) For comparison, FIG. 5 shows the multiplicity in a configuration in which the reference light is not reflected on the side surface. In this case 1
There are 188 multiplexes per line.

【0018】図4と図5を比較して分かるように、本発
明の側面反射方式によって、多重度が飛躍的に増大する
ことが分かる。また、回折効率については、同一形状の
結晶に対し、同一参照光入射角度の場合、無反射に比べ
て回折効率は4倍に改良される。
As can be seen by comparing FIGS. 4 and 5, it can be seen that the side reflection method of the present invention dramatically increases the multiplicity. Regarding the diffraction efficiency, when the crystals of the same shape have the same incident angle of the reference light, the diffraction efficiency is improved four times as compared with the case of non-reflection.

【0019】[0019]

【発明の効果】以上、述べたように、参照光を結晶側面
で反射させる構成を採用したことで、物体光・参照光の
相互作用長を延伸させる効果をもたらす。また、物体光
を集光することで、参照光の折り返しと、フォトリフラ
クティブ結晶特有の位相ずれからもたらされる、回折光
の位相の反転による悪影響を除去できる効果をもつ。上
記の効果によって、体積多重ホログラフィ装置におい
て、多重度と回折効率の改良をもたらすという効果があ
る。
As described above, by adopting the structure in which the reference light is reflected by the crystal side surface, the effect of extending the interaction length between the object light and the reference light is brought about. Further, by condensing the object light, it is possible to remove the adverse effect caused by the reversal of the reference light and the phase shift peculiar to the photorefractive crystal, which is caused by the phase inversion of the diffracted light. The above effect has an effect of improving the multiplicity and the diffraction efficiency in the volume multiplex holography device.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の角度多重体積ホログラフィ技術を示す概
略図である。
FIG. 1 is a schematic diagram showing a conventional angular multi-volume holography technique.

【図2】本発明の構成を示す図である。FIG. 2 is a diagram showing a configuration of the present invention.

【図3】本発明の実施例の体積多重ホログラフィー素子
を示す図であり、(A)は結晶方位を示す断面図、
(B)は物体光・参照光の入射方向を示す側面図であ
る。
FIG. 3 is a view showing a volume multiplex holography element of an embodiment of the present invention, (A) is a sectional view showing a crystal orientation,
(B) is a side view showing the incident directions of the object light and the reference light.

【図4】実施例で示した方法による多重度を示した図で
ある。
FIG. 4 is a diagram showing multiplicity by the method shown in the embodiment.

【図5】比較例として従来方法による多重度を示した図
である。
FIG. 5 is a diagram showing multiplicity according to a conventional method as a comparative example.

【符号の説明】[Explanation of symbols]

10 レーザービーム 11 レーザー 12 ハーフミラー 13 ミラー 14 音響光学素子 15 焦点距離fのレンズ、 16 光空間変調器 17 フォトリフラクティブ結晶 18 カメラ 19 シャッター 20 物体光 21 参照光 22 フォトリフラクティブ結晶 23 第一相互作用領域 24 第二相互作用領域 25 第三相互作用領域 30 物体光 31 参照光 32 4面を研磨されたCe:SNB60単結晶 100 物体光 101 参照光 10 Laser Beam 11 Laser 12 Half Mirror 13 Mirror 14 Acousto-Optical Element 15 Lens with Focal Length f, 16 Optical Spatial Modulator 17 Photorefractive Crystal 18 Camera 19 Shutter 20 Object Light 21 Reference Light 22 Photorefractive Crystal 23 First Interaction Area 24 2nd interaction area 25 3rd interaction area 30 Object light 31 Reference light 32 Ce: SNB60 single crystal 100 whose 4 planes were polished 100 Object light 101 Reference light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠山 巌 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Iwaha Hatakeyama 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可干渉な複数個の光束が干渉することで
生じる干渉縞をフォトリフラクティブ結晶中に複数個記
録されてなる体積多重ホログラフィー素子において、 前記フォトリフラクティブ結晶は、少なくとも2組の光
学研磨された平行な面を有してなることを特徴とする体
積多重ホログラフィー素子。
1. A volume multiplex holographic element in which a plurality of interference fringes produced by interference of a plurality of coherent light beams are recorded in a photorefractive crystal, wherein the photorefractive crystal has at least two sets of optical polishing. Volume multiplex holographic element, characterized in that it has parallel planes formed.
【請求項2】 画像情報を含む光を、少なくとも2組の
光学研磨された平行な面を有してなるフォトリフラクテ
ィブ結晶の1つの光学研磨された面から入射した後、該
フォトリフラクティブ結晶のほぼ中央部に集光するこ
と、および該画像情報を含む光を入射した面に、平行光
線である参照光を入射し、該参照光は該フォトリフラク
ティブ結晶内で1回反射し、該ほぼ中央部を通過した
後、さらに該フォトリフラクティブ結晶内で1回反射す
るように、該参照光を該フォトリフラクティブ結晶に入
射することを特徴とする体積多重ホログラフィー記録方
法。
2. After injecting light containing image information from one optically polished surface of a photorefractive crystal having at least two sets of optically polished parallel surfaces, the photorefractive crystal is irradiated with substantially the same. The reference light which is a parallel light ray is made incident on the surface on which the light containing the image information is incident, and the reference light is reflected once in the photorefractive crystal, and the substantially central portion After passing through the photorefractive crystal, the reference light is incident on the photorefractive crystal so that the reference light is reflected once in the photorefractive crystal.
JP30657693A 1993-12-07 1993-12-07 Volume multiplex holography element and volume multiplex holography recording method Pending JPH07160181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30657693A JPH07160181A (en) 1993-12-07 1993-12-07 Volume multiplex holography element and volume multiplex holography recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30657693A JPH07160181A (en) 1993-12-07 1993-12-07 Volume multiplex holography element and volume multiplex holography recording method

