JPH07158550A - Draft tube of hydraulic machine - Google Patents

Draft tube of hydraulic machine

Info

Publication number
JPH07158550A
JPH07158550A JP5308144A JP30814493A JPH07158550A JP H07158550 A JPH07158550 A JP H07158550A JP 5308144 A JP5308144 A JP 5308144A JP 30814493 A JP30814493 A JP 30814493A JP H07158550 A JPH07158550 A JP H07158550A
Authority
JP
Japan
Prior art keywords
suction pipe
pier
hydraulic machine
inlet opening
tip end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5308144A
Other languages
Japanese (ja)
Inventor
Naoko Shimada
田 尚 子 島
Toshiaki Suzuki
木 敏 暁 鈴
Norio Otake
竹 典 男 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5308144A priority Critical patent/JPH07158550A/en
Publication of JPH07158550A publication Critical patent/JPH07158550A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To improve the draft tube efficiency by reducing an energy loss by a draft tube, in the operating condition along a wide scope from a high head to a low head. CONSTITUTION:At the front end face 9a of a pier 9, an inlet opening 10 is formed. The position of the inlet opening 10 is positioned between the center of the pier front end face 9a in the height direction, and the bottom surface 8c of the expansion part 8 of a draft tube. At the both side surface 9a and 9b in the downstream of the pier 9, longitudinal slit form of outlet openings 11 and 12 are formed at the left side and the right side symmetric positions relative to the pier 9 respectively. The positions in the height direction of the pier, of the outlet openings 11 and 12 are set to be between the center of the pier in the height direction, and the upper surface 8b of the expansion part 8 of the draft tube. The inlet opening 10, and the outlet openings 11 and 12 are connected through communicating holes 13 formed to the pier 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水車やポンプ水車など
の水力機械の吸出し管に係り、特に吸出し管拡大部の流
路内に強度部材としてピアを有する水力機械の吸出し管
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suction pipe of a hydraulic machine such as a water turbine or a pump turbine, and more particularly to a suction pipe of a hydraulic machine having a pier as a strength member in a flow path of an expanded portion of the suction pipe.

【0002】[0002]

【従来の技術】水力機械の吸出し管は、吸出し管内の流
路面積が徐々に増加する形状とし、ランナから流出した
流水の速度を徐々に減少させて、流水の運動エネルギー
を効率良く回収している。図14及び図15は一般的な
フランシス水車を示したもので、ケーシング1からの圧
力水は、ステーベーン2及びガイドベーン3を通ってラ
ンナ4を回転駆動する。このランナ4から流出した流水
は、吸出し管5によって導かれて図示を省略された放水
路に放出される。この吸出し管5は、上部吸出し管6と
吸出し管エルボ部7と吸出し管拡大部8とから構成され
ている。
2. Description of the Related Art The suction pipe of a hydraulic machine has a shape such that the flow passage area in the suction pipe gradually increases, and the velocity of the flowing water flowing out from the runner is gradually reduced to efficiently collect the kinetic energy of the flowing water. There is. 14 and 15 show a general Francis turbine, in which pressure water from the casing 1 drives the runner 4 to rotate through the stay vanes 2 and the guide vanes 3. The running water flowing out from the runner 4 is guided by the suction pipe 5 and is discharged to a water discharge channel (not shown). The suction pipe 5 is composed of an upper suction pipe 6, a suction pipe elbow portion 7 and a suction pipe enlarged portion 8.

【0003】上部吸出し管6と吸出し管エルボ部7は、
溶接構造であり充分な強度を有する。しかしながら、吸
出し管拡大部8はコンクリート構造であり強度的に劣る
ため、強度部材として支柱形状のピア9が設置されてい
る。このピア9は、吸出し管拡大部8の流路を左右に分
割するように、吸出し管拡大部8の入口から出口まで延
在している。なお、ピア9は、大型の水力機械の場合に
は互いに平行に複数本設置されることもある。
The upper suction pipe 6 and the suction pipe elbow portion 7 are
It has a welded structure and sufficient strength. However, since the suction pipe expanded portion 8 has a concrete structure and is inferior in strength, a pillar-shaped pier 9 is installed as a strength member. The pier 9 extends from the inlet to the outlet of the suction pipe expansion part 8 so as to divide the flow path of the suction pipe expansion part 8 into right and left. In the case of a large hydraulic machine, a plurality of piers 9 may be installed in parallel with each other.

【0004】図16乃至図18は、ランナから流出した
流水の動きを示したもので、ランナ羽根は、設計落差近
傍での運転状態では図16に示したように旋回速度成分
がほぼ零になるように設計されている。従って、ランナ
から流出した流水は、主流が吸出し管5内では吸出し管
軸方向O−Oに沿って流れる。しかしながら、設計落差
から離れた低落差及び高落差の運転では、ランナ羽根か
ら流出した水には、旋回流が残存してしまう。従って、
低落差側の運転点の場合には図17に示したように、流
水の主流が吸出し管拡大部8の一方の側壁8aの方に片
寄り、逆に、高落差側の運転点の場合には図18に示し
たように、主流が吸出し管拡大部8の他方の側壁8bの
方に片寄る。
16 to 18 show the movement of running water flowing out from the runner. The runner blade has a swirling velocity component of substantially zero as shown in FIG. 16 in an operating state near the design head. Is designed to be. Therefore, the main stream of the flowing water flowing out from the runner flows in the suction pipe 5 along the suction pipe axial direction OO. However, in the operation of low head and high head apart from the design head, the swirling flow remains in the water flowing out from the runner blade. Therefore,
In the case of the operating point on the low head side, as shown in FIG. 17, the main flow of the running water is biased toward one side wall 8a of the suction pipe expanding portion 8, and conversely, in the case of the operating point on the high head side. As shown in FIG. 18, the main flow is biased toward the other side wall 8b of the suction pipe expansion portion 8.

【0005】図19は、図14に示した断面Wでの、図
15のピア9に関して左右対称な位置A、Bにおける流
速分布を模型試験によって測定した実験結果を示したグ
ラフで、横軸に吸出し管拡大部の底面からの距離hをと
り、縦軸に吸出し管方向の流速(V/V)をとったも
のである。なお、横軸の距離hは、図14に示したよう
に吸出し管拡大部の底面からの垂直方向に測った測定点
A、Bまでの距離であり、また、流速(V/V)は測
定点A、Bでの吸出し管方向の流速Vを、その測定点を
含む吸出し管の横断面積での平均流速Vで割って無次
元化したものである。
FIG. 19 is a graph showing the experimental results obtained by measuring the flow velocity distribution at the positions A and B symmetrical with respect to the pier 9 of FIG. 15 at the cross section W shown in FIG. The distance h from the bottom of the expanded portion of the suction pipe is taken, and the vertical axis shows the flow velocity (V / V 0 ) in the direction of the suction pipe. The distance h on the horizontal axis is the distance from the bottom surface of the expanded portion of the suction pipe to the measurement points A and B measured in the vertical direction as shown in FIG. 14, and the flow velocity (V / V 0 ) is The flow velocity V in the direction of the suction pipe at the measurement points A and B is divided by the average flow velocity V 0 in the cross-sectional area of the suction pipe including the measurement point to make it dimensionless.

