JPH0715648A - Auto-focus video camera - Google Patents

Auto-focus video camera

Info

Publication number
JPH0715648A
JPH0715648A JP5153663A JP15366393A JPH0715648A JP H0715648 A JPH0715648 A JP H0715648A JP 5153663 A JP5153663 A JP 5153663A JP 15366393 A JP15366393 A JP 15366393A JP H0715648 A JPH0715648 A JP H0715648A
Authority
JP
Japan
Prior art keywords
focus
evaluation value
lens
value
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5153663A
Other languages
Japanese (ja)
Inventor
Toshinobu Haruki
俊宣 春木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5153663A priority Critical patent/JPH0715648A/en
Priority to US08/260,768 priority patent/US5757429A/en
Priority to KR1019940013596A priority patent/KR100275185B1/en
Priority to DE69416039T priority patent/DE69416039T2/en
Priority to EP94109396A priority patent/EP0630153B1/en
Publication of JPH0715648A publication Critical patent/JPH0715648A/en
Priority to US08/459,478 priority patent/US5574502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the overrunning of a lens at the positions near the in-focus point by increasing the driving speed of a focus motor, increasing the displaced variable of a lens per unit time and increasing the variance value of the focus evaluation value to suppress the malfunctions when the depth of field is large due to the large aperture value and then by reducing the driving speed of the motor and reducing the displaced variable of the lens per unit time when the depth of field is small due to the small aperture value. CONSTITUTION:A focus evaluation value generating circuit 5 outputs the high band component value of the image pickup video signal as the focus evaluation value. Then a focus motor 3 shifts the lens 1 to a position where the maximum focus point evaluation value is secured. In such an in-focus operation, the driving speed of the motor 3 is varied in response to the aperture value of an aperture mechanism 21 which controls the quantity of light made incident on an image pickup element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像素子から得られる
撮像映像信号を用いて焦点の自動整合を行うビデオカメ
ラのオートフォーカス装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus device for a video camera which automatically adjusts a focus by using an image pickup video signal obtained from an image pickup device.

【0002】[0002]

【従来の技術】ビテオカメラのオートフォーカス装置に
於て、撮像素子からの得られる撮像映像信号自体を焦点
制御状態の評価に用いる方法は、本質的にパララックス
が存在せず、また被写界深度が浅い場合や遠方の被写体
に対しても、精度よく焦点を合わせられるなど優れた点
が多い。しかも、オートフォーカス用の特別なセンサも
不必要で機構的にも極めて簡単である。
2. Description of the Related Art In an autofocus device for a video camera, a method of using a picked-up image signal obtained from an image pickup device itself for evaluating a focus control state is essentially free of parallax and has a depth of field. There are many advantages such as accurate focusing even when the subject is shallow or at a distance. Moreover, a special sensor for autofocus is unnecessary, and the mechanism is extremely simple.

【0003】特開昭63−215268号公報(H04
N5/232)には、上述のごときオートフォーカス装
置の一例が開示されている。以下に、この従来技術の骨
子を図2及び図3を参照に説明する。
JP-A-63-215268 (H04
N5 / 232) discloses an example of the autofocus device as described above. The essence of this prior art will be described below with reference to FIGS. 2 and 3.

【0004】図2は前記オートフォーカス装置の全体の
回路ブロック図である。レンズ1によって撮像素子上に
結像された入射光による画像は、撮像素子を含む撮像回
路4によって撮像映像信号となり、焦点評価値発生回路
5に入力される。
FIG. 2 is a circuit block diagram of the entire autofocus device. An image formed by the incident light formed on the image pickup element by the lens 1 becomes an image pickup video signal by the image pickup circuit 4 including the image pickup element and is input to the focus evaluation value generation circuit 5.

【0005】この焦点評価値発生回路5は、例えば図3
に示すように構成される。撮像映像信号中の輝度信号
は、高域通過フィルタ(HPF)5cを通過して高域成
分のみが分離され、次段の検波回路5dにて振幅検波さ
れる。この検波出力はA/D変換回路5eにてサンプリ
ングしつつ順次デジタル値に変換され、ゲート回路5f
で画面中央部のフォーカスエリア内の情報だけが抜き取
られて、積算回路5gでフィールド毎に積算され、即ち
1フィールド期間に得られるフォーカスエリア内のA/
D変換回路5e出力を全て加算するディジタル積分が実
行され、この積分値が現フィールドの焦点評価値として
出力される。
The focus evaluation value generating circuit 5 is shown in FIG.
It is configured as shown in. The luminance signal in the picked-up video signal passes through the high-pass filter (HPF) 5c to separate only the high-frequency component, and the amplitude is detected by the detection circuit 5d at the next stage. The detected output is sequentially converted into a digital value while being sampled by the A / D conversion circuit 5e, and the gate circuit 5f
Then, only the information in the focus area in the center of the screen is extracted and integrated by the integrating circuit 5g for each field, that is, A / A in the focus area obtained in one field period.
Digital integration is performed to add all the outputs of the D conversion circuit 5e, and this integrated value is output as the focus evaluation value of the current field.

