JPH07159315A - Optical gas sensor - Google Patents

Optical gas sensor

Info

Publication number
JPH07159315A
JPH07159315A JP30656593A JP30656593A JPH07159315A JP H07159315 A JPH07159315 A JP H07159315A JP 30656593 A JP30656593 A JP 30656593A JP 30656593 A JP30656593 A JP 30656593A JP H07159315 A JPH07159315 A JP H07159315A
Authority
JP
Japan
Prior art keywords
optical
light
gas
optical transmission
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30656593A
Other languages
Japanese (ja)
Inventor
Masahiko Uchida
昌彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30656593A priority Critical patent/JPH07159315A/en
Publication of JPH07159315A publication Critical patent/JPH07159315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical gas sensor which can detect many kinds of gases with high sensitivity. CONSTITUTION:The optical gas sensor is provided with a plurality of light sources 1a to 1c which oscillate laser beams whose wavelength and intensity coincide with, absorption spectra of a plurality of detection gases according to a driving current and a temperature, ' a gas cell part 6 which is arranged so as,to obtain largest optical coupling at light wavelengths coinciding with the respective absorption spectra of the plurality of detection gases and in which a plurality of optical systems constituted of optical paths which are different from those in conventional cases have been built in and an optical transmission line 7 by which the light sources 1a to 1c are connected to the gas cell part 6 and by which the gas cell part 6 is connected to a photodetector 9. In addition, the optical gas sensor is provided with a plurality of light-uniting means 15 and one light-branching means 16 by which beams of light from different light sources are united to one optical transmission line and by which a beam of light from one optical transmission line is branched into a plurality of optical transmission lines and with the photodetector 9 and a detection device 11 at the end of the optical transmission line which connects the gas cell part 6 to the photodetector 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバを用いて光学
的にガスを検知する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for optically detecting gas using an optical fiber.

【0002】[0002]

【従来の技術】特定波長のレーザ光がある種の気体に吸
収され易いことを利用して気体の有無を検出できること
が知られており、この原理を応用した光センシング技術
が工業計測、公害監視などで広く用いられている。また
このレーザ光を光ファイバを用いて伝送させれば、遠隔
のガス検知が可能となる。
2. Description of the Related Art It is known that the presence or absence of gas can be detected by utilizing the fact that a laser beam of a specific wavelength is easily absorbed by a certain type of gas. Optical sensing technology applying this principle is used in industrial measurement and pollution monitoring. Widely used in. If this laser light is transmitted using an optical fiber, remote gas detection becomes possible.

【0003】従来技術の実施例の説明に先立ち、光学的
にガスを検出する方法について示す。図6は、λ=1.
65μm 近傍でのメタン赤外吸収スペクトルを示す。こ
の図で示すようにメタンガスは、ある特定波長の光をよ
く吸収する性質がある。この吸収度合いは、ガス濃度と
光吸収長との積に依存し、次式で表される。
Prior to the description of the embodiments of the prior art, a method of optically detecting gas will be described. FIG. 6 shows that λ = 1.
The methane infrared absorption spectrum in the vicinity of 65 μm is shown. As shown in this figure, methane gas has a property of absorbing light of a specific wavelength well. This absorption degree depends on the product of the gas concentration and the light absorption length, and is represented by the following equation.

【0004】T=exp(−α・c・L) 但し T:透過率 α:吸収係数 c:濃度 L:空間光路長 上式を用いると、使用波長、空間光路長が既知であれ
ば、透過率を求めることによって、ガス濃度を求めるこ
とができる。
T = exp (-α · c · L) where T: transmittance α: absorption coefficient c: concentration L: spatial optical path length Using the above equation, if the wavelength used and the spatial optical path length are known, the transmission By determining the rate, the gas concentration can be determined.