【0006】図19から分かるように、設計落差相当の
運転状態では、測定点A、Bとも吸出し管の底壁面から
上壁面まで流速(V/V)はほぼ一定であり、ピアに
よって分割された吸出し管の左右流路の流量がほぼ等し
い。ところが、低落差相当の運転状態では、測定点Aに
比べて測定点Bの流速の方が大きく、逆に、高落差相当
の運転状態では、逆に測定点Bに比べて測定点Aの流速
の方が大きくなっている。
As can be seen from FIG. 19, in the operating state corresponding to the design head, the flow velocity (V / V 0 ) from the bottom wall surface to the top wall surface of the suction pipe is almost constant at both measurement points A and B, and the measurement points are divided by the piers. The flow rates of the left and right flow paths of the suction pipe are almost equal. However, in the operating state corresponding to the low head, the flow velocity at the measuring point B is larger than that at the measuring point A. Conversely, in the operating state corresponding to the high head, the flow velocity at the measuring point A is opposite to that at the measuring point B. Is bigger.

【0007】更に、設計落差相当の運転状態では流速は
距離hに無関係にほぼ一定であるが、低落差及び高落差
相当の運転状態では、共に距離hの増大に伴い流速が大
きく低下する、即ち、吸出し管の底面付近の流速に比べ
て吸出し管上面付近の流速が大幅に低下している。
Further, in the operating state corresponding to the design head, the flow velocity is almost constant irrespective of the distance h, but in the operating state corresponding to the low head and the high head, the flow velocity greatly decreases as the distance h increases, that is, The flow velocity near the top of the suction pipe is significantly lower than that near the bottom of the suction pipe.

【0008】図20は高落差の運転における吸出し管内
の流動状態を解析した結果を模式的に示したもので、高
エネルギー流体が吸出し管拡大部8の底面側に、低エネ
ルギー流体が吸出し管拡大部8の上面側に夫々流れ、か
つ逆流域C、Dが吸出し管拡大部8の上面近傍に発生し
ている。この右側流路の逆流域Cは吸出し管拡大部8の
側壁近傍に位置し、左側流路の逆流域Dはピア9の側面
近傍に位置している。低落差の運転では、高落差の場合
と逆に、右側流路の逆流域はピア9の側面近傍に、左側
流路の逆流域は吸出し管拡大部8の側壁近傍に位置す
る。
FIG. 20 schematically shows the result of analysis of the flow state in the suction pipe in the operation with a high head, in which the high energy fluid spreads on the bottom side of the suction pipe expanding portion 8 and the low energy fluid spreads on the suction pipe. Backflow regions C and D are respectively generated on the upper surface side of the portion 8 and near the upper surface of the suction pipe expansion portion 8. The reverse flow area C of the right flow passage is located near the side wall of the suction pipe expansion portion 8, and the reverse flow area D of the left flow passage is located near the side surface of the pier 9. In the operation with a low head, the reverse flow area of the right flow passage is located near the side surface of the pier 9, and the reverse flow area of the left flow passage is located near the side wall of the suction pipe expansion portion 8, contrary to the case of the high head.

【0009】また、図21は、吸出し管拡大部8の流れ
を速度ベクトルを用いて模式的に示したもので、吸出し
管底面側で流速が大きく、上面側では相対的に小さく、
吸出し管拡大部の下流側出口付近で逆流が発生してい
る。このような吸出し管拡大部8の底部での流速が速
く、逆に上面部では遅くなるといった流速不均一現象
は、圧力回復率を低下させて吸出し管効率を低下させる
といった問題がある。更に、流速不均一現象の結果とし
て、吸出し管拡大部の下流側出口付近で発生する逆流
は、大きなエネルギー損失を引き起こし、水車効率を大
幅に低下させる。
Further, FIG. 21 schematically shows the flow in the expansion portion 8 of the suction pipe by using velocity vectors. The flow velocity is high on the bottom side of the suction pipe and relatively small on the top side.
A backflow occurs near the downstream outlet of the expanded suction pipe. Such a flow velocity non-uniformity phenomenon in which the flow velocity at the bottom of the expanded suction pipe 8 is high and the flow velocity at the upper surface is slow, has a problem that the pressure recovery rate is reduced and the efficiency of the suction pipe is reduced. Further, as a result of the flow velocity non-uniformity phenomenon, the backflow that occurs near the downstream outlet of the expansion portion of the suction pipe causes a large energy loss and significantly reduces the turbine efficiency.

【0010】そこで、このような流速不均一現象を低減
した吸出し管が種々提案されている。特開平2−140
466号公報には、上部吸出し管の内壁に旋回抑制フィ
ンを複数枚設置して、旋回流れを抑制して流量分布を均
一化した吸出し管が開示されている。また、特公平3−
35511号公報に開示された吸出し管では、整流翼が
吸出し管拡大部の流路に吸出し管軸方向に沿って設置さ
れ、吸出し管拡大部に流入した流水はこの整流翼の先端
部によって二分された後に、整流翼の末端部で再び合流
する。これによって、旋回流の発生を抑制している。
Therefore, various suction pipes in which such a phenomenon of non-uniform flow velocity is reduced have been proposed. JP-A-2-140
Japanese Patent No. 466 discloses a suction pipe in which a plurality of swirl suppression fins are installed on the inner wall of the upper suction pipe to suppress swirling flow and make the flow distribution uniform. In addition, special fair 3-
In the suction pipe disclosed in Japanese Patent No. 35511, straightening vanes are installed in the flow path of the widening part of the suction pipe along the axial direction of the suction pipe, and the running water flowing into the widening part of the suction pipe is divided into two parts by the tip part of the straightening vane. And then join again at the end of the straightening vane. This suppresses the generation of swirling flow.

【0011】[0011]

【発明が解決しようとする課題】ところが、上述の特開
平2−140466号公報に開示された吸出し管は、上
部吸出し管の内壁に複数枚の旋回抑制フィンを設置して
流れを抑制する構成であるため、これらの旋回抑制フィ
ン自体によるエネルギー損失を生じると共に、吸出し管
拡大部での旋回流の発生を充分には抑制することができ
ないといった問題がある。また、上述の特公平3−35
511号公報に開示された吸出し管は、吸出し管にピア
が設置されている場合には、このピアによって分割され
た左右流路に夫々整流翼を設置することになり、これら
の整流翼によって大きなエネルギー損失を発生するとい
った問題がある。
However, the suction pipe disclosed in the above-mentioned Japanese Patent Laid-Open No. 2-140466 has a structure in which a plurality of swirl suppression fins are installed on the inner wall of the upper suction pipe to suppress the flow. Therefore, there are problems that energy is lost due to these swirl suppressing fins themselves, and swirl flow cannot be sufficiently suppressed in the expansion portion of the suction pipe. In addition, the above-mentioned Japanese Patent Publication 3-35
In the suction pipe disclosed in Japanese Patent No. 511 gazette, when a pier is installed in the suction pipe, the straightening vanes are installed in the left and right flow passages divided by the pier, respectively. There is a problem of generating energy loss.