【0006】このとき、撮像映像信号より同期分離回路
5aによって分離された垂直同期信号及び水平同期信号
は、フォーカスエリアを設定するためにゲート制御回路
5bに入力される。ゲート制御回路5bでは、垂直同期
信号、水平同期信号及び固定の発振器出力に基いて、画
面中央部分に長方形のフォーカスエリアを設定し、この
エリア内のみの輝度信号の高域成分のディジタル値の通
過を許容するゲート開閉信号をゲート回路5fに供給し
ている。
At this time, the vertical sync signal and the horizontal sync signal separated from the picked-up video signal by the sync separation circuit 5a are input to the gate control circuit 5b in order to set the focus area. The gate control circuit 5b sets a rectangular focus area in the central portion of the screen based on the vertical synchronizing signal, the horizontal synchronizing signal, and the fixed oscillator output, and passes the digital value of the high frequency component of the luminance signal only in this area. Is supplied to the gate circuit 5f.

【0007】前述のように構成された焦点評価値発生回
路5は、常時1フィールド分の焦点評価値を出力し、後
段の各回路はこの焦点評価値を用いて合焦動作を開始す
る。
The focus evaluation value generation circuit 5 configured as described above always outputs the focus evaluation value for one field, and each circuit in the subsequent stage starts the focusing operation using this focus evaluation value.

【0008】合焦動作開始直後に、最初の焦点評価値は
最大値メモリ6と初期値メモリ7に保持される。その
後、フォーカスモータ制御回路10は、フォーカスモー
タ3を予め決められた方向に回転させて、レンズ1を支
持するフォーカスリング2を回動させ、レンズ1を光軸
方向に変位させ第2比較器9出力を監視する。
Immediately after starting the focusing operation, the first focus evaluation value is held in the maximum value memory 6 and the initial value memory 7. After that, the focus motor control circuit 10 rotates the focus motor 3 in a predetermined direction to rotate the focus ring 2 that supports the lens 1, and displaces the lens 1 in the optical axis direction. Monitor the output.

【0009】第2比較器9は、フォーカスモータ駆動後
に得られる焦点評価値と初期値メモリ7に保持されてい
る初期評価値を比較し、その大小を出力する。
The second comparator 9 compares the focus evaluation value obtained after driving the focus motor with the initial evaluation value stored in the initial value memory 7, and outputs the magnitude.

【0010】フォーカスモータ制御回路10は、第2比
較器9が大または小という出力を発するまで、最初の方
向にフォーカスモータ3を回転せしめ、現在の焦点評価
値が初期評価値に比べ大であるという出力がなされた場
合には、そのままの回転方向を保持し、現在の評価値が
初期評価値よりも小さいと判断された場合には、フォー
カスモータの回転方向を逆にして、レンズの移動方向を
逆にし第1比較器8出力を監視する。
The focus motor control circuit 10 rotates the focus motor 3 in the first direction until the second comparator 9 outputs a large or small output, and the current focus evaluation value is larger than the initial evaluation value. If it is judged that the current evaluation value is smaller than the initial evaluation value, the rotation direction of the focus motor is reversed and the moving direction of the lens is changed. Is reversed and the output of the first comparator 8 is monitored.

【0011】第1比較器8は、最大値メモリ6に保持さ
れている今までの最大の焦点評価値と現在、即ち最新の
評価値を比較し、現在の焦点評価値が最大値メモリ6の
内容に比べて大きい(第1モード)、予め設定した第1
の閾値M以上に減少した(第2モード)の2通りの比較
信号S1、S2を出力する。ここで最大値メモリ6は第
1比較器8の出力に基づいて、現在の評価値が最大値メ
モリ6の内容よりも大きい場合には、その値が更新さ
れ、常に現在までの焦点評価値の最大値が保持される。
The first comparator 8 compares the maximum focus evaluation value stored so far in the maximum value memory 6 with the current or latest evaluation value, and the current focus evaluation value is stored in the maximum value memory 6. Larger than content (first mode), preset first
The two comparison signals S1 and S2 of the second mode that are reduced to the threshold value M or more of are output. Here, the maximum value memory 6 updates the value based on the output of the first comparator 8 when the current evaluation value is larger than the content of the maximum value memory 6, and always updates the focus evaluation value up to the present time. The maximum value is retained.

【0012】13はモータ一検出回路30から出力され
るレンズ1の光軸方向の位置(レンズ位置)を示すレン
ズ位置信号を記憶するレンズ位置メモリである。ここ
で、レンズ位置信号はモータ位置検出回路30にて、フ
ォーカスモ−タ3の回転量を検出することにより算出さ
れる。このレンズ位置メモリ13は、最大値メモリ6と
同様に第1比較器8出力S1に基づいて最大評価値とな
った場合のレンズ位置を常時保持するように更新され
る。
A lens position memory 13 stores a lens position signal output from the motor-one detection circuit 30 and indicating the position (lens position) of the lens 1 in the optical axis direction. Here, the lens position signal is calculated by the motor position detection circuit 30 by detecting the rotation amount of the focus motor 3. Like the maximum value memory 6, the lens position memory 13 is updated so as to always hold the lens position when the maximum evaluation value is reached based on the output S1 of the first comparator 8.