Publications (1)

Publication Number Publication Date
JPH07160181A true JPH07160181A (en) 1995-06-23

Family

ID=17958728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30657693A Pending JPH07160181A (en) 1993-12-07 1993-12-07 Volume multiplex holography element and volume multiplex holography recording method

Country Status (1)

Country Link
JP (1) JPH07160181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556531B1 (en) 1998-02-16 2003-04-29 Nippon Telegraph And Telephone Corporation Multi-layered holographic read-only memory and data retrieval method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556531B1 (en) 1998-02-16 2003-04-29 Nippon Telegraph And Telephone Corporation Multi-layered holographic read-only memory and data retrieval method
US6811728B2 (en) 1998-02-16 2004-11-02 Nippon Telegraph & Telephone Corporation Multi-layered holographic read-only memory and data retrieval method
US7570567B2 (en) 1998-02-16 2009-08-04 Nippon Telegraph And Telephone Multi-layered holographic read-only memory and data retrieval method

Similar Documents

Publication Publication Date Title
US7545723B2 (en) Holographic recording medium, method for manufacturing the same, and holographic recording-reproducing system
US5150228A (en) Real-time edge-enhanced optical correlator
US4576434A (en) Device for recording a coherent image in a multimode optical cavity
US4027330A (en) Disc recording
DE102009043807A1 (en) Recording and transfer device and polarization direction control method
US3800298A (en) Holography memory with zero-order diffraction light removed
US7236442B2 (en) Holographic recording/reproducing apparatus and reproducing apparatus for holographically recorded information
US6862120B2 (en) Hologram recording medium, hologram recording method and hologram recording and reproducing apparatus
JP4059977B2 (en) 3D holographic data storage system
US6181665B1 (en) Volume holographic data storage system
JPH09101735A (en) Medium, method, and device for hologram recording, and hologram recording and reproducing device
JPH07160181A (en) Volume multiplex holography element and volume multiplex holography recording method
EP3846169A1 (en) Holographic storage device and method for simultaneously recording and reading on two sides
JP3634493B2 (en) Optical image processing apparatus using nonlinear medium with active gain
JP5462556B2 (en) 3D color display device and 3D color image display method
JP2001147634A (en) Multiple recording method of hologram, and hologram recorder
JPH05142978A (en) Wavelength multiplex volume holography device
JPH05181404A (en) Method and device for hologram recording
JPH0456886A (en) Volume multiplexed holography device
KR100281324B1 (en) Storage device of volume holographic system
KR100278437B1 (en) Volume holographic digital storage system with phase code multiplexing
RU2017236C1 (en) Multichannel optical data-recording device
KR100536671B1 (en) Holographic data storage and reproducing system
JP2001092339A (en) Laminated waveguide-type hologram recording medium
JP2011033859A (en) Three-dimensional image imaging apparatus and three-dimensional image imaging method