【0012】そこで、本発明の目的は、高落差から低落
差までの広範囲にわたる運転状態において、吸出し管で
のエネルギー損失を低減し、吸出し管効率を高めること
ができる水力機械の吸出し管を提供することにある。
Therefore, an object of the present invention is to provide a suction pipe of a hydraulic machine capable of reducing the energy loss in the suction pipe and enhancing the efficiency of the suction pipe in a wide range of operating conditions from a high head to a low head. Especially.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に請求項1に記載された発明は、ランナから出た水を放
水路に導く吸出し管の内部に強度部材としてピアを有す
る水力機械の吸出し管において、上記ピアの先端面に形
成された入口開口と上記ピアの下流側の両側面に夫々形
成された一対の出口開口とを互いに連通する連通孔が上
記ピアに穿孔され、上記入口開口は上記先端面の比較的
下方に位置し、上記出口開口は上記側面の比較的上方に
位置していることを特徴とするものである。
In order to achieve this object, the invention described in claim 1 is a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel. In the suction pipe, a communication hole that communicates with an inlet opening formed on the tip end surface of the pier and a pair of outlet openings formed on both side surfaces on the downstream side of the pier is bored in the pier, and the inlet opening is formed. Is located relatively below the tip surface and the outlet opening is located relatively above the side surface.

【0014】この構成にあっては、上記入口開口は上記
ピアの高さ方向の中央部から上記吸出し管の底面までの
間に位置し、上記出口開口は上記ピアの高さ方向の中央
部から上記吸出し管の上面までの間に位置し、上記先端
面から上記出口開口までの流水方向の距離が上記先端面
の高さ方向の長さの約1乃至3倍であることが望まし
い。
In this structure, the inlet opening is located between the center of the pier in the height direction and the bottom of the suction pipe, and the outlet opening is from the center of the pier in the height direction. It is desirable that the distance between the tip end surface and the outlet opening in the flowing direction is about 1 to 3 times the length in the height direction of the tip end surface, which is located between the upper surface of the suction pipe.

【0015】請求項3に記載された発明は、ランナから
出た水を放水路に導く吸出し管の内部に強度部材として
ピアを有する水力機械の吸出し管において、上記ピアに
はその両側面を連通する貫通孔が穿孔され、上記貫通孔
は、上記ピアの高さ方向の中央部から上記吸出し管の上
面までの間であって、上記吸出し管の下流側の逆流発生
域の近傍に位置することを特徴とするものである。
According to a third aspect of the present invention, in a suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, both side surfaces of the pier are connected to the pier. A through hole is formed, and the through hole is located between the center part in the height direction of the pier and the upper surface of the suction pipe, and is located near the backflow generation region on the downstream side of the suction pipe. It is characterized by.

【0016】請求項4に記載された発明は、ランナから
出た水を放水路に導く吸出し管の内部に強度部材として
ピアを有する水力機械の吸出し管において、上記ピアの
先端面またはその近傍に入口開口を有すると共に上記吸
出し管の下流側の側面に出口開口を有する連通管を具備
し、上記入口開口は比較的下方に位置し、上記出口開口
は上記入口開口よりも上方に位置することを特徴とする
ものである。
According to the invention described in claim 4, in a suction pipe of a hydraulic machine having a pier as a strength member inside the suction pipe for guiding the water discharged from the runner to the discharge channel, the suction pipe is provided at or near the tip surface of the pier. A communicating pipe having an inlet opening and having an outlet opening on a side surface on the downstream side of the suction pipe, wherein the inlet opening is located relatively below, and the outlet opening is located above the inlet opening. It is a feature.

【0017】請求項5に記載された発明は、ランナから
出た水を放水路に導く吸出し管の内部に強度部材として
ピアを有する水力機械の吸出し管において、上記ピアの
先端面近傍かつ上記吸出し管の底面近傍の位置に配置さ
れ、上記ピアの側面と上記吸出し管の側壁との間に延在
する案内羽根を具備し、上記案内羽根は上記吸出し管の
底面近傍の流れを上記吸出し管の上面の方に案内するこ
とを特徴とするものである。
According to a fifth aspect of the present invention, in a suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, the suction pipe is located near the tip surface of the pier and the suction pipe. A guide vane is disposed at a position near the bottom surface of the pipe and extends between a side surface of the pier and a side wall of the suction pipe, and the guide vane guides the flow near the bottom surface of the suction pipe to the suction pipe. It is characterized by guiding to the upper surface.

【0018】請求項6に記載された発明は、ランナから
出た水を放水路に導く吸出し管の内部に強度部材として
ピアを有する水力機械の吸出し管において、上記ピアの
先端面は、上記先端面の底部側が上流側に位置しかつ上
記先端面の上部側が相対的に下流側に位置するように、
傾斜していることを特徴とするものである。この構成で
は、上記ピアの先端面は凹面に湾曲していることが好ま
しい。
According to a sixth aspect of the present invention, in a suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, the tip end surface of the pier has the tip end. So that the bottom side of the surface is located upstream and the top side of the tip surface is located relatively downstream.
It is characterized by being inclined. In this configuration, it is preferable that the tip end surface of the pier be concavely curved.

【0019】[0019]

【作用】請求項1に記載の水力機械の吸出し管では、吸
出し管底面付近の高圧水は先端面の入口開口から連通孔
に流入し、出口開口から逆流発生域の低圧部に噴出す
る。この高圧水の逆流発生域の低圧部への噴出によっ
て、逆流発生を抑制することができる。連通孔の出口開
口はピアの両側面に形成されているため、ピアによって
分割された左右の流路について逆流発生を抑制すること
ができる。
In the suction pipe of the hydraulic machine according to the first aspect of the present invention, the high-pressure water near the bottom of the suction pipe flows into the communication hole from the inlet opening of the tip surface and is jetted from the outlet opening to the low pressure portion of the backflow generation region. The generation of the backflow can be suppressed by jetting the high-pressure water to the low-pressure portion in the backflow generation region. Since the outlet openings of the communication holes are formed on both side surfaces of the pier, it is possible to suppress backflow from occurring in the left and right flow channels divided by the pier.

【0020】請求項3に記載の水力機械の吸出し管で
は、設計落差での運転の場合にはピアの下流側の両側面
の付近の流路の圧力は互いにほぼ等しい。しかしなが
ら、高落差での運転の場合には、ピアの下流側の一方の
側面の流路が低圧になり、低落差での運転の場合には、
他方の側面の流路が低圧になり、これらの低圧側の流路
に逆流が発生する。ところが、ピアの両側面に圧力差が
生じると、高圧側の圧力水が貫通孔を通って低圧側に噴
出する。これによって低圧側での逆流の発生を抑制する
ことができる。
In the suction pipe of the hydraulic machine according to the third aspect of the present invention, the pressures in the flow passages near both side surfaces on the downstream side of the pier are substantially equal to each other in the case of operation at the design head. However, in the case of operation at a high head, the flow path on one side surface on the downstream side of the pier becomes low pressure, and in the case of operation at a low head,
The flow path on the other side has a low pressure, and backflow occurs in these low-pressure side flow paths. However, when a pressure difference occurs on both side surfaces of the pier, the pressure water on the high pressure side is jetted to the low pressure side through the through hole. This can suppress the occurrence of backflow on the low pressure side.