【0013】フォーカスモータ制御回路10は、第2比
較器9出力に基づいて決定された方向にフォーカスモー
タ3を回転させながら、第1比較器8出力を監視し、図
4に示すように焦点評価値が最大評価値に比べて予め設
定された第1の閾値Mより小さいという第2モードが指
示されると同時にフォーカスモータ3は逆転される。
The focus motor control circuit 10 monitors the output of the first comparator 8 while rotating the focus motor 3 in the direction determined based on the output of the second comparator 9, and the focus evaluation is performed as shown in FIG. At the same time as instructing the second mode in which the value is smaller than the preset first threshold value M as compared with the maximum evaluation value, the focus motor 3 is reversed.

【0014】このフォーカスモータ3の逆転により、レ
ンズ1の移動方向は、例えば撮像素子に接近する方向か
ら離れる方向へ、あるいはその逆に離れる方向から接近
する方向に変わる。
By the reverse rotation of the focus motor 3, the moving direction of the lens 1 is changed, for example, from a direction approaching the image pickup device to a direction away from the image pickup device, or vice versa.

【0015】この逆転後、レンズ位置メモリ13の内容
と、現在のレンズ位置信号とが第3比較器14にて比較
され、一致したとき、即ちレンズ1が焦点評価値が最大
となる位置に戻ったときに、フォーカスモータ3を停止
させるようにフォーカスモータ制御回路10は機能す
る。同時にフォーカスモータ制御回路10はレンズ停止
信号LSを出力する。
After this reverse rotation, the contents of the lens position memory 13 and the current lens position signal are compared by the third comparator 14, and when they match, that is, the lens 1 returns to the position where the focus evaluation value is maximum. When this happens, the focus motor control circuit 10 functions to stop the focus motor 3. At the same time, the focus motor control circuit 10 outputs a lens stop signal LS.

【0016】11はフォーカスモータ制御回路10によ
る合焦動作が終了して、レンズ停止信号LSが発せられ
ると同時に、その時点での焦点評価値が保持される第4
メモリであり、後段の第4比較器12でこの第4メモリ
11の保持内容は合焦動作終了後の最新の焦点評価値と
比較され、最新の焦点評価値が第4メモリ11の内容に
比べ、予め設定された第2の閾値以上に小さくなったと
きに、被写体が変化したと判断され、被写体変化信号が
出力される。フォーカスモータ制御回路10はこの信号
を受け取ると、再び合焦動作をやり直して被写体の変化
に追随する。
Reference numeral 11 denotes a fourth focus holding value at the same time as the lens stop signal LS is issued after the focusing operation by the focus motor control circuit 10 is finished.
This is a memory, and the content held in the fourth memory 11 is compared with the latest focus evaluation value after the focusing operation by the fourth comparator 12 in the subsequent stage, and the latest focus evaluation value is compared with the content of the fourth memory 11. When it becomes smaller than the preset second threshold value, it is determined that the subject has changed, and the subject change signal is output. When the focus motor control circuit 10 receives this signal, the focus motor control circuit 10 performs the focusing operation again to follow the change of the subject.

【0017】[0017]

【発明が解決しようとする課題】前記オートフォーカス
システムは、合焦精度、広範囲な被写体への対応性に優
れているが、以下に示す欠点を有している。即ち、被写
体に全く変化がない場合には、上述の合焦動作で問題な
く合焦状態を得ることができるが、実際の撮影では被写
体の前後、左右への移動や被写体自身の形状変化等によ
り、フォーカスレンズの移動以外の要因で焦点評価値が
変化する。
The autofocus system is excellent in focusing accuracy and adaptability to a wide range of subjects, but has the following drawbacks. That is, when there is no change in the subject, the in-focus state can be obtained without any problem with the above-described focusing operation, but in actual shooting, the subject may move back and forth, left and right, or the shape of the subject itself may change. , The focus evaluation value changes due to factors other than the movement of the focus lens.

【0018】この被写体の変化が大きい場合には、合焦
点の方向を誤認する、あるいは合焦点に至る前に第1比
較器の判断により、第2モードに入ってフォーカスモー
タを逆転させてしまう等の誤動作を引き起こすことがあ
る。
When the change in the subject is large, the direction of the in-focus point is erroneously recognized, or the first comparator enters the second mode before the in-focus point is reached, and the focus motor is reversed. May cause malfunction of.