【0005】図5は、本原理を用いた光ファイバを用い
た従来の光式ガスセンサの一実施例である。光源1とし
て半導体レーザを用いている。このレーザは単一スペク
トルを持ち、発振スペクトル幅はガス吸収スペクトル幅
より狭い。このレーザに定電流源2により一定電流を流
し、温度制御素子3を電源4を用いて制御してレーザ温
度を連続的に変化させると発振波長及び発振強度も連続
的に変化する特徴をもつ。そこで適当な温度で掃引する
とガス吸収線上にスイープすることができる。このレー
ザ光を集光用レンズ5で光伝送路7aに入射し、遠方の
ガスセル部6まで伝送する。ガスセル部6においては、
光伝送路7aにより入射された光は空間伝搬用レンズ8
a、8b間で空間伝搬し、対向する別の光伝送路7bに
集光され受光器9まで伝送する。アンプ10で電気信号
に変換後、XYレコーダ(検出装置)11のY軸成分に
入れられる。なおXYレコーダのX軸成分には、逐次変
化させたレーザの温度を入力させるために、レーザに付
けた温度測定素子12からの出力をアンプ13で電気信
号に変換後、XYレコーダに入れる。
FIG. 5 shows an embodiment of a conventional optical gas sensor using an optical fiber according to this principle. A semiconductor laser is used as the light source 1. This laser has a single spectrum and the oscillation spectrum width is narrower than the gas absorption spectrum width. When a constant current is supplied to this laser by a constant current source 2 and the temperature control element 3 is controlled by a power source 4 to continuously change the laser temperature, the oscillation wavelength and the oscillation intensity are also changed continuously. Therefore, sweeping at an appropriate temperature allows sweeping on the gas absorption line. This laser light is made incident on the light transmission path 7a by the condenser lens 5 and is transmitted to the gas cell portion 6 in the distance. In the gas cell section 6,
The light incident through the optical transmission line 7a is a space propagation lens 8
The light propagates in space between a and 8b, is condensed on another optical transmission path 7b that faces it, and is transmitted to the light receiver 9. After being converted into an electric signal by the amplifier 10, it is put into the Y-axis component of the XY recorder (detection device) 11. In order to input the temperature of the laser, which is sequentially changed, to the X-axis component of the XY recorder, the output from the temperature measuring element 12 attached to the laser is converted into an electric signal by the amplifier 13 and then input to the XY recorder.

【0006】ガスセル部にメタンが含まれていて、光源
の波長をスイープして、受光器で検出した結果を図4に
示す。濃度を求めるためには、 吸収線近傍での光量変化からベースラインを決め
る。
FIG. 4 shows a result obtained by sweeping the wavelength of the light source when the gas cell portion contains methane and detecting by the light receiver. In order to obtain the concentration, the baseline is determined from the change in the amount of light near the absorption line.

【0007】 吸収線中心波長におけるベースライン
の光出力値をP0 、実際の受光器で得られた光出力値を
1 として透過率T=(P1 /P0 )を求める。
The transmittance T = (P 1 / P 0 ) is calculated with P 0 being the light output value of the baseline at the absorption wavelength center wavelength and P 1 being the light output value obtained by the actual photodetector.

【0008】 前記式T=exp(−α・c・L)よ
り濃度cを求める。
The density c is obtained from the above equation T = exp (−α · c · L).

【0009】の過程をふむ。The process of will be described.

【0010】ところで、このセンサでメタンの他にアセ
チレン、二酸化炭素等のガス濃度についても同時に検出
する場合、次のように行う。
By the way, when the sensor simultaneously detects gas concentrations of acetylene, carbon dioxide, etc. in addition to methane, it is carried out as follows.

【0011】各ガスはメタンと同様にそれぞれのガス特
有の吸収スペクトルを持つので、この吸収スペクトルに
合うレーザをそれぞれ用意し、各レーザからの光ファイ
バ入射後合波器でもって合波する。そして各レーザを順
次駆動し、図4と同様にガス吸収線前後の透過率変化を
測定し、ピークでの光量変化からガスの濃度測定を行
う。
Since each gas has an absorption spectrum peculiar to each gas similarly to methane, a laser that matches the absorption spectrum is prepared and multiplexed by an optical fiber incident multiplexer from each laser. Then, each laser is sequentially driven, the change in transmittance before and after the gas absorption line is measured in the same manner as in FIG. 4, and the gas concentration is measured from the change in the light amount at the peak.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、高感度
検出を行うためには、ガスセル部の光空間伝搬部の結合
を、最大限にしてS/N向上を図る必要がある。
However, in order to perform high-sensitivity detection, it is necessary to maximize the coupling of the optical space propagation section of the gas cell section to improve the S / N ratio.