【0021】請求項4に記載の水力機械の吸出し管で
は、吸出し管底面付近の高圧水は入口開口から連通管に
流入し、出口開口から逆流発生域の低圧部に噴出する。
この高圧水の低圧部への噴出によって、逆流発生を抑制
することができる。
In the suction pipe of the hydraulic machine according to the fourth aspect, the high-pressure water in the vicinity of the bottom face of the suction pipe flows into the communication pipe from the inlet opening and is jetted from the outlet opening to the low pressure portion in the backflow generation region.
The jetting of the high-pressure water to the low-pressure portion can suppress the backflow.

【0022】請求項5に記載の水力機械の吸出し管で
は、吸出し管の底面近傍を流れる流水は、案内羽根によ
って上方に向きを変えられて吸出し管の上面の方に流れ
る。これによって、吸出し管内の流れがその横断面全体
にわたって均一化される。請求項6に記載の水力機械の
吸出し管では、吸出し管の底面近傍を流れる流水は、ピ
アの傾斜先端面によって上方に向きを変えられて吸出し
管の上面の方に流れる。これによって、吸出し管内の流
れがその横断面全体にわたって均一化される。
In the suction pipe of the hydraulic machine according to the fifth aspect, the running water flowing near the bottom surface of the suction pipe is turned upward by the guide vanes and flows toward the upper surface of the suction pipe. This homogenizes the flow in the suction tube over its entire cross section. In the suction pipe of the hydraulic machine according to the sixth aspect, the flowing water flowing near the bottom surface of the suction pipe is turned upward by the inclined tip surface of the pier and flows toward the upper surface of the suction pipe. This homogenizes the flow in the suction tube over its entire cross section.

【0023】[0023]

【実施例】以下に本発明による水力機械の吸出し管の実
施例を図14及び図21と同部分には同一符号を付して
示した図1乃至図13を参照して説明する。図1及び図
2において、ケーシング1からの圧力水は、ステーベー
ン2及びガイドベーン3を通ってランナ4を回転駆動す
る。このランナ4から流出した流水は、吸出し管5によ
って導かれて図示を省略された放水路に放出される。こ
の吸出し管5は、上部吸出し管6と吸出し管エルボ部7
と吸出し管拡大部8とから構成されている。この吸出し
管拡大部8には、強度部材として支柱形状のピア9が設
置されている。このピア9は、吸出し管拡大部8の流路
を左右に分割するように、吸出し管拡大部8の入口から
出口まで延在している。以上の構成は、図14に示した
一般的なフランシス水車の構成と同一である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a suction pipe of a hydraulic machine according to the present invention will be described below with reference to FIGS. 1 to 13 in which the same parts as those in FIGS. 1 and 2, the pressurized water from the casing 1 drives the runner 4 to rotate through the stay vanes 2 and the guide vanes 3. The running water flowing out from the runner 4 is guided by the suction pipe 5 and is discharged to a water discharge channel (not shown). The suction pipe 5 includes an upper suction pipe 6 and a suction pipe elbow portion 7
And a suction pipe expansion section 8. A strut-shaped pier 9 is installed as a strength member in the suction pipe expansion portion 8. The pier 9 extends from the inlet to the outlet of the suction pipe expansion part 8 so as to divide the flow path of the suction pipe expansion part 8 into right and left. The above structure is the same as that of the general Francis turbine shown in FIG.

【0024】ピア9の先端面9aには、縦長のスリット
状の入口開口10が穿設されている。この入口開口10
は、ピア先端面9aの高さ方向の中央部から吸出し管拡
大部8の底面8cまでの間に位置している。換言する
と、入口開口10の位置は、ピア先端面9aの高さ方向
の長さHの中点と吸出し管の底面8cとの間に選定さ
れている。ピア9の下流側の両側面9b、9cには、縦
長のスリット状の出口開口11、12がピア9に関して
左右対称に夫々穿設されている。これらの出口開口1
1、12は、ピア9の高さ方向の位置が、ピアの高さ方
向の中央部から吸出し管拡大部8の上面8dまでの間と
なるように定められている。入口開口10と出口開口1
1、12とは、ピア9に穿孔された連通孔13によって
接続され、この連通孔13は入口開口10からピア9の
内部を延在し、途中で二股状に分岐して、出口開口1
1、12に達している。
A longitudinally elongated slit-shaped inlet opening 10 is formed in the tip surface 9a of the pier 9. This entrance opening 10
Is located between the center of the pier tip surface 9a in the height direction and the bottom surface 8c of the suction pipe expansion portion 8. In other words, the position of the inlet opening 10 is selected between the midpoint of the height H 0 of the pier tip surface 9a in the height direction and the bottom surface 8c of the suction pipe. Vertically elongated slit-shaped outlet openings 11 and 12 are formed symmetrically with respect to the pier 9 on both side surfaces 9b and 9c on the downstream side of the pier 9, respectively. These outlet openings 1
Nos. 1 and 12 are set such that the position of the pier 9 in the height direction is between the center of the pier in the height direction and the upper surface 8d of the suction pipe expansion portion 8. Inlet opening 10 and Outlet opening 1
1 and 12 are connected to each other by a communication hole 13 bored in the pier 9. The communication hole 13 extends from the inlet opening 10 to the inside of the pier 9 and bifurcates on the way to form the outlet opening 1
It has reached 1 and 12.

【0025】次に、この実施例の作用を説明する。吸出
し管底面8c付近の高圧水は,ピア先端面9aの入口開
口10から連通孔13に流入しこの連通孔13を通っ
て、出口開口11、12からピア側面9b、9c付近の
逆流発生域の低圧部に噴出する。ピア先端面9aの水圧
力は、ピア先端面9aがそこに流入した流水を堰止める
形となるため周囲の圧力の数倍も高圧となっている。従
って、出口開口11、12からの高圧水の噴出によっ
て、ピア側面9b、9cの近傍の逆流発生域の低圧部は
充分に昇圧し、逆流の発生を抑制することができる。な
お、このピア側面9b、9cの近傍の逆流発生域(図2
0の領域D)は吸出し管拡大部8の側面近傍の逆流発生
域(図20の領域C)に比べて大きいので、ピア側面近
傍の逆流の抑制は吸出し管効率の向上に大きく寄与す
る。
Next, the operation of this embodiment will be described. The high-pressure water near the bottom surface 8c of the suction pipe flows into the communication hole 13 from the inlet opening 10 of the pier tip surface 9a, passes through this communication hole 13, and exits from the outlet openings 11 and 12 in the backflow generation area near the pier side surfaces 9b and 9c. Eject into the low pressure part. The water pressure of the pier tip surface 9a is several times higher than the surrounding pressure because the pier tip surface 9a dams the flowing water flowing therein. Therefore, by the high-pressure water jetted from the outlet openings 11 and 12, the low-pressure portion in the backflow generation region near the pier side surfaces 9b and 9c can be sufficiently pressurized and the backflow can be suppressed. It should be noted that the backflow generation area near the pier side surfaces 9b and 9c (see FIG.
The region D) of 0 is larger than the backflow generation region (region C in FIG. 20) in the vicinity of the side surface of the expansion pipe 8 and therefore suppression of the backflow in the vicinity of the side face of the pier greatly contributes to improvement in the efficiency of the extraction pipe.