【0019】一方、撮像素子への入射光量を調整する絞
り機構の絞り位置(F値)が変化するとレンズ位置と焦
点評価値の関係は図5に示すように変化する。この図5
において、絞り機構の絞りが開き(F値小)、入射光量
の遮断が少ない場合には、焦点評価値は実線で示す曲線
のように変化し、同一被写体を同一環境下で撮影中に絞
りが閉じる(F値大)と、破線で示す曲線の如く実線の
場合に比べ焦点評価値のある一定レベルが得られるレン
ズ位置範囲が広がる、即ち被写界深度が深くなる。
On the other hand, when the diaphragm position (F value) of the diaphragm mechanism for adjusting the amount of light incident on the image sensor changes, the relationship between the lens position and the focus evaluation value changes as shown in FIG. This Figure 5
When the diaphragm of the diaphragm mechanism opens (small F value) and the amount of incident light is not blocked, the focus evaluation value changes as a curve indicated by a solid line, and the diaphragm is changed during shooting of the same subject under the same environment. When it is closed (large F value), the lens position range in which a certain level of focus evaluation value can be obtained is widened, that is, the depth of field is deeper, as compared with the case of a solid line as shown by a broken line.

【0020】絞りが閉じて被写界深度が深いときには、
図5からも明らかなように、焦点評価値の変化曲線が緩
やかになり、レンズ変位に対する焦点評価値変動の比率
が小さくなるので、前述のような誤動作が起こり易くな
る。
When the diaphragm is closed and the depth of field is deep,
As is clear from FIG. 5, the change curve of the focus evaluation value becomes gentle and the ratio of the focus evaluation value change to the lens displacement becomes small, so that the above-mentioned malfunction is likely to occur.

【0021】このような誤動作を防ぐには、被写体変化
による焦点評価値変動に対して、レンズ変位による焦点
評価値変動を十分に大きく保つことが有効であり、この
ためにはフォーカスモータの駆動速度を上げて、単位時
間当りのレンズの変位量を大きくすることで対処でき
る。
In order to prevent such malfunction, it is effective to keep the focus evaluation value variation due to the lens displacement sufficiently large with respect to the focus evaluation value variation due to the subject change. For this purpose, the drive speed of the focus motor is increased. Can be dealt with by increasing the lens displacement and increasing the displacement amount of the lens per unit time.

【0022】ところで、前述の如き山登り合焦動作で
は、合焦点への到達が焦点評価値の減少によって検出さ
れ、更に焦点評価値が得られるまでに撮像素子への光の
入射時点から焦点評価値発生回路での積算終了まで、時
間遅れを有することになるので、原理的に合焦点を行き
過ぎることは避けられない。そこで、被写体変化に対す
る対策として、常時、モータの駆動速度を上げると、最
新の焦点評価値の更新に必要な1フィールド期間当りの
レンズの変位量が大きくなり、前述のように合焦点を行
き過ぎて、閾値Mの落ち込みを検知してモータを逆転さ
せる場合に、閾値Mの落ち込み検知に最低必要な合焦点
からの行き過ぎ量以上に行き過ぎた位置でこの検知がな
される可能性が高く、この余分な行き過ぎによる生じる
画面のぼけが大きくなることは避けられない。
By the way, in the hill climbing focusing operation as described above, the arrival at the in-focus point is detected by the decrease of the focus evaluation value, and further the focus evaluation value is obtained from the time when the light is incident on the image sensor until the focus evaluation value is obtained. Since there is a time delay until the integration in the generation circuit ends, it is unavoidable that the focal point is overshooted in principle. Therefore, if the motor drive speed is constantly increased as a measure against subject changes, the amount of lens displacement per field period required to update the latest focus evaluation value becomes large, and as described above, the focal point is exceeded. When detecting a drop in the threshold M and rotating the motor in the reverse direction, there is a high possibility that this detection will be performed at a position beyond the overshoot amount from the focal point that is the minimum necessary for detecting the drop in the threshold M, and this extra It is inevitable that the screen blurring caused by overshooting will become large.

【0023】[0023]

【課題を解決するための手段】本発明は、レンズを経て
撮像素子上に結像される入射光より撮像映像信号を作成
する撮像手段と、撮像映像信号の高域成分量を焦点評価
値として出力する焦点評価値発生手段と、レンズの撮像
素子に対する相対的な位置である相対的レンズ位置を、
焦点評価値が極大値となる位置に変更させるレンズ位置
変更手段と、撮像素子への入射光量を調節する絞り機構
と、絞り機構での絞り量に応じてレンズ位置変更手段に
よるレンズ位置の変更速度を可変とすることを特徴と
し、特に絞り機構を構成する絞り羽根の位置を検出する
絞り検出器若しくは絞りのF値を検出するF値検出器を
設け、レンズの駆動速度を絞り位置検出出力の逆数もし
くはF値検出器の出力に比例して決定することを特徴と
する。
According to the present invention, there is provided an image pickup means for forming an image pickup video signal from incident light which is formed on an image pickup element through a lens, and a high frequency component amount of the image pickup video signal is used as a focus evaluation value. The focus evaluation value generating means for outputting and the relative lens position, which is the relative position of the lens with respect to the image sensor,
Lens position changing means for changing the focus evaluation value to a maximum value, a diaphragm mechanism for adjusting the amount of light incident on the image sensor, and a lens position changing speed by the lens position changing means according to the diaphragm amount of the diaphragm mechanism. In particular, a diaphragm detector for detecting the position of the diaphragm blades constituting the diaphragm mechanism or an F value detector for detecting the F value of the diaphragm is provided, and the driving speed of the lens is determined by the aperture position detection output. It is characterized in that it is determined in proportion to the reciprocal or the output of the F-number detector.

