JPH0715645B2 - Space stabilizer - Google Patents

Space stabilizer

Info

Publication number
JPH0715645B2
JPH0715645B2 JP63223723A JP22372388A JPH0715645B2 JP H0715645 B2 JPH0715645 B2 JP H0715645B2 JP 63223723 A JP63223723 A JP 63223723A JP 22372388 A JP22372388 A JP 22372388A JP H0715645 B2 JPH0715645 B2 JP H0715645B2
Authority
JP
Japan
Prior art keywords
axis
angular velocity
orthogonal
space
elevation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63223723A
Other languages
Japanese (ja)
Other versions
JPH0271310A (en
Inventor
久夫 網谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63223723A priority Critical patent/JPH0715645B2/en
Publication of JPH0271310A publication Critical patent/JPH0271310A/en
Publication of JPH0715645B2 publication Critical patent/JPH0715645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,船舶,車両等の動揺体の上に設置された撮
像装置等を空間安定化制御する空間安定化装置に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a space stabilization device for performing space stabilization control of an imaging device or the like installed on a rocking body such as a ship or a vehicle.

〔従来の技術〕[Conventional technology]

第4図は従来の空間安定化装置の構成を示したものであ
る。図において(1)は慣性空間基準の角速度指令を与
える指令器,(2)は指令器(1)から出力される慣性
空間基準の旋回軸角速度指令,(3)はサーボ増幅を行
う第1の増幅器,(4)は第1の増幅器(3)から出力
される旋回軸駆動信号,(5)は旋回軸駆動信号(4)
により駆動される第1のモータ,(6)は第1のモータ
(5)により駆動される旋回軸機構部,(7)〜(11)
は(2)〜(6)に対応するものであり、(7)は俯仰
軸角速度指令,(8)は第2の増幅器,(9)は俯仰軸
駆動信号,(10)は第2のモータ,(11)は俯仰軸機構
部,(12)は制御器,(13)は駆動機構部,(14)は駆
動機構部(13)に取付けられた撮像装置,(15)は撮像
装置(14)の慣性空間基準の角速度を検出するジャイロ
部,(16)はジャイロ部(15)から出力される慣性空間
基準の旋回軸角速度信号,(17)はジャイロ部(15)か
ら出力される慣性空間基準の俯仰軸角速度信号である。
FIG. 4 shows the structure of a conventional space stabilizing device. In the figure, (1) is a commander that gives an inertial space-based angular velocity command, (2) is a inertial space-based turning axis angular velocity command output from the commander (1), and (3) is a first servo-amplifying first Amplifier, (4) is the swing axis drive signal output from the first amplifier (3), (5) is the swing axis drive signal (4)
Is driven by a first motor, (6) is a swing shaft mechanism section driven by a first motor (5), (7) to (11)
Corresponds to (2) to (6), (7) is a depression / elevation axis angular velocity command, (8) is a second amplifier, (9) is a depression / elevation axis drive signal, and (10) is a second motor. , (11) is an elevation axis mechanism unit, (12) is a controller, (13) is a drive mechanism unit, (14) is an image pickup device attached to the drive mechanism unit (13), and (15) is an image pickup device (14). ) The gyro unit that detects the angular velocity of the inertial space reference, (16) is the inertial space reference rotational axis angular velocity signal output from the gyro unit (15), and (17) is the inertial space output from the gyro unit (15). This is the standard elevation / depression angular velocity signal.

第5図は従来の空間安定化装置の駆動機構部の軸構成を
示したものである。図において、(A)は旋回軸,
(E)は俯仰軸,(P)は目標,(S)は視軸線OPであ
る。
FIG. 5 shows a shaft configuration of a drive mechanism portion of a conventional space stabilizing device. In the figure, (A) is a turning axis,
(E) is the elevation axis, (P) is the target, and (S) is the visual axis OP.