【0013】S/N比向上を図るためには、 空間光
路長の長尺化、 光結合の高効率化があげられる。空
間光路長は実用上から考えると数cmから十数cm以下とな
る。この範囲でS/N比向上を図るには、空間光伝送路
の高効率結合が課題となる。高効率光結合系を組むこと
は、信号強度S値を大きくするばかりか、光学系で発生
する反射光も小さくなり、その結果干渉雑音の小さい低
雑音な測定が可能となる。
In order to improve the S / N ratio, the spatial optical path length can be lengthened and the efficiency of optical coupling can be increased. From a practical point of view, the spatial optical path length is from a few cm to a dozen or less cm. In order to improve the S / N ratio within this range, high-efficiency coupling of the spatial light transmission line becomes a problem. The incorporation of the high-efficiency optical coupling system not only increases the signal intensity S value, but also reduces the reflected light generated by the optical system, and as a result, it is possible to perform low-noise measurement with small interference noise.

【0014】しかし、レンズを用いた光結合は、波長収
差による波長依存性があり、広い波長について最適結合
を行うことができない。そのため従来技術に記したよう
に、いろいろのガスを検出し、かつその時の使用波長に
幅があると、すべてのガスについて最大S/Nで検出で
きず、微小ガス検出できないケースが生じる。
However, the optical coupling using a lens has wavelength dependency due to wavelength aberration, and optimal coupling cannot be performed for a wide wavelength. Therefore, as described in the prior art, if various gases are detected and the wavelength used at that time has a range, all the gases cannot be detected at the maximum S / N, and there are cases where minute gases cannot be detected.

【0015】本発明者は、数cm以上の空間光路長を2組
の対向するレンズと光伝送路で構成する場合、使用波長
により最大光結合効率を得るに必要な光学配置が異なる
ことに気づいた。
The present inventor has noticed that, when a spatial optical path length of several cm or more is constituted by two sets of opposing lenses and an optical transmission path, the optical arrangement necessary for obtaining the maximum optical coupling efficiency differs depending on the wavelength used. It was

【0016】そこで、本発明の目的は、このような事情
に鑑みて発明したもので、多種類のガスを高感度に検出
できる光式ガスセンサを提供することにある。
[0016] Therefore, an object of the present invention is to provide an optical gas sensor which was invented in view of such circumstances and which can detect various kinds of gases with high sensitivity.

【0017】[0017]

【課題を解決するための手段】本発明の要旨は、 駆動電流及び温度に応じ、複数の検出ガスの吸収ス
ペクトルに一致した波長及び強度のレーザ光を発振する
複数の光源と、前記複数の検出ガスのそれぞれの吸収ス
ペクトルに一致する光波長で最大光結合を得るように配
置された光路から構成される複数の光学系を内臓したガ
スセル部と、レーザ光の通路であるとともに、光源とガ
スセル部、及びガスセル部と受光器とを結ぶ光伝送路
と、異なる光源からの波長の光を1つの光伝送路に合流
する、または1つの光伝送路からの光を波長ごとに複数
の光伝送路に分流するための、複数の光合波手段と1つ
の光分波手段とを備えて、ガスセル部と受光器とを結ぶ
光伝送路の末端に受光器と検出装置を備えたことを特徴
とする多種類ガス検出用光式ガスセンサ。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a plurality of light sources that oscillate laser light having wavelengths and intensities that match absorption spectra of a plurality of detection gases according to drive currents and temperatures, and the plurality of detections. A gas cell part containing a plurality of optical systems composed of optical paths arranged so as to obtain maximum optical coupling at a light wavelength that matches each absorption spectrum of gas, a light source and a gas cell part, as well as a path for laser light. , And an optical transmission line connecting the gas cell unit and the light receiver, and light having wavelengths from different light sources are merged into one optical transmission line, or a plurality of optical transmission lines for each wavelength of light from one optical transmission line A plurality of optical multiplexing means and one optical demultiplexing means for splitting the light into a plurality of light sources, and a light receiver and a detector are provided at the end of an optical transmission path connecting the gas cell part and the light receiver. Optical gas detector for multi-type gas detection Ssens.