【0024】[0024]

【作用】本発明は、上述のように構成することにより、
絞りが閉じて被写界深度が深くなった際に、レンズの変
位速度を大きくしてレンズの単位時間当りの変位量に対
する焦点評価値の変動量を大きくでき、誤動作を抑える
ことが可能になる。
The present invention has the above-mentioned configuration,
When the diaphragm closes and the depth of field becomes deep, the displacement speed of the lens can be increased to increase the fluctuation amount of the focus evaluation value with respect to the displacement amount of the lens per unit time, and malfunctions can be suppressed. .

【0025】[0025]

【実施例】以下、図面に従い本発明の一実施例について
説明する。図1は本実施例装置の全体の回路ブロックを
示し、図2と同一部分には同一符号を付して説明を省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the entire circuit block of the apparatus of this embodiment, and the same parts as those in FIG.

【0026】20は光学撮像系内に配された機械的な絞
り機構21の絞り位置、即ち絞り量を検出する絞り位置
検出器であり、具体的にはホールセンサ22及び処理回
路23から構成され、この出力はフォーカスモータ制御
回路110に供給されて、フォーカスモータ3の駆動速
度制御に用いられる。
Reference numeral 20 denotes an aperture position detector for detecting the aperture position of the mechanical aperture mechanism 21 arranged in the optical image pickup system, that is, the aperture amount, and specifically, it is composed of a hall sensor 22 and a processing circuit 23. This output is supplied to the focus motor control circuit 110 and used for controlling the drive speed of the focus motor 3.

【0027】絞り位置検出器20と絞り機構21の具体
的な構造は、図6に示されている。絞り機構21は上側
にV字状の切欠き部24aを有する可動羽根24aと下
側にV字状の切欠き部25aを有する可動羽根25が、
夫々の腕部24b、25bを支軸26、27にて回転子
29に枢支し、更にこの回転子29を支軸40にてカメ
ラ本体に枢支することにより、カメラの鏡筒内に配され
ることになり、両切欠き部24a、25aにて四角形の
絞り開口部28が形成され、この開口部28を光軸上に
位置させることにより、この絞り開口部28を通して入
射光が撮像素子に到達可能になる。
The specific structures of the diaphragm position detector 20 and the diaphragm mechanism 21 are shown in FIG. The diaphragm mechanism 21 includes a movable blade 24a having a V-shaped notch 24a on the upper side and a movable blade 25 having a V-shaped notch 25a on the lower side.
The respective arm portions 24b and 25b are pivotally supported on the rotor 29 by the support shafts 26 and 27, and the rotor 29 is further pivotally supported on the camera body by the support shaft 40 so that the arm portions 24b and 25b are disposed in the lens barrel of the camera. Therefore, a rectangular aperture opening 28 is formed by both the notches 24a and 25a. By locating the aperture 28 on the optical axis, incident light is transmitted through the aperture opening 28 and the image pickup element. Will be reachable.

【0028】回転子29を反時計方向に回転させると、
可動羽根25は下方に移動し、逆に可動羽根24は上方
に移動し、絞り開口部28の面積が大きくなり、絞り量
が小さくなって、絞りが徐々に開かれて入射光量が増加
することになる。また、回転子29を時計方向に回転さ
せると、可動羽根25は上方に、可動羽根24は下方に
移動して絞り開口部28の面積が小さくなり、絞り量が
大きくなって、絞りは徐々に閉じて入射光量が抑制され
て減少することになる。
When the rotor 29 is rotated counterclockwise,
The movable blade 25 moves downward, and conversely the movable blade 24 moves upward, the area of the aperture opening 28 increases, the aperture amount decreases, and the aperture is gradually opened to increase the incident light amount. become. When the rotor 29 is rotated clockwise, the movable blade 25 moves upward and the movable blade 24 moves downward to reduce the area of the aperture opening 28, increase the aperture amount, and gradually increase the aperture. When closed, the amount of incident light is suppressed and reduced.

【0029】可動羽根25の腕部25bには磁石41が
接着されており、この磁石41の近傍位置にホールセン
サ22がカメラシャーシに固着されており、回転子29
が回転して絞り量が変化するとホ−ルセンサ22と磁石
41間の距離が変化し、これによりホ−ルセンサ22の
出力レベルが変化する。即ち、ホ−ルセンサ出力レベル
は磁石41が接近して磁石41からの磁力が強まるにつ
れて上昇する。
A magnet 41 is adhered to the arm portion 25b of the movable blade 25. The Hall sensor 22 is fixed to the camera chassis at a position near the magnet 41, and the rotor 29 is attached.
When the rotation amount changes and the aperture amount changes, the distance between the hall sensor 22 and the magnet 41 changes, which changes the output level of the hall sensor 22. That is, the hall sensor output level rises as the magnet 41 approaches and the magnetic force from the magnet 41 increases.