次に動作について説明する。動揺体が動揺すると駆動機
構部(13)を介して撮像装置(14)が揺られる。ジャイ
ロ部(15)は,その揺れを慣性空間基準の角速度として
検出し,旋回軸角速度信号(16)及び俯仰軸角速度信号
(17)を出力する。サーボ増幅器(3),(8)は,指
令器(1)の出力する角速度指令(2),(7)と角速
度信号(16),(17)との偏差を算出し,サーボ演算及
び増幅を行った後,駆動信号(4),(9)を出力す
る。モータ(5),(10)は駆動信号(4),(9)に
従って旋回軸機構部(6)及び俯仰軸機構部(11)を駆
動する。この結果,駆動機構部(13)に取付けられた撮
像装置(14)が動き,その動きはジャイロ部(15)によ
って,慣性空間基準の角速度として検出される。従来の
空間安定化装置は,このようなフィードバックループ構
成を有しているので,角速度指令(2),(7)と角速
度信号(16),(17)との偏差は微小な値以下に保たれ
る。
Next, the operation will be described. When the oscillating body sways, the imaging device (14) sways via the drive mechanism section (13). The gyro unit (15) detects the swing as an angular velocity based on inertial space, and outputs a turning axis angular velocity signal (16) and a depression-elevation axis angular velocity signal (17). The servo amplifiers (3) and (8) calculate the deviation between the angular velocity commands (2) and (7) output from the command unit (1) and the angular velocity signals (16) and (17), and perform servo calculation and amplification. After that, drive signals (4) and (9) are output. The motors (5) and (10) drive the turning axis mechanism section (6) and the elevation axis mechanism section (11) according to the drive signals (4) and (9). As a result, the image pickup device (14) attached to the drive mechanism section (13) moves, and the movement is detected by the gyro section (15) as an angular velocity based on the inertial space. Since the conventional space stabilizing device has such a feedback loop configuration, the deviation between the angular velocity commands (2) and (7) and the angular velocity signals (16) and (17) is kept below a minute value. Be drunk

従って,指令器(1)が角速度指令(2),(7)とし
て零を出力すれば、ジャイロ部(15)は慣性空間基準の
角速度を検出しているので,撮像装置(14)の視軸線
(S)は空間安定化される。すなわち、動揺体の動揺に
かかわらず、慣性空間上で一定の方向を向く。
Therefore, if the command device (1) outputs zero as the angular velocity commands (2) and (7), the gyro unit (15) detects the angular velocity based on the inertial space, and therefore the visual axis of the imaging device (14). (S) is spatially stabilized. That is, regardless of the sway of the swaying body, the swaying body faces a certain direction in the inertial space.

また、当然のことながら,指令器(1)が角速度指令と
して零以外の値を出力すれば,撮像装置(14)の視軸線
(S)は,動揺体の動揺の影響を受けずに,慣性空間基
準で方向を変える。
In addition, as a matter of course, if the command device (1) outputs a value other than zero as the angular velocity command, the visual axis (S) of the imaging device (14) is not affected by the motion of the wobbling body and inertial force is exerted. Change direction on a spatial basis.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の空間安定化装置は以上のように構成されているの
で,撮像装置(14)の視軸線(S)の方向を慣性空間上
で一定に保つことはできるが,視軸線(S)回りの回転
を空間安定化できない。そのため,第3図(a)に示す
ように,撮像装置(14)のモニタ画面上の画像に回転が
生じるという課題があった。
Since the conventional space stabilizing device is configured as described above, the direction of the visual axis (S) of the image pickup device (14) can be kept constant in the inertial space, but the visual axis (S) around the visual axis (S) can be kept constant. The rotation cannot be spatially stabilized. Therefore, as shown in FIG. 3A, there is a problem that the image on the monitor screen of the image pickup device (14) is rotated.

この発明は,上記のような課題を解消するためになされ
たもので,動揺体の動揺にかかわらず,視軸線(S)の
方向を一定に保つだけでなく,画像の回転を防止するこ
とができる空間安定化装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to prevent the rotation of an image as well as to keep the direction of the visual axis (S) constant regardless of the motion of the moving body. The purpose is to obtain a space stabilization device that can.

〔課題を解決するための手段〕 この発明に係る空間安定化装置は,旋回軸,俯仰軸に加
え,直交俯仰軸の3軸を有し,駆動機構部に取付けられ
た撮像装置の3軸回りの角速度を検出するジャイロ部を
有することにより,3軸回りの空間安定化制御を実現した
ものである。
[Means for Solving the Problem] A space stabilizing device according to the present invention has three axes of an orthogonal depression / elevation axis in addition to a rotation axis and a depression / elevation axis, and rotates around three axes of an imaging device attached to a drive mechanism section. By having a gyro unit that detects the angular velocity of, the spatial stabilization control around three axes is realized.