【0018】 前記ガスセル部の最大光結合を得るよ
うに配置された光路の途中に45°偏波回転を生じさせ
る光偏波回転手段が設けられていることを特徴とする前
記記載の多種類ガス検出用光式ガスセンサ。
The multi-type gas described above, characterized in that an optical polarization rotation means for causing 45 ° polarization rotation is provided in the middle of the optical path arranged to obtain the maximum optical coupling of the gas cell section. Optical gas sensor for detection.

【0019】 前記光伝送路は光偏波保持機構をもつ
ものであり、前記光偏波回転手段の両側に光検光子を互
いに45°ずらして配置させ、かつ入力側の光伝送路か
ら出射される光の偏波と入力側検光子との向きを併せた
ことを特徴とする前記記載の多種類ガス検出用光式ガ
スセンサ。
The optical transmission line has an optical polarization maintaining mechanism, and optical analyzers are arranged on both sides of the optical polarization rotating means with a shift of 45 ° from each other and emitted from the optical transmission line on the input side. The optical gas sensor for detecting various kinds of gases as described above, characterized in that the polarized light of the light and the direction of the input side analyzer are combined.

【0020】 前記ガスセル部の最大光結合を得るよ
うに配置された光路が、ガスと反応して光吸収係数を変
化するセンサを具備することを特徴とする請求項1記載
の多種類ガス検出用光式ガスセンサ。
The multi-type gas detection device according to claim 1, wherein the optical path arranged so as to obtain the maximum optical coupling of the gas cell section includes a sensor that reacts with gas to change a light absorption coefficient. Optical gas sensor.

【0021】によって達成される。Is achieved by

【0022】[0022]

【実施例】 (実施例1)図1は、本発明の光式ガスセンサの一実施
例を示す図である。本例では、検出ガスとして、アセチ
レン、メタン、二酸化炭素の3種類のガスを検出する場
合を示す。各ガスの吸収スペクトル波長はそれぞれλ
C2H2=1.53μm 、λCH4 =1.65μm 、λCO2
1.439μm である。光源1a、1b、1cとしては
半導体レーザ(DFB−LD)を用い、各波長レーザを
発振するものを各1個づつ、計3個を用意する。各レー
ザは、光ファイバと光結合するための集光レンズ5、温
度を制御するための温度制御素子3a、3b、3c、温
度を測るための温度測定素子12a、12b、12c等
から構成される。各光源1a、1b、1cを制御する電
流駆動装置(図示しない)、温度測定素子12a、12
b、12c、及び温度制御素子3a、3b、3c、はそ
れぞれの光源1a、1b、1cに接続されるが、各光源
1a、1b、1cは逐次制御を行っており、同時制御は
行わないので、1台の制御装置をスイッチング14によ
り、切り換えて行う。また、このレーザ温度値は、XY
レコーダ11のX軸に入力される。
EXAMPLES Example 1 FIG. 1 is a diagram showing an example of the optical gas sensor of the present invention. In this example, a case where three kinds of gases of acetylene, methane, and carbon dioxide are detected as the detection gas is shown. The absorption spectrum wavelength of each gas is λ
C2H2 = 1.53 μm, λ CH4 = 1.65 μm, λ CO2 =
It is 1.439 μm. A semiconductor laser (DFB-LD) is used as each of the light sources 1a, 1b, and 1c, and one that oscillates each wavelength laser is provided, and three are provided in total. Each laser includes a condenser lens 5 for optically coupling with an optical fiber, temperature control elements 3a, 3b, 3c for controlling the temperature, temperature measuring elements 12a, 12b, 12c for measuring the temperature, and the like. . Current driving device (not shown) for controlling each light source 1a, 1b, 1c, temperature measuring elements 12a, 12
b, 12c and the temperature control elements 3a, 3b, 3c are connected to the respective light sources 1a, 1b, 1c, but the respective light sources 1a, 1b, 1c perform sequential control and do not perform simultaneous control. One control device is switched by the switching 14. The laser temperature value is XY
It is input to the X axis of the recorder 11.