【0030】ここで、図6のようにホールセンサ22と
磁石41との距離の上下方向の成分をX、センサ22出
力レベルをVとすると、V=V0−a×Xとなる。尚、
V0はX=0でホ−ルセンサ22に磁石41が最接近し
たときのホ−ルセンサ22の出力であり、aは定数であ
る。
Assuming that the vertical component of the distance between the Hall sensor 22 and the magnet 41 is X and the output level of the sensor 22 is V as shown in FIG. 6, V = V0-a * X. still,
V0 is the output of the hall sensor 22 when the magnet 41 is closest to the hall sensor 22 at X = 0, and a is a constant.

【0031】また、絞り開口部28の面積Sは距離Xの
2乗に比例し、S=b×X2 となる。ここで、bは定数
である。更に、F値は開口部28の面積Sの平方根に反
比例するので、F値をFで示すと、F=c/S1/2 とな
る。ここで、cは定数である。
The area S of the aperture opening 28 is proportional to the square of the distance X, and S = b × X2. Here, b is a constant. Further, since the F value is inversely proportional to the square root of the area S of the opening 28, when the F value is indicated by F, F = c / S1 / 2. Here, c is a constant.

【0032】一方、被写界深度はF値に比例するので、
被写界深度H=dF(dは定数)となり、これらの4式
よりV=V0−A/H(ここで、A=a・c・d/b1/
2 )となる。
On the other hand, since the depth of field is proportional to the F value,
The depth of field H = dF (d is a constant), and from these four equations, V = V0-A / H (where A = a.c.d / b1 /
2)

【0033】このホ−ルセンサ22出力は処理回路23
にて適当に正規化される。即ち、ホールセンサ出力レベ
ルより電圧V0を減じて、更にこの減算値に−1を掛け
て、正規化出力Y=A/Hが得られる。このホールセン
サ22の正規化出力Yは、被写界深度と反比例の関係と
なることが分かる。
The output of this hall sensor 22 is a processing circuit 23.
Will be properly normalized. That is, the voltage V0 is subtracted from the Hall sensor output level, and the subtracted value is multiplied by -1 to obtain the normalized output Y = A / H. It can be seen that the normalized output Y of the Hall sensor 22 is inversely proportional to the depth of field.

【0034】フォーカスモータ制御回路110は、図2
の制御回路10と同様に第1、第2、第3及び第4比較
器8、9、14、12出力に基ずいて従来例と同一の山
登り合焦動作を実行するが、更に正規化されたホールセ
ンサ出力を受けてフォーカスモータ3の駆動速度制御動
作の機能も付加されている。即ち、正規化出力Yから所
定のオフセット量mを減算し、更に所定の定数nを乗算
した後に、この乗算結果の逆数を速度制御信号SCとし
てフォーカスモータ駆動回路50に出力する。この速度
制御信号SCを式に示すと、SC=1/{n×(Y−
m)}となる。
The focus motor control circuit 110 is shown in FIG.
The same hill climbing focusing operation as in the conventional example is executed based on the outputs of the first, second, third and fourth comparators 8, 9, 14, 12 as in the control circuit 10 of FIG. Also, the function of controlling the drive speed of the focus motor 3 in response to the Hall sensor output is added. That is, after subtracting a predetermined offset amount m from the normalized output Y and further multiplying by a predetermined constant n, the reciprocal of the multiplication result is output to the focus motor drive circuit 50 as a speed control signal SC. When this speed control signal SC is expressed by an equation, SC = 1 / {n × (Y−
m)}.

【0035】尚、前記各式中の定数a、b、c、d、
m、nはいずれも予め実験により設定された最適値であ
る。
The constants a, b, c, d, and
Both m and n are optimum values set in advance by experiments.

【0036】以上の結果として、絞り機構21が開放状
態から閉じて、絞り量が大きくなるに従って被写界深度
が深くなる(Hが大きくなる)状況では、正規化出力Y
は小さくなり、これに伴い速度制御信号SCの信号レベ
ルは大きくなる。逆に、絞り機構21が開放方向に開い
て、絞り量が小さくなるに従って被写界深度が浅くなる
(Hが小さくなる)状況では、正規化出力Yは大きくな
り、これに伴い速度制御信号SCは信号レベルは小さく
なる。
As a result of the above, in the situation where the diaphragm mechanism 21 is closed from the open state and the depth of field becomes deeper (H becomes larger) as the diaphragm amount becomes larger, the normalized output Y
Becomes smaller, and the signal level of the speed control signal SC increases accordingly. On the contrary, in a situation where the diaphragm mechanism 21 opens in the opening direction and the depth of field becomes shallower (H becomes smaller) as the diaphragm amount becomes smaller, the normalized output Y becomes larger, and accordingly, the speed control signal SC. Will reduce the signal level.