【0026】出口開口11、12の吸出し管流路方向の
位置は、上述のようにピア先端面9aの高さ方向の長さ
をHとし、図2に示したようにピア先端面9aから出
口開口11、12までの距離をLとした時に、下記の
式を満足するように選定されている。 L=(1〜3)×H 出口開口11、12の吸出し管流路方向の位置を上述の
ように選定した理由は、一般に先端面9aから距離L
の地点以降に逆流が発生するからである。これを以下に
詳述する。吸出し管下流側に発生する逆流現象は、吸出
し管入口における旋回流の向きに密接に関係する。ま
た、運転点が設計運転状態から遠ざかるにつれて旋回流
の大きさが増大し、これに伴って旋回角度も大きくな
る。一般的な実物水車の運転落差範囲は、設計状態の約
0.7〜1.3の範囲であり、この範囲内で水車を運転
した場合の吸出し管内の逆流発生の開始点は、ランナ性
能や吸出し管形状等の種々の要因の影響を受けるが、ピ
ア先端面9aを起点としてピア先端面9aの高さH
約1〜3倍下流の地点である。
As for the position of the outlet openings 11 and 12 in the direction of the suction pipe flow path, the length in the height direction of the pier tip surface 9a is set to H 0 as described above, and as shown in FIG. When the distance to the outlet openings 11 and 12 is L 0 , it is selected so as to satisfy the following formula. L 0 = (1 to 3) × H 0 The reason why the positions of the outlet openings 11 and 12 in the suction pipe flow path direction are selected as described above is that the distance L 0 from the tip surface 9 a is generally.
This is because backflow occurs after the point. This will be described in detail below. The backflow phenomenon that occurs on the downstream side of the suction pipe is closely related to the direction of the swirling flow at the inlet of the suction pipe. Further, the size of the swirling flow increases as the operating point moves away from the designed operating state, and the swirling angle also increases accordingly. The operating head range of a typical real turbine is about 0.7 to 1.3 of the design state, and the starting point of backflow generation in the suction pipe when the turbine is operated within this range is the runner performance or Although it is affected by various factors such as the shape of the suction pipe, it is a point about 1 to 3 times downstream of the height H 0 of the pier tip surface 9a with the pier tip surface 9a as the starting point.

【0027】また、連通孔13の入口開口10及び出口
開口11、12の形状を縦長のスリット形状に定めた理
由は、以下の通りである。即ち、連通孔13の大きさは
大きい程、効果的であるので、入口開口及び出口開口と
も面積をできるだけ大きくすることが望ましい。そこ
で、厚さが薄いピア9に大きな面積の開口を穿設するた
めに、縦長のスリット形状が選定されている。図3は上
述の実施例による効果を検証するための模型実験結果を
示したグラフである。横軸は実物水車運転落差に対する
模型水車の運転状態を回転速度の比(n/n)(n
は設計落差相当の模型水車回転速度)として表し、縦軸
は従来の模型水車における効率値を1.0とした場合の
相対効率値を示している。実線は本実施例の場合で、破
線は従来の場合である。このグラフから分かるように、
本実施例によると設計点の回転速度から夫々高落差及び
低落差の運転状態で0.5%程度の効率向上を達成する
ことができる。
The reason why the inlet opening 10 and the outlet openings 11 and 12 of the communication hole 13 are defined as vertically elongated slits is as follows. That is, the larger the size of the communication hole 13 is, the more effective it is. Therefore, it is desirable to make the area of both the inlet opening and the outlet opening as large as possible. Therefore, a vertically long slit shape is selected in order to form an opening having a large area in the thin pier 9. FIG. 3 is a graph showing the results of a model experiment for verifying the effects of the above-mentioned embodiment. The horizontal axis shows the operating speed of the model turbine against the actual head of the turbine, the ratio of rotational speed (n / n 0 ) (n 0
Is the model turbine rotation speed corresponding to the design head), and the vertical axis represents the relative efficiency value when the efficiency value in the conventional model turbine is 1.0. The solid line is the case of this embodiment, and the broken line is the conventional case. As you can see from this graph,
According to the present embodiment, it is possible to achieve an efficiency improvement of about 0.5% under the operating conditions of high head and low head, respectively, from the rotational speed at the design point.

【0028】次に、本発明の第2の実施例を説明する。
図4及び図5において、ピア9にはその両側面9b、9
cを貫通する貫通孔14が穿孔されている。この貫通孔
14の位置は、第1の実施例の出口開口11、12の位
置とほぼ同一になるように選定されている。即ち、貫通
孔14は、ピア9の高さ方向の中央部から吸出し管拡大
部の上面8dまでの間であって、吸出し管拡大部8の下
流側の逆流発生域の近傍に位置する。このような構成で
あるので、高落差運転の場合には、図5に示したように
吸出し管出口側から見て右側流路には吸出し管拡大部8
の側壁8aに逆流域Cが発生し低圧力部となり、左側流
路にはピア9の左側面9bに逆流域Dが発生し低圧力部
となる。この場合には、ピア9の右側面9cの流路が左
側面9bの流路に比べて相対的に高圧となるので、高圧
部の水が矢印で示したように貫通孔14を通って低圧部
に流入し、逆流域Dでの逆流発生を抑制する。
Next, a second embodiment of the present invention will be described.
4 and 5, the pier 9 has both side surfaces 9b, 9
A through hole 14 that penetrates c is formed. The positions of the through holes 14 are selected so as to be substantially the same as the positions of the outlet openings 11 and 12 of the first embodiment. That is, the through hole 14 is located between the center of the pier 9 in the height direction and the upper surface 8d of the suction pipe expansion part 8 and near the backflow generation region on the downstream side of the suction pipe expansion part 8. With such a configuration, in the case of high head operation, as shown in FIG. 5, the suction pipe enlarging portion 8 is provided in the right flow passage as viewed from the suction pipe outlet side.
A backflow region C is generated on the side wall 8a of the above and becomes a low pressure portion, and a backflow region D is generated on the left side surface 9b of the pier 9 in the left flow passage and becomes a low pressure portion. In this case, the flow path on the right side surface 9c of the pier 9 has a relatively high pressure as compared with the flow path on the left side surface 9b, so that the water in the high pressure portion passes through the through hole 14 and forms a low pressure as shown by the arrow. Flow into the section and suppress the occurrence of backflow in the backflow region D.

【0029】低落差運転の場合には、高落差運転の場合
と逆になるので、貫通孔14を流れる流水は矢印とは逆
方向になる。このようにして、貫通孔14の穿孔によっ
て、ピア側面近傍での逆流の発生を抑制することができ
る。
In the case of the low head operation, the flow is opposite to that in the high head operation, so that the flowing water flowing through the through hole 14 is in the direction opposite to the arrow. In this way, by forming the through hole 14, it is possible to suppress the occurrence of backflow near the side surface of the pier.