【0023】各光源内の1つから発振されたレーザ光
は、光合波手段15aでもって合流して1本の光伝送路
7a’でガスセル部6まで伝送される。ガスセル部6は
それぞれの使用波長で光学的に調整された空間伝送路D
C2H2、DCH4 、DCO2 が配置されている。光伝送路7
a’からのレーザ光は、ガスセルの手前で光分波手段1
6によって波長ごとに、空間伝送路DC2H2、DCH4 、D
CO2 のいずれかに振り分けられる。各空間伝送路の途中
には、各透過波長について45°偏波回転を生じるよう
に、調整された光偏波回転手段17を設けてある。この
光偏波回路手段17を配置すると透過光は1回透過す
る。一方入射光側レンズ及び出射側レンズを反射して前
記透過光に遅れて進む反射光を3回透過する。その結果
両者の光偏波は90°変化しているため、両者の光干渉
は最小となり、干渉ノイズは低減される。この光偏波回
転手段17は、イットリウム−鉄−ガーネット(YI
G)結晶に永久磁石を筒状にした構造のものを用いた。
光偏波回転手段17を透過した光は対向する別の光伝送
路7b-1 、7b-2 、7b-3 に集光される。空間伝送路か
ら出射された光伝送路は、光合波手段15bでもって1
つの光伝送路7b 'に合流する。その結果、C2 2
レーザからの光は、7a-1 →7a '→7a '-1→DC2H2
b-1 →7b 'と伝送される。CH4 用レーザからの光
は、7a-2 →7a '→7a '-2→DCH4 →7b-2 →7b '
と伝送される。CO2 用レーザからの光は7a-3→7a '
→7a '-3→DCO2 →7b-3 →7b 'と伝送される。1本
の光伝送路を通ったレーザ光は受光器9で受けられる。
受光器9からの信号は、アンプ10を通ってXYレコー
ダ11のY軸に入力される。
The laser light oscillated from one of the light sources is combined by the optical combining means 15a and transmitted to the gas cell section 6 through one optical transmission line 7a '. The gas cell unit 6 is a spatial transmission line D that is optically adjusted for each wavelength used.
C2H2 , D CH4 , and D CO2 are arranged. Optical transmission line 7
The laser light from a'is located in front of the gas cell by the optical demultiplexing means 1
The spatial transmission lines D C2H2 , D CH4 , D
It is distributed to either CO2 . In the middle of each space transmission line, an optical polarization rotation means 17 adjusted so as to cause 45 ° polarization rotation for each transmission wavelength is provided. When this optical polarization circuit means 17 is arranged, the transmitted light is transmitted once. On the other hand, the reflected light which is reflected by the incident light side lens and the output side lens and progresses behind the transmitted light is transmitted three times. As a result, since the optical polarizations of the two have changed by 90 °, the optical interference between the two is minimized, and the interference noise is reduced. This optical polarization rotation means 17 is composed of yttrium-iron-garnet (YI
G) A crystal having a cylindrical structure of a permanent magnet was used.
The light transmitted through the optical polarization rotating means 17 is condensed on the other optical transmission lines 7 b-1 , 7 b-2 , 7 b-3 which face each other. The optical transmission line emitted from the spatial transmission line is 1 by the optical multiplexing means 15b.
It joins two optical transmission lines 7 b ' . As a result, the light from the C 2 H 2 laser is 7 a-1 → 7 a ' → 7 a' -1 → D C2H2
It is transmitted as 7 b-1 → 7 b ' . The light from the laser for CH 4 is 7 a-2 → 7 a ' → 7 a' -2 → D CH4 → 7 b-2 → 7 b '
Is transmitted. The light from the CO 2 laser is 7 a-3 → 7 a '
→ 7 a '-3 → D CO2 → 7 b-3 → 7 b' is transmitted. The laser light that has passed through one optical transmission path is received by the light receiver 9.
The signal from the light receiver 9 is input to the Y-axis of the XY recorder 11 through the amplifier 10.