【0037】フォ−カスモータ駆動回路50は、図2の
フォーカス駆動回路31と同様に第1、第2及び第3比
較器8、9、14の出力に基づくフォーカスモータ制御
回路110からの指示により、フォーカスモータ3に対
して駆動、停止、逆転の各制御を実行するが、これらの
制御に追加して、速度制御信号SCのレベルに応じてモ
ータ3駆動時の駆動速度を変更する。ここで、駆動速度
は速度制御信号SCの信号レベルに比例して変化し、速
度制御信号SCの信号レベルが大きいほどに高速とな
り、結果的に絞り量が小さく被写界深度が浅い状況では
駆動速度は比較的低速となって合焦点からの行き過ぎ量
を抑えることができる。また、絞り量が大きく被写界深
度が深い状況では、速度を上げてフォーカスレンズ1の
変位による焦点評価値の変動の比率を大きく保ち、被写
体の変化による誤動作を抑えることが可能になる。
The focus motor drive circuit 50, in the same manner as the focus drive circuit 31 of FIG. 2, receives an instruction from the focus motor control circuit 110 based on the outputs of the first, second and third comparators 8, 9 and 14. The focus motor 3 is driven, stopped, and rotated in the reverse direction. In addition to these controls, the drive speed when the motor 3 is driven is changed according to the level of the speed control signal SC. Here, the driving speed changes in proportion to the signal level of the speed control signal SC, and the higher the signal level of the speed control signal SC, the higher the driving speed, and as a result, the driving is performed in a situation where the diaphragm amount is small and the depth of field is shallow. The speed becomes relatively low, and the amount of overshoot from the in-focus point can be suppressed. Further, in a situation where the diaphragm amount is large and the depth of field is deep, it is possible to suppress the malfunction due to the change of the subject by increasing the speed and keeping a large ratio of the fluctuation of the focus evaluation value due to the displacement of the focus lens 1.

【0038】尚、前記実施例の各回路ブロック図の回路
動作をマイクロプロセッサによりソフトウェア的に処理
可能であることは言うまでもない。また、前記実施例で
は、レンズ1を光軸方向に進退させて合焦動作を実行し
たが、レンズ1を固定して撮像素子自体を光軸方向に進
退させても、同様の効果が得られることはいうまでもな
い。この場合、撮像素子の進退にはモータの他に圧電素
子を用いることもでき、これらのモータあるいは圧電素
子にフォーカスモータ制御回路110からの制御信号を
供給するように構成すればよい。
It is needless to say that the circuit operation of each circuit block diagram of the above-described embodiment can be processed by software by a microprocessor. Further, in the above-described embodiment, the focusing operation is performed by moving the lens 1 forward and backward in the optical axis direction, but the same effect can be obtained by fixing the lens 1 and moving the image pickup element itself forward and backward in the optical axis direction. Needless to say. In this case, a piezoelectric element may be used in addition to the motor to move the image pickup element forward and backward, and the control signal from the focus motor control circuit 110 may be supplied to these motors or piezoelectric elements.

【0039】[0039]

【発明の効果】上述の如く本発明によれば、絞り量によ
りフォーカスモータの駆動速度を変化させ、絞り量が大
きために被写界深度が深い状況では、フォーカスモータ
の駆動速度を大きくして、単位時間当りのレンズの変位
量を大きくし、焦点評価値の変動量を大きくして誤動作
の抑制を行い、逆に絞り量が小さいために被写界深度が
浅い状況では、駆動速度を小さくして、単位時間当りの
レンズの変位量を小さくし、合焦点近傍でのレンズの行
き過ぎ量を抑制することが可能になる。
As described above, according to the present invention, the drive speed of the focus motor is changed according to the aperture amount, and the drive speed of the focus motor is increased when the depth of field is deep due to the large aperture amount. , The amount of lens displacement per unit time is increased, the amount of fluctuation of the focus evaluation value is increased to suppress malfunctions, and conversely, the small aperture amount reduces the drive speed when the depth of field is shallow. Then, the displacement amount of the lens per unit time can be reduced, and the overshoot amount of the lens in the vicinity of the focal point can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路ブロック図である。FIG. 1 is a circuit block diagram of an embodiment of the present invention.

【図2】従来例の回路ブロック図である。FIG. 2 is a circuit block diagram of a conventional example.

【図3】従来例の要部回路ブロック図である。FIG. 3 is a circuit block diagram of a main part of a conventional example.

【図4】合焦動作に伴うレンズ位置と焦点評価値の関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a lens position and a focus evaluation value associated with a focusing operation.

【図5】絞り量の相違に伴うレンズ位置と焦点評価値の
関係を示す図である。
FIG. 5 is a diagram showing a relationship between a lens position and a focus evaluation value due to a difference in aperture amount.