【0030】次に、本発明の第3の実施例を説明する。
図6及び図7において、ピア先端面9aには底面近傍に
入口開口15が穿設され、この入口開口15には2本の
連通管16、17が接続されている。この連通管16の
出口開口18は吸出し管拡大部8の側壁8aに位置し、
連通管17の出口開口19は吸出し管拡大部8の側壁8
bに位置する。また、各出口開口18、19は吸出し管
拡大部8の上面近傍に位置する。このような構成である
ので、吸出し管拡大部8の底面付近の高圧水は入口開口
15から連通管16、17に流入し、出口開口18、1
9から吸出し管拡大部8の側壁近傍の逆流発生域に噴出
して、逆流発生を抑制する。なお、連通管16、17の
入口開口は、ピア先端面9aに穿設する代りに、ピア先
端面9aの直前等に設けることもできる。この場合に
は、連通管はピア9に接続されることなく、ピア9とは
全く独立に設置される。
Next, a third embodiment of the present invention will be described.
6 and 7, an inlet opening 15 is formed near the bottom surface of the pier tip surface 9a, and two communicating pipes 16 and 17 are connected to the inlet opening 15. The outlet opening 18 of the communication pipe 16 is located on the side wall 8a of the suction pipe expansion portion 8,
The outlet opening 19 of the communication pipe 17 is provided on the side wall 8 of the suction pipe expansion portion 8.
Located in b. The outlet openings 18 and 19 are located near the upper surface of the suction pipe expansion portion 8. With such a configuration, the high pressure water near the bottom surface of the suction pipe expansion portion 8 flows into the communication pipes 16 and 17 from the inlet opening 15, and the outlet openings 18 and 1
It spouts from 9 to the backflow generation region near the side wall of the suction pipe expansion portion 8 to suppress the backflow generation. The inlet openings of the communication pipes 16 and 17 may be provided immediately before the pier tip surface 9a, instead of being provided in the pier tip surface 9a. In this case, the communication pipe is installed independently of the pier 9 without being connected to the pier 9.

【0031】次に、本発明の第4の実施例を説明する。
図8及び図9において、一対の案内羽根20は夫々、ピ
ア側面9bと吸出し管拡大部8の側壁8bとの間、及び
ピア側面9cと吸出し管拡大部8の側壁8aとの間に延
在している。また、案内羽根20はピア先端面9aの近
傍かつ吸出し管拡大部底面8cの近傍に配置されてい
る。この案内羽根20は図10に示したように、吸出し
管拡大部8の底面近傍の流れを強制的に上方に向きを変
えて、吸出し管拡大部8の上面の方に案内する。このよ
うにして、吸出し管拡大部8内の流れの片寄りを抑制
し、案内羽根20の下流側の流れの分布を一様化する。
このような案内羽根20の設置によって、水車運転範囲
の全域で吸出し管の効率を向上することができる。
Next, a fourth embodiment of the present invention will be described.
8 and 9, the pair of guide vanes 20 extend between the pier side surface 9b and the side wall 8b of the suction pipe expansion portion 8, and between the pier side surface 9c and the side wall 8a of the suction pipe expansion portion 8, respectively. is doing. The guide vanes 20 are arranged near the tip end surface 9a of the pier and near the bottom surface 8c of the suction pipe enlarged portion. As shown in FIG. 10, the guide vanes 20 forcibly turn upward the flow in the vicinity of the bottom surface of the suction pipe expansion portion 8 and guide it toward the upper surface of the suction pipe expansion portion 8. In this way, the deviation of the flow in the expansion portion 8 of the suction pipe is suppressed, and the flow distribution on the downstream side of the guide blade 20 is made uniform.
By installing the guide vanes 20 as described above, the efficiency of the suction pipe can be improved in the entire operation range of the water turbine.

【0032】次に、本発明の第5の実施例を説明する。
図11及び図12において、ピア先端面9aが後退翼状
に傾斜されている。詳述すると、ピア先端面9aは,そ
の底部側が上流側に位置しかつ上部側が相対的に下流側
に位置するように、傾斜している。吸出し管拡大部8の
底面近傍を流れる流水は、前述の第4の実施例と同様に
ピア9の傾斜先端面9aの後退翼としての作用によって
上方に向きを変えられ、吸出し管拡大部8の上面の方に
流れる。これによって、吸出し管内の流れがその横断面
全体にわたって均一化される。
Next, a fifth embodiment of the present invention will be described.
11 and 12, the tip surface 9a of the pier is inclined like a backward wing. More specifically, the tip end surface 9a of the pier is inclined such that its bottom side is located upstream and its top side is located relatively downstream. The running water flowing in the vicinity of the bottom surface of the suction pipe expanding portion 8 is turned upward by the action of the inclined tip surface 9a of the pier 9 as a retreating blade as in the case of the fourth embodiment, and the flowing water of the suction pipe expanding portion 8 is changed. It flows toward the upper surface. This homogenizes the flow in the suction tube over its entire cross section.

【0033】図13は、第5実施例の変形例を示したも
ので、ピア9の傾斜先端面9aは凹面に湾曲している。
このような湾曲によって、ピア先端面9aの後退翼とし
ての作用が一層強くなる。
FIG. 13 shows a modification of the fifth embodiment, in which the inclined tip end surface 9a of the pier 9 is curved concavely.
Such a curve further strengthens the action of the tip end surface 9a of the pier as a retracting blade.

【0034】[0034]

【発明の効果】以上の説明から明らかなように請求項1
に記載の発明によると、ピアの先端面に形成された入口
開口と上記ピアの下流側の両側面に夫々形成された一対
の出口開口とを互いに連通する連通孔が上記ピアに穿孔
され、上記入口開口は上記先端面の比較的下方に位置
し、上記出口開口は上記側面の比較的上方に位置してい
るので、吸出し管底面付近の高圧水が連通孔を介して逆
流発生域の低圧部に噴出し、逆流発生を抑制することが
できる。これによって、広範囲の運転状態で吸出し管内
に発生する損失を低減し、吸出し管効率を向上すること
ができる。
As is apparent from the above description, claim 1
According to the invention described in (1), a communication hole that communicates with the inlet opening formed in the tip end surface of the pier and the pair of outlet openings formed on both side surfaces on the downstream side of the pier is formed in the pier, and Since the inlet opening is located relatively below the tip surface and the outlet opening is located relatively above the side surface, the high pressure water near the bottom of the suction pipe passes through the communication hole and forms a low pressure portion in the backflow generation region. It is possible to suppress the generation of backflow and the occurrence of backflow. As a result, the loss generated in the suction pipe in a wide range of operating conditions can be reduced and the suction pipe efficiency can be improved.

【0035】請求項3に記載の発明によると、ピアには
その両側面を連通する貫通孔が穿孔され、上記貫通孔
は、上記ピアの高さ方向の中央部から吸出し管の上面ま
での間であって、上記吸出し管の下流側の逆流発生域の
近傍に位置するので、ピアの両側面に圧力差が生じる
と、高圧側の圧力水が貫通孔を通って低圧側に噴出し、
これによって低圧側での逆流の発生を抑制することがで
きる。
According to the third aspect of the present invention, the pier is formed with a through hole that communicates both side surfaces of the pier. The through hole extends from the center of the pier in the height direction to the upper surface of the suction pipe. Since it is located in the vicinity of the backflow generation region on the downstream side of the suction pipe, when a pressure difference occurs on both side surfaces of the pier, pressure water on the high pressure side is jetted to the low pressure side through the through hole,
This can suppress the occurrence of backflow on the low pressure side.