【0024】一連の動作で、各ガス検出用レーザに一定
電流を流し、レーザ温度を変化させると図4と同様の関
係を得ることができ、各ガスについて濃度を検出するこ
とができる。
When a constant current is applied to each gas detecting laser and the laser temperature is changed in a series of operations, the same relationship as in FIG. 4 can be obtained, and the concentration of each gas can be detected.

【0025】(実施例2)光伝送路として、光偏波保持
機構をもつものを用いたときには、空間光路部の途中に
光アイソレータ(光偏波回転手段17の両側に光検光子
を互いに45°ずらして配置し、かつ入力側の光伝送路
から出射される光の偏波と入力側検光子との向きを併せ
て配置)を用いればよい。
(Embodiment 2) When an optical transmission line having an optical polarization maintaining mechanism is used, an optical isolator (optical analyzers 45 on both sides of the optical polarization rotating means 17) is provided in the middle of the spatial optical path. It may be arranged such that the polarized light of the light emitted from the optical transmission line on the input side and the direction of the input side analyzer are aligned together).

【0026】(実施例3)また、本発明の前記ガスセル
部の最大光結合を得るように配置された従来と異なる光
路が、図3に示すように、ガスの吸収で吸収係数のかわ
るセンサを利用することも可能である。検出ガスとして
水素は、長波長帯において、吸収波長をもたない。その
場合水素と反応して光吸収係数の変化するWO3 薄膜2
0を用いる。空間光伝送路のかわりに、光導波路18と
この光導波路18を覆うように配されたWO3 薄膜20
及びPd薄膜21を具備したもので、該光導波路18中
を通過した光の強度から濃度を求める。この薄膜の構造
は、簡単に構造を示すと、LiNbO3 基板19にTi
を熱拡散させて光導波路18を形成し、次にLiNbO
3 基板19の上にWO3 薄膜20を真空蒸着させ、Pd
薄膜21をスパッタリングする。光伝送路はLiNbO
3 基板19と接着させる。このように構成された水素セ
ンサの周囲に水素ガスが充満するとPd薄膜21が触媒
となってWO3薄膜20が着色する。その結果素子内の
光導波路18を通過する光のエバネシェント波の割合が
増加して透過光量が減少するものである。
(Embodiment 3) In addition, as shown in FIG. 3, an optical path different from the conventional one arranged so as to obtain the maximum optical coupling of the gas cell portion of the present invention is a sensor whose absorption coefficient is changed by gas absorption. It is also possible to use. Hydrogen as a detection gas has no absorption wavelength in the long wavelength band. In that case, the WO 3 thin film 2 which reacts with hydrogen to change the optical absorption coefficient 2
0 is used. Instead of the spatial light transmission path, an optical waveguide 18 and a WO 3 thin film 20 arranged so as to cover the optical waveguide 18.
And the Pd thin film 21 are provided, and the concentration is obtained from the intensity of the light passing through the optical waveguide 18. The structure of this thin film is simply shown by the following: TiN on the LiNbO 3 substrate 19
Is thermally diffused to form the optical waveguide 18, and then LiNbO
3 WO 3 thin film 20 is vacuum-deposited on the substrate 19 to form Pd.
The thin film 21 is sputtered. The optical transmission line is LiNbO
3 Adhere to the substrate 19. When hydrogen gas is filled around the thus configured hydrogen sensor, the Pd thin film 21 acts as a catalyst to color the WO 3 thin film 20. As a result, the ratio of the evanescent wave of the light passing through the optical waveguide 18 in the element increases and the amount of transmitted light decreases.

【0027】この水素センサをさきほどのガスセル部6
の空間伝送路の1つのかわりに組込めば水素の検出も可
能となる。
This hydrogen sensor is used in the gas cell section 6 described above.
It is also possible to detect hydrogen by incorporating it in place of one of the space transmission lines.

【0028】[0028]

【発明の効果】本発明の光ガスセンサにより、何種類も
のガスについて高密度な検出が可能となる。
The optical gas sensor of the present invention enables high-density detection of many kinds of gases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の基本構成の回線図。FIG. 1 is a circuit diagram of a basic configuration of an embodiment of the present invention.