〔作用〕[Action]

この発明においては,駆動機構部が3軸で構成され,し
かも撮像装置の3軸回りの角速度を検出して,3軸回りの
空間安定化制御を行えるので,動揺体の動揺にかかわら
ず,撮像装置の視軸線の方向を保つだけでなく,視軸線
回りの回転を防ぐことができる。
According to the present invention, since the drive mechanism is composed of three axes, and the angular velocity of the imaging device around the three axes can be detected to perform space stabilization control around the three axes, the imaging can be performed regardless of the shaking of the wobbling body. Not only can the direction of the visual axis of the device be maintained, but rotation around the visual axis can be prevented.

〔実施例〕〔Example〕

以下,この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明を実施した空間安定化装置の構成例で
あり、第2図(a),(b)は,この発明を実施した空
間安定化装置の駆動機構部を示した構成図である。
FIG. 1 is a structural example of a space stabilizing device embodying the present invention, and FIGS. 2 (a) and 2 (b) are configuration diagrams showing a drive mechanism portion of the space stabilizing device embodying the present invention. is there.

第1図において,(1)〜(17)は第4図と同じもので
あり,(18)は直交俯仰軸角速度指令,(19)は第3の
増幅器,(20)は直交俯仰軸駆動信号,(21)は第3の
モータ,(22)は直交俯仰軸機構部,(23)は直交俯仰
軸角速度信号である。
In Fig. 1, (1) to (17) are the same as those in Fig. 4, (18) is the orthogonal elevation axis angular velocity command, (19) is the third amplifier, and (20) is the orthogonal elevation axis drive signal. , (21) is the third motor, (22) is the orthogonal elevation axis mechanism section, and (23) is the orthogonal elevation axis angular velocity signal.

また,第2図において,(6),(11),(14),
(A),(E),(P),(S)は第5図と同じであ
り,(C)は直交俯仰軸である。ここで直交俯仰軸
(C)は,俯仰軸(E)と直交しており,この軸回りの
回転角をXで表わす。
In addition, in FIG. 2, (6), (11), (14),
(A), (E), (P), and (S) are the same as in FIG. 5, and (C) is an orthogonal elevation axis. Here, the orthogonal elevation axis (C) is orthogonal to the elevation axis (E), and the rotation angle around this axis is represented by X.

第2図に示すように,駆動機構部(13)は,旋回軸
(A),俯仰軸(E),直交俯仰軸(C)の3軸で構成
され,従来の空間安定化装置と同じように旋回軸(A)
及び俯仰軸(E)回りに回転させることにより,視軸線
(S)を空間安定化制御する。
As shown in FIG. 2, the drive mechanism section (13) is composed of three axes: a swivel axis (A), a vertical axis (E), and an orthogonal vertical axis (C), which is similar to the conventional space stabilizer. Swivel axis (A)
And, by rotating around the elevation axis (E), the visual axis (S) is spatially stabilized and controlled.

次に動揺体の動揺により,撮像装置(14)が視軸線
(S)回りに揺られると,ジャイロ部(15)は,その揺
れを慣性基準の角速度として検出し,直交俯仰軸角速度
信号(23)を出力する。第3の増幅器(19)は指令器
(1)の出力する直交俯仰軸角速度指令(18)と直交俯
仰軸角速度信号(23)との偏差を算出し,サーボ演算及
び増幅を行った後,直交俯仰軸駆動信号(20)を出力す
る。第3のモータ(21)は,直交俯仰軸駆動信号(20)
に従って,直交俯仰軸機構部(22)を駆動する。この結
果,撮像装置(14)が動き,その動きはジャイロ部(1
5)によって慣性空間基準の直交俯仰軸(C)回りの角
速度として検出される。
Next, when the imaging device (14) is swung around the visual axis (S) due to the shaking of the wobbling body, the gyro unit (15) detects the shaking as an inertial reference angular velocity, and the orthogonal vertical axis angular velocity signal (23 ) Is output. The third amplifier (19) calculates the deviation between the orthogonal elevation-axis angular velocity command (18) output from the command unit (1) and the orthogonal elevation-axis angular velocity signal (23), performs servo calculation and amplification, and then performs orthogonal calculation. Outputs the elevation axis drive signal (20). The third motor (21) drives the orthogonal vertical axis drive signal (20).
In accordance with this, the orthogonal vertical axis mechanism section (22) is driven. As a result, the image pickup device (14) moves, and the movement of the gyro unit (1
By 5), it is detected as the angular velocity around the orthogonal vertical axis (C) of the inertial space reference.