【0036】請求項4に記載の発明によると、ピアの先
端面またはその近傍に入口開口を有すると共に上記吸出
し管の下流側の側面に出口開口を有する連通管を具備
し、上記入口開口は、比較的下方に位置し、上記出口開
口は上記入口開口よりも上方に位置するので、吸出し管
底面付近の高圧水は連通管を通って逆流発生域の低圧部
に噴出し、逆流発生を抑制することができる。
According to the invention as set forth in claim 4, there is provided a communication pipe having an inlet opening at or near the tip surface of the pier and having an outlet opening on the side surface on the downstream side of the suction pipe, wherein the inlet opening comprises: Since the outlet opening is located relatively below and the outlet opening is located above the inlet opening, the high-pressure water near the bottom of the suction pipe is ejected to the low-pressure portion of the backflow generation region through the communication pipe to suppress the backflow generation. be able to.

【0037】請求項5に記載の発明によると、ピアの先
端面近傍かつ吸出し管の底面近傍の位置に配置され、上
記ピアの側面と上記吸出し管の側壁との間に延在する案
内羽根を具備し、上記案内羽根は上記吸出し管の底面近
傍の流れを上記吸出し管の上面の方に案内するので、広
範囲の運転状態で吸出し管内の流れの片寄りを抑制し、
吸出し管の横断面全体にわたって流れを均一化し、吸出
し管内に発生する損失を低減し吸出し管効率を向上する
ことができる。
According to the fifth aspect of the present invention, the guide vanes are provided at positions near the tip end face of the pier and near the bottom face of the suction pipe, and extend between the side surface of the pier and the side wall of the suction pipe. Since the guide vanes guide the flow in the vicinity of the bottom surface of the suction pipe toward the upper surface of the suction pipe, it suppresses the deviation of the flow in the suction pipe in a wide range of operating conditions.
The flow can be made uniform over the entire cross section of the suction pipe, the loss generated in the suction pipe can be reduced, and the suction pipe efficiency can be improved.

【0038】請求項6に記載の発明によると、ピアの先
端面は、この先端面の底部側が上流側に位置しかつ上記
先端面の上部側が相対的に下流側に位置するように、傾
斜しているので、吸出し管の底面近傍を流れる流水は、
ピアの傾斜先端面によって上方に向きを変えられて吸出
し管の上面の方に流れる。これによって、吸出し管内の
流れがその横断面全体にわたって均一化される。
According to the sixth aspect of the present invention, the tip end surface of the pier is inclined so that the bottom side of the tip end surface is located upstream and the top side of the tip surface is located relatively downstream. Therefore, the flowing water near the bottom of the suction pipe is
It is turned upward by the inclined tip surface of the pier and flows toward the upper surface of the suction pipe. This homogenizes the flow in the suction tube over its entire cross section.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水力機械の吸出し管の第1の実施
例を概略的に示した断面図。
FIG. 1 is a sectional view schematically showing a first embodiment of a suction pipe of a hydraulic machine according to the present invention.

【図2】第1の実施例を一部断面で示した平面図。FIG. 2 is a plan view showing a partial cross section of the first embodiment.

【図3】第1の実施例の効果を示したグラフ。FIG. 3 is a graph showing the effect of the first embodiment.

【図4】本発明による水力機械の吸出し管の第2の実施
例を概略的に示した断面図。
FIG. 4 is a sectional view schematically showing a second embodiment of the suction pipe of the hydraulic machine according to the present invention.

【図5】第2の実施例を一部断面で示した平面図。FIG. 5 is a plan view showing a second embodiment in a partial cross section.

【図6】本発明による水力機械の吸出し管の第3の実施
例を概略的に示した断面図。
FIG. 6 is a sectional view schematically showing a third embodiment of the suction pipe of the hydraulic machine according to the present invention.

【図7】第3の実施例を一部断面で示した側面図。FIG. 7 is a side view showing a partial cross section of a third embodiment.

【図8】本発明による水力機械の吸出し管の第4の実施
例を概略的に示した断面図。
FIG. 8 is a sectional view schematically showing a fourth embodiment of the suction pipe of the hydraulic machine according to the present invention.

【図9】第4の実施例を一部断面で示した平面図。FIG. 9 is a plan view showing a partial cross section of a fourth embodiment.

【図10】第4の実施例による吸出し管拡大部での流水
の速度分布を速度ベクトルを用いて模式的に示した示し
た断面図。
FIG. 10 is a cross-sectional view schematically showing the velocity distribution of flowing water in the expanded portion of the suction pipe according to the fourth embodiment using velocity vectors.

【図11】本発明による水力機械の吸出し管の第5の実
施例を概略的に示した断面図。
FIG. 11 is a sectional view schematically showing a fifth embodiment of the suction pipe of the hydraulic machine according to the present invention.

【図12】第5の実施例を一部断面で示した平面図。FIG. 12 is a plan view showing a partial cross section of a fifth embodiment.

【図13】第5の実施例の変形例を示した断面図。FIG. 13 is a sectional view showing a modification of the fifth embodiment.

【図14】従来のフランシス水車の構造を概略的に示し
た断面図。
FIG. 14 is a sectional view schematically showing the structure of a conventional Francis turbine.

【図15】図14のフランシス水車を一部断面で示した
平面図。
FIG. 15 is a plan view showing the Francis turbine of FIG. 14 in a partial cross section.

【図16】設計落差運転時のランナからの流水の流れを
示した平面図。
FIG. 16 is a plan view showing the flow of running water from the runner during the design head operation.

【図17】低落差運転時のランナからの流水の流れを示
した平面図。
FIG. 17 is a plan view showing the flow of running water from the runner during low head operation.

【図18】高落差運転時のランナからの流水の流れを示
した平面図。
FIG. 18 is a plan view showing the flow of running water from the runner during high head operation.

【図19】吸出し管拡大部底面から距離と流速との関係
を設計落差運転と低落差運転と高落差運転について示し
たグラフ。
FIG. 19 is a graph showing the relationship between the distance from the bottom surface of the expanded portion of the suction pipe and the flow velocity for the design head operation, the low head operation and the high head operation.

【図20】高落差運転時の逆流の発生域を示した模式
図。
FIG. 20 is a schematic diagram showing a generation region of backflow during high head operation.

【図21】従来の吸出し管拡大部での流水の速度分布を
速度ベクトルを用いて模式的に示した示した断面図。
FIG. 21 is a cross-sectional view that schematically shows the velocity distribution of flowing water in the enlarged portion of the conventional suction pipe using velocity vectors.