【図2】本発明の光偏波回転手段を通過する透過光と反
射光の偏波の回転を示す説明図。
FIG. 2 is an explanatory view showing rotation of polarization of transmitted light and reflected light which pass through the optical polarization rotating means of the present invention.

【図3】本発明の他の実施例を用いた水素ガスセンサの
構造を示す側面図。
FIG. 3 is a side view showing the structure of a hydrogen gas sensor using another embodiment of the present invention.

【図4】従来技術及び本発明で得られる信号波形を示す
グラフ。
FIG. 4 is a graph showing signal waveforms obtained in the related art and the present invention.

【図5】従来技術の一例を示す基本構成の回線図。FIG. 5 is a circuit diagram of a basic configuration showing an example of a conventional technique.

【図6】メタンガスの赤外吸収スペクトルを示すグラ
フ。
FIG. 6 is a graph showing an infrared absorption spectrum of methane gas.

【符号の説明】[Explanation of symbols]

1、1a、1b、1c 光源 2 定電流源 3、3a、3b、3c 温度制御素子 4 電源 5 集光用レンズ 6 ガスセル部 7a、7b、7a’、7b’7a-1 、7a-2 、7a-3
a '-1、7a '-2、7a '-3、7b-1 、7b-2 、7b-3
光伝送路 8、8a、8b 空間伝搬用レンズ 9 受光器 10 アンプ 11 XYレコーダ(検出装置) 12、12a、12b、12c 温度測定素子 13 アンプ 14 スイッチング 15a、15b 光合波手段 16 光分波手段 17 光偏波回転手段 18 光導波路 19 LiNbO3 基板 20 WO3 薄膜 21 Pd薄膜
1, 1a, 1b, 1c Light source 2 Constant current source 3, 3a, 3b, 3c Temperature control element 4 Power supply 5 Condensing lens 6 Gas cell section 7a, 7b, 7a ', 7b'7a -1 , 7a -2 , 7 a-3 ,
7 a '-1 , 7 a' -2 , 7 a '-3 , 7 b-1 , 7 b-2 , 7 b-3
Optical transmission line 8, 8a, 8b Space propagation lens 9 Light receiver 10 Amplifier 11 XY recorder (detection device) 12, 12a, 12b, 12c Temperature measuring element 13 Amplifier 14 Switching 15a, 15b Optical multiplexing means 16 Optical demultiplexing means 17 Optical polarization rotating means 18 Optical waveguide 19 LiNbO 3 substrate 20 WO 3 thin film 21 Pd thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】駆動電流及び温度に応じ、複数の検出ガス
の吸収スペクトルに一致した波長及び強度のレーザ光を
発振する複数の光源と、前記複数の検出ガスのそれぞれ
の吸収スペクトルに一致する光波長で最大光結合を得る
ように配置された光路から構成される複数の光学系を内
蔵したガスセル部と、レーザ光の通路であるとともに光
源とガスセル部、及びガスセル部と受光器とを結ぶ光伝
送路と、異なる光源からの波長の光を1つの光伝送路に
合流する、または1つの光伝送路からの光を波長ごとに
複数の光伝送路に分流するための、複数の光合波手段と
1つの光分波手段とを備えて、ガスセル部と受光器とを
結ぶ光伝送路の末端に受光器と検出装置を備えたことを
特徴とする多種類ガス検出用光式ガスセンサ。
1. A plurality of light sources that oscillate laser light having wavelengths and intensities that match the absorption spectra of a plurality of detection gases according to drive current and temperature, and light that matches the absorption spectra of each of the plurality of detection gases. A gas cell part containing a plurality of optical systems composed of optical paths arranged so as to obtain maximum optical coupling at a wavelength, and a light path connecting laser light and connecting a light source and a gas cell part, and a gas cell part and a light receiver. A plurality of optical multiplexing means for merging light having wavelengths from different light sources into one optical transmission path or diverting light from one optical transmission path into a plurality of optical transmission paths for each wavelength An optical gas sensor for detecting multiple types of gas, comprising: a light demultiplexing means;
【請求項2】前記ガスセル部の最大光結合を得るように
配置された光路の途中に45°偏波回転を生じさせる光
偏波回転手段が設けられていることを特徴とする請求項
1記載の多種類ガス検出用光式ガスセンサ。
2. The optical polarization rotating means for causing 45 ° polarization rotation is provided in the middle of the optical path arranged to obtain the maximum optical coupling of the gas cell section. Optical gas sensor for multi-type gas detection.
【請求項3】前記光伝送路は光偏波保持機構をもつもの
であり、前記光偏波回転手段の両側に光検光子を互いに
45°ずらして配置させ、かつ入力側の光伝送路から出
射される光の偏波と入力側検光子との向きを併せたこと
を特徴とする請求項2記載の多種類ガス検出用光式ガス
センサ。
3. The optical transmission line has an optical polarization maintaining mechanism, wherein optical analyzers are arranged on both sides of the optical polarization rotating means with a shift of 45 ° from each other, and the optical transmission line on the input side is separated from the optical transmission line. The optical gas sensor for detecting various kinds of gases according to claim 2, wherein the polarization of the emitted light and the direction of the input side analyzer are combined.
【請求項4】前記ガスセル部の最大光結合を得るように
配置された光路が、ガスと反応して光吸収係数を変化す
るセンサを具備することを特徴とする請求項1記載の多
種類ガス検出用光式ガスセンサ。
4. The multi-type gas according to claim 1, wherein the optical path arranged so as to obtain the maximum optical coupling of the gas cell section includes a sensor that reacts with the gas to change the light absorption coefficient. Optical gas sensor for detection.
JP30656593A 1993-12-07 1993-12-07 Optical gas sensor Pending JPH07159315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30656593A JPH07159315A (en) 1993-12-07 1993-12-07 Optical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30656593A JPH07159315A (en) 1993-12-07 1993-12-07 Optical gas sensor