【図6】本発明の一実施例の絞り機構を説明する図であ
る。
FIG. 6 is a diagram illustrating a diaphragm mechanism according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レンズ 4 撮像回路 5 焦点評価値発生回路 3 フォーカスモータ 21 絞り機構 1 Lens 4 Imaging Circuit 5 Focus Evaluation Value Generation Circuit 3 Focus Motor 21 Aperture Mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レンズを経て撮像素子上に結像される入
射光より撮像映像信号を作成する撮像手段と、 撮像映像信号の高域成分量を焦点評価値として出力する
焦点評価値発生手段と、 前記レンズ及び前記撮像素子のいずれか一方の他方に対
する相対的な位置を、前記焦点評価値が極大値となる位
置に変更させる相対位置変更手段と、 前記撮像素子への入射光量を調節する絞り機構と、 該絞り機構での絞り量に応じて前記相対位置変更手段に
よる前記相対的な位置の変更速度を可変とすることを特
徴とするオートフォーカスビデオカメラ。
1. An image pickup means for creating an image pickup video signal from incident light imaged on an image pickup element through a lens, and a focus evaluation value generation means for outputting a high frequency component amount of the image pickup video signal as a focus evaluation value. A relative position changing unit that changes a relative position of one of the lens and the image pickup device to the other, to a position where the focus evaluation value has a maximum value, and a diaphragm that adjusts an amount of incident light to the image pickup device. An autofocus video camera, wherein a mechanism and a speed of changing the relative position by the relative position changing unit are variable according to a diaphragm amount of the diaphragm mechanism.
JP5153663A 1993-06-17 1993-06-24 Auto-focus video camera Pending JPH0715648A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5153663A JPH0715648A (en) 1993-06-24 1993-06-24 Auto-focus video camera
US08/260,768 US5757429A (en) 1993-06-17 1994-06-16 Automatic focusing apparatus which adjusts the speed of focusing based on a change in the rate of the focus evaluating value
KR1019940013596A KR100275185B1 (en) 1993-06-17 1994-06-16 Auto focusing device for automatic matching of focus in response to video signals
DE69416039T DE69416039T2 (en) 1993-06-17 1994-06-17 Automatic focusing device for automatic focus adjustment depending on video signals
EP94109396A EP0630153B1 (en) 1993-06-17 1994-06-17 Automatic focusing apparatus for automatically matching focus in response to video signal
US08/459,478 US5574502A (en) 1993-06-17 1995-06-02 Automatic focusing apparatus which adjusts the speed of focusing based on a change in the rate of the focus evaluating value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5153663A JPH0715648A (en) 1993-06-24 1993-06-24 Auto-focus video camera

Publications (1)

Publication Number Publication Date
JPH0715648A true JPH0715648A (en) 1995-01-17

Family

ID=15567467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5153663A Pending JPH0715648A (en) 1993-06-17 1993-06-24 Auto-focus video camera

Country Status (1)

Country Link
JP (1) JPH0715648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039776A1 (en) * 1995-06-05 1996-12-12 Sony Corporation Focus controlling method and video camera device
JP2004138884A (en) * 2002-10-18 2004-05-13 Pentax Corp Method for automatically focusing endoscope
US9473694B2 (en) 2012-12-19 2016-10-18 Fujifilm Corporation Image processing device, imaging device, image processing method and computer readable medium
US9762789B2 (en) 2015-01-28 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Autofocus device, imaging device, and autofocus method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039776A1 (en) * 1995-06-05 1996-12-12 Sony Corporation Focus controlling method and video camera device
US6034727A (en) * 1995-06-05 2000-03-07 Sony Corporation Focus control method and video camera apparatus
JP2004138884A (en) * 2002-10-18 2004-05-13 Pentax Corp Method for automatically focusing endoscope
US9473694B2 (en) 2012-12-19 2016-10-18 Fujifilm Corporation Image processing device, imaging device, image processing method and computer readable medium
US9762789B2 (en) 2015-01-28 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Autofocus device, imaging device, and autofocus method

Similar Documents

Publication Publication Date Title
US8045009B2 (en) Image-exposure systems and methods using detecting motion of a camera to terminate exposure
EP0845699B1 (en) Image-shake correcting device
JP2004120014A (en) Camera and camera system
US11582394B2 (en) Control apparatus, control method, and storage medium for providing tilt control
US10694108B2 (en) Imaging apparatus and method of controlling thereof
JP4438047B2 (en) Focus adjustment device, imaging device, and control method thereof
JP2524145B2 (en) Focus lens drive
US20090086040A1 (en) Imaging device and image blurring correction device
US6735383B2 (en) Vibration correction apparatus, lens apparatus, and optical apparatus
JP2977979B2 (en) Automatic focusing device
US7003222B1 (en) Camera, lens apparatus, and camera system
JPH0545577A (en) Photographic device
JP2008003501A (en) Lens driving device
JPH0715648A (en) Auto-focus video camera
JPH05236326A (en) Auto-focus controller
US6798989B2 (en) Motor control apparatus, lens apparatus, camera system and camera
JP2010145495A (en) Camera system
JPH077650A (en) Automatic focusing video camera
JP4994733B2 (en) Automatic focusing device and imaging device
JP2752115B2 (en) Image displacement device
JP2021173826A (en) Control unit, imaging apparatus, control method, and program
JP6341250B2 (en) Interchangeable lenses and cameras
JP4033169B2 (en) Imaging apparatus and focus display method thereof
JP3157356B2 (en) Auto focus video camera
JP6019625B2 (en) Focus adjustment device