【符号の説明】[Explanation of symbols]

4 ランナ 5 吸出し管 8 吸出し管拡大部 9 ピア 9a ピア先端面 9b ピア側面 9c ピア側面 10 入口開口 11 出口開口 12 出口開口 13 連通孔 4 Runner 5 Suction pipe 8 Suction pipe expanded part 9 Pier 9a Pier tip surface 9b Pier side face 9c Pier side face 10 Inlet opening 11 Outlet opening 12 Outlet opening 13 Communication hole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ランナから出た水を放水路に導く吸出し管
の内部に強度部材としてピアを有する水力機械の吸出し
管において、上記ピアの先端面に形成された入口開口と
上記ピアの下流側の両側面に夫々形成された一対の出口
開口とを互いに連通する連通孔が上記ピアに穿孔され、
上記入口開口は上記先端面の比較的下方に位置し、上記
出口開口は上記側面の比較的上方に位置していることを
特徴とする水力機械の吸出し管。
1. In a suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, an inlet opening formed in a tip end surface of the pier and a downstream side of the pier. A communication hole that communicates with a pair of outlet openings formed on both side surfaces of the pier is formed in the pier,
A suction pipe for a hydraulic machine, wherein the inlet opening is located relatively below the tip end surface, and the outlet opening is located relatively above the side surface.
【請求項2】上記入口開口は上記ピアの高さ方向の中央
部から上記吸出し管の底面までの間に位置し、上記出口
開口は上記ピアの高さ方向の中央部から上記吸出し管の
上面までの間に位置し、上記先端面から上記出口開口ま
での流水方向の距離が上記先端面の高さ方向の長さの約
1乃至3倍であることを特徴とする請求項1に記載の水
力機械の吸出し管。
2. The inlet opening is located between the center of the pier in the height direction and the bottom surface of the suction pipe, and the outlet opening is from the center of the pier in the height direction to the upper surface of the suction pipe. The distance between the tip surface and the outlet opening in the direction of flowing water is approximately 1 to 3 times the length of the tip surface in the height direction. Suction pipe for hydraulic machinery.
【請求項3】ランナから出た水を放水路に導く吸出し管
の内部に強度部材としてピアを有する水力機械の吸出し
管において、上記ピアにはその両側面を連通する貫通孔
が穿孔され、上記貫通孔は、上記ピアの高さ方向の中央
部から上記吸出し管の上面までの間であって、上記吸出
し管の下流側の逆流発生域の近傍に位置することを特徴
とする水力機械の吸出し管。
3. A suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, wherein the pier has a through hole communicating with both side surfaces thereof. The through-hole is located between the center in the height direction of the pier and the upper surface of the suction pipe, and is located in the vicinity of the backflow generation region on the downstream side of the suction pipe. tube.
【請求項4】ランナから出た水を放水路に導く吸出し管
の内部に強度部材としてピアを有する水力機械の吸出し
管において、上記ピアの先端面またはその近傍に入口開
口を有すると共に上記吸出し管の下流側の側面に出口開
口を有する連通管を具備し、上記入口開口は比較的下方
に位置し、上記出口開口は上記入口開口よりも上方に位
置することを特徴とする水力機械の吸出し管。
4. A suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, the suction pipe having an inlet opening at or near a tip end surface of the pier. A suction pipe of a hydraulic machine, comprising: a communication pipe having an outlet opening on a downstream side surface thereof, the inlet opening being located relatively below, and the outlet opening being located above the inlet opening. .
【請求項5】ランナから出た水を放水路に導く吸出し管
の内部に強度部材としてピアを有する水力機械の吸出し
管において、上記ピアの先端面近傍かつ上記吸出し管の
底面近傍の位置に配置され、上記ピアの側面と上記吸出
し管の側壁との間に延在する案内羽根を具備し、上記案
内羽根は上記吸出し管の底面近傍の流れを上記吸出し管
の上面の方に案内することを特徴とする水力機械の吸出
し管。
5. A suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, the suction pipe being arranged at a position near a tip end face of the pier and near a bottom face of the suction pipe. A guide vane extending between a side surface of the pier and a side wall of the suction pipe, the guide vane guiding the flow near the bottom surface of the suction pipe toward the upper surface of the suction pipe. The suction pipe of the characteristic hydraulic machine.
【請求項6】ランナから出た水を放水路に導く吸出し管
の内部に強度部材としてピアを有する水力機械の吸出し
管において、上記ピアの先端面は、上記先端面の底部側
が上流側に位置しかつ上記先端面の上部側が相対的に下
流側に位置するように、傾斜していることを特徴とする
水力機械の吸出し管。
6. A suction pipe of a hydraulic machine having a pier as a strength member inside a suction pipe for guiding water discharged from a runner to a discharge channel, wherein a tip end surface of the pier is located at an upstream side of a bottom side of the tip end surface. In addition, the suction pipe of the hydraulic machine is characterized in that it is inclined such that the upper side of the tip end face is positioned relatively downstream.
【請求項7】上記ピアの先端面は凹面に湾曲しているこ
とを特徴とする請求項6に記載の水力機械の吸出し管。
7. A suction pipe for a hydraulic machine according to claim 6, wherein the tip end surface of the pier is curved concavely.
JP5308144A 1993-12-08 1993-12-08 Draft tube of hydraulic machine Pending JPH07158550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5308144A JPH07158550A (en) 1993-12-08 1993-12-08 Draft tube of hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5308144A JPH07158550A (en) 1993-12-08 1993-12-08 Draft tube of hydraulic machine

Publications (1)

Publication Number Publication Date
JPH07158550A true JPH07158550A (en) 1995-06-20

Family

ID=17977425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5308144A Pending JPH07158550A (en) 1993-12-08 1993-12-08 Draft tube of hydraulic machine

Country Status (1)

Country Link
JP (1) JPH07158550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083168A2 (en) 2008-01-16 2009-07-29 Hitachi Ltd. Draft tube of hydraulic machinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083168A2 (en) 2008-01-16 2009-07-29 Hitachi Ltd. Draft tube of hydraulic machinery
JP2009167893A (en) * 2008-01-16 2009-07-30 Hitachi Ltd Draft tube of hydraulic machine
EP2083168A3 (en) * 2008-01-16 2013-01-09 Hitachi Mitsubishi Hydro Corporation Draft tube of hydraulic machinery

Similar Documents

Publication Publication Date Title
CN110004891B (en) Energy dissipation method for hydraulic and hydroelectric engineering
KR19980064736A (en) Turbine nozzle and turbine rotor of an axial turbine
JP2008180130A (en) Axial flow water turbine and its operation method
JPH07158550A (en) Draft tube of hydraulic machine
JPH08239889A (en) Flushing method and flushing nozzle used for method
CN1023508C (en) Centrifugal pump
JP4972326B2 (en) nozzle
CN113605330A (en) Multistage rectification slideway shaft rotational flow flood discharging tunnel
CN108396712A (en) A kind of embedded parts structure and its gate system
US11719214B2 (en) Hydroturbine runner crown with balancing slots
CN109339005B (en) Reservoir bank spillway export dissipation structure
CN111893963A (en) Low limit wall pastes triangle body contraction type flip bucket
JPH0335511B2 (en)
RU2634545C1 (en) Water flow baffle
JP2957891B2 (en) Suction channel for pump station
KR102584463B1 (en) Aerator for pipe spillway
CN210086192U (en) Flip bucket with outflow multiple water tongues
CN114960558A (en) High dam downward drainage water flow device and downward drainage method
CN113187729B (en) Axial-flow pump for controlling eddy current and improving performance
CN107575415B (en) Centrifugal pump
CN114392610B (en) Gas-liquid rotary vane separator with micro-needle one-way conveying surface
EP3879124A1 (en) Ejector for heat recovery or work recovery system, and heat recovery or work recovery system
CN212670507U (en) Wing section stilling pool
US1151689A (en) Oblique-cut guide-channel for turbines.
CN111395277A (en) Wing section stilling pool