Publications (1)

Publication Number Publication Date
JPH07159315A true JPH07159315A (en) 1995-06-23

Family

ID=17958592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30656593A Pending JPH07159315A (en) 1993-12-07 1993-12-07 Optical gas sensor

Country Status (1)

Country Link
JP (1) JPH07159315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150828A (en) * 2007-12-21 2009-07-09 Dkk Toa Corp Infrared control system of infrared gas analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150828A (en) * 2007-12-21 2009-07-09 Dkk Toa Corp Infrared control system of infrared gas analyzer

Similar Documents

Publication Publication Date Title
US7277178B2 (en) Coherent photothermal interferometric spectroscopy system and method for chemical sensing
US4937448A (en) Self-normalizing single-beam laser spectrometer
CA2056432C (en) Dual beam acousto-optic tunable spectrometer
US5128797A (en) Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry
US5396325A (en) Optical sensor
US5436167A (en) Fiber optics gas sensor
JPH0315742A (en) Gas detector
US7176671B2 (en) Current measuring device
JPH06341894A (en) Optical sensor for detecting chemical substrate
CN108279209A (en) A kind of more gas detecting systems of wave-length coverage and wavelength continuously adjustable
CN110632028B (en) Zero background laser absorption spectrum detection system based on interference between optical fiber polarization modes
KR20010015308A (en) A laser spectroscopy system
CA2120850C (en) Optical fiber gyro
JPH0481132B2 (en)
GB2165640A (en) Gas or vapour concentration monitoring
US20070146716A1 (en) Device and method for non-contact sensing of low-concetration and trace substances
JPH04151546A (en) Gas detecting apparatus
US20080123099A1 (en) Photothermal conversion measuring instrument
US4803052A (en) Carbon monoxide detector
US4208129A (en) Sensitive laser spectroscopy measurement system
JP2540670B2 (en) Multi-type gas detector using optical fiber
JPH07159315A (en) Optical gas sensor
JPH09304274A (en) Optical gas-concentration detecting method and apparatus therefor
GB2408796A (en) Raman gain or loss effect optical sensor chip
JP3229391B2 (en) Multipoint gas concentration measurement method and apparatus using optical fiber