このように直交俯仰軸(C)回りにも旋回軸(A)ある
いは俯仰軸(E)と同様なフィードバックループが構成
されているので,直交俯仰軸角速度指令(18)と直交俯
仰軸角速度信号(23)との偏差は微小な値以下に保たれ
る。
In this way, since a feedback loop similar to the turning axis (A) or the elevation axis (E) is configured around the orthogonal elevation axis (C), the orthogonal elevation axis angular velocity command (18) and the orthogonal elevation axis angular velocity signal ( The deviation from 23) is kept below a very small value.

従って,指令器(1)が直交俯仰軸角速度指令(18)と
して零を出力すれば,ジャイロ部(15)は慣性基準の直
交俯仰軸角速度すなわち視軸線(S)回りの角速度を検
出しているので,撮像装置(14)の視軸線(S)回りの
回転を防止することができる。さらに,指令器(1)の
出力信号である直交俯仰軸角速度指令(18)によって,
動揺体の動揺にかかわらず,撮像装置を視軸線回りに任
意の角度まで回転させることができるのは言うまでもな
い。
Therefore, if the commander (1) outputs zero as the orthogonal elevation-axis angular velocity command (18), the gyro unit (15) detects the inertial reference orthogonal elevation-axis angular velocity, that is, the angular velocity around the visual axis (S). Therefore, the rotation of the imaging device (14) around the visual axis (S) can be prevented. Further, by the orthogonal depression / elevation axis angular velocity command (18) which is the output signal of the command device (1),
It goes without saying that the image pickup device can be rotated to an arbitrary angle around the visual axis regardless of the motion of the oscillating body.

なお,上記実施例では,動揺体の上に設置されたテレビ
カメラを空間安定化制御する装置について述べたが,空
間安定化制御される対象はレーダ,レーザ望遠鏡,砲,
ランチャなど何でもよく,本実施例に限定されるもので
はない。
In addition, in the above-mentioned embodiment, the apparatus for performing the spatial stabilization control of the television camera installed on the agitator has been described, but the objects for the spatial stabilization control are the radar, the laser telescope, the gun,
Anything, such as a launcher, may be used and is not limited to this embodiment.

また,上記実施例では,駆動機構部の3軸が,旋回軸,
俯仰軸,直交俯仰軸の順に構成されている場合について
説明したが,旋回軸,直交俯仰軸,俯仰軸の順に構成さ
れた空間安定化装置でもよく,上記実施例と同様の効果
を奏する。
Further, in the above embodiment, the three axes of the drive mechanism are
The case where the elevation axis and the orthogonal elevation axis are configured in this order has been described. However, a space stabilizing device configured in the order of the turning axis, the orthogonal elevation axis, and the elevation axis may be used, and the same effect as that of the above-described embodiment is obtained.

〔発明の効果〕〔The invention's effect〕

この発明は以上のように,旋回軸,俯仰軸,直交俯仰軸
の3軸で空間安定化制御を行っているため,動揺体の動
揺等によって従来のような視軸線回りの回転を生じるこ
とがなく,しかも精度の高い空間安定化が得られるとい
う効果がある。
As described above, according to the present invention, since the space stabilization control is performed by the three axes of the swivel axis, the elevation axis, and the orthogonal elevation axis, the conventional rotation about the visual axis may occur due to the oscillation of the moving body. There is no effect, and there is an effect that highly accurate space stabilization can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による空間安定化装置の構
成を示す図,第2図は同装置の駆動機構部の軸構成を示
す図,第3図はモニタ画面上の画像を示す図,第4図は
従来の空間安定化装置の構成を示す図,第5図は従来装
置の駆動機構部の軸構成を示す図である。 図において,(1)は指令器,(2),(7),(18)
は慣性空間基準の角速度指令,(3),(8),(19)
は増幅器,(4),(9),(20)は駆動信号,
(5),(10),(21)はモータ,(6),(11),
(22)は機構部,(12)は制御器,(13)は駆動機構
部,(14)は撮像装置,(15)はジャイロ部,(16)
(17),(23)は慣性空間基準の角速度信号である。 なお,図中,同一符号は同一,又は相当部分を示す。
FIG. 1 is a diagram showing a configuration of a space stabilizing device according to an embodiment of the present invention, FIG. 2 is a diagram showing a shaft configuration of a drive mechanism section of the device, and FIG. 3 is a diagram showing an image on a monitor screen. , FIG. 4 is a diagram showing a configuration of a conventional space stabilizing device, and FIG. 5 is a diagram showing a shaft configuration of a drive mechanism portion of the conventional device. In the figure, (1) is a commander, (2), (7), (18)
Is the inertial space reference angular velocity command, (3), (8), (19)
Is an amplifier, (4), (9), (20) are drive signals,
(5), (10), (21) are motors, (6), (11),
(22) is a mechanism section, (12) is a controller, (13) is a drive mechanism section, (14) is an imaging device, (15) is a gyro section, (16)
(17) and (23) are the angular velocity signals based on the inertial space. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】動揺体の上に設置された撮像装置を空間安
定化制御する空間安定化装置において,撮像装置等の慣
性空間基準の3軸の角速度を検出するジャイロと,慣性
空間基準の3軸の角速度指令信号を発生する指令器と,
上記ジャイロの出力信号と上記指令器の出力信号を受け
3軸それぞれに対応して演算及び増幅を行う第1,第2,第
3の増幅器と,上記第1,第2,第3の増幅器の対応する出
力信号により駆動される第1,第2,第3のモータと,上記
第1のモータにより駆動される旋回機構部と,旋回機構
部上でこれと直交する回転軸を有し上記第2のモータに
より駆動される俯仰機構部と,上記俯仰機構部の回転軸
に直交する回転軸を有し上記第3のモータにより駆動さ
れる直交俯仰機構部とを備えたことを特徴とする空間安
定化装置
1. A space stabilizer for spatially controlling an image pickup device installed on a rocking body, wherein a gyro for detecting an angular velocity of three axes of an inertial space reference of an image pickup device and an inertial space reference three. A command device that generates an angular velocity command signal for the axis,
Of the first, second, and third amplifiers, which receive the output signal of the gyro and the output signal of the commander and perform arithmetic and amplification corresponding to each of the three axes, and the first, second, and third amplifiers. The first, second, and third motors driven by corresponding output signals, the swivel mechanism part driven by the first motor, and the rotating shaft orthogonal to the swivel mechanism part on the swivel mechanism part. A space provided with an elevation mechanism unit driven by a second motor and an orthogonal elevation mechanism unit having a rotation axis orthogonal to the rotation axis of the elevation mechanism unit and driven by the third motor. Stabilizer
JP63223723A 1988-09-07 1988-09-07 Space stabilizer Expired - Lifetime JPH0715645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223723A JPH0715645B2 (en) 1988-09-07 1988-09-07 Space stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223723A JPH0715645B2 (en) 1988-09-07 1988-09-07 Space stabilizer

Publications (2)

Publication Number Publication Date
JPH0271310A JPH0271310A (en) 1990-03-09
JPH0715645B2 true JPH0715645B2 (en) 1995-02-22

Family

ID=16802672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223723A Expired - Lifetime JPH0715645B2 (en) 1988-09-07 1988-09-07 Space stabilizer

Country Status (1)

Country Link
JP (1) JPH0715645B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061588A (en) * 1973-10-04 1975-05-27
JPS6021482A (en) * 1983-07-15 1985-02-02 株式会社東芝 Aggregate of nuclear fuel
JPH028411Y2 (en) * 1984-12-29 1990-02-28

Also Published As

Publication number Publication date
JPH0271310A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US4989466A (en) Gyroscopically stabilized sensor positioning system
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
RU2000125884A (en) SATELLITE SPATIAL CONTROL SYSTEM
JP3548733B2 (en) Monitoring device
US4315610A (en) Optical image stabilizing system
JP3417447B2 (en) Image stabilizer
JPH09154057A (en) Attitude stabilizing device
JP3441898B2 (en) Image stabilizer
JPH0715645B2 (en) Space stabilizer
JP4144827B2 (en) Image stabilization device
JP3391079B2 (en) Space stabilization controller
JP2001100106A (en) Image stabilizer
JPH11308604A (en) Gimbal controller
JPH0738814Y2 (en) Camera stabilizer with gyroscope
JP2793962B2 (en) Attitude control device for RC helicopter
JP5293118B2 (en) Control device
JP2001075014A (en) Image stabilizing device
JP2546299Y2 (en) Optical camera gimbal controller
JP3203855B2 (en) Optical device
JPH01240913A (en) Space stabilizing device
JPH0348909A (en) Space stabilizing device
JPH02177773A (en) Stabilizer for video camera
JPH0218491B2 (en)
JPH08313263A (en) Posture stabilizing device
JPH06132716A (en) Antenna